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INTRoDUCTTON

The important predominance of stops requires to achieve a high performance

level of stop recognition for automatic speech recognition (ASR). Stop consonants

in Japanese occupy 19.2% of all phonemic occurrences including both vowels and

consonants (Doshita, 1965). (Voiceless stop consonants occuring 13.7% amount

more than twice frequencies of voiced stop consonants (5.5%)). In English, 31 %

ofall consonant occurrences, and 18% ofall phonemic occurrences are stop consonants

(Mines, Hansen, and Shoup, 1978). Therefore, stop consonants are probably the

most studied of all the consonant classes, both in the areas of speech acoustics and

perception. Nevertheless, the implementation of stop consonant recognition com

ponents in current ASR system does not reflect the large number of acoustic stop

features revealed through these studies.

In Japanese, typical ASR system identified voiceless stop consonants as one

class, and did not discriminate the difference concerning place of articulation. This

kind ofapproach can be justified in some extent, because the occurrences ofindividual

consonant category are quite unbalanced, i.e., 0.2% for [p], 7.3% for [t], and 6.2%

for [k]. Very low occurrences of bilabial stop reduce ambiguities incurred in ASR

systems. However in the following study, we will not use these prior probability

to evaluate features and decision algorithm.

In order to accomplish sufficiently high stop recognition rate, stop features must

be studied instead of neglecting them. In this study, we intended to find features

which are useful to discriminate stop consonants on the phonetic level. Ifwe aimed

at only final recognition score, we would apply some ad hoc technique, such as multi

templates, fixed following vowel context, or fixed speaker environment. We

intended as much as general property independent of vowel context and speaker.

For simplicity, initial consonant in CV utterances is our subject of study.

Recent studies on Japanese consonants are mainly conducted among several

ASR systems which are designed based on the discrete time warp algorithm for

restricted word recognition, moreover similar algorithm is also applied for CV

syllable recognition. Basic assumption of these researches is that consonantal
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features mainly reside on the CV boundary region, that is well known formant locus

or direction of formant transition rules which had been studied in speech synthesis

research. These approaches are of course substantially vowel dependent, and it is

naive to expect that the synthesis rules fully cover enourmous variety of feature

vector obtained by simple analysis of natural speech. Therefore more advanced

and practically experienced researchers adopt multiple templates approach in order

to cover phenomenal variety of natural speech, although sufficient number of tem

plates are required for a class of stop consonant. Those systems seem to have

achieved fairely good result, however, features used are vowel dependent and some

of them are speaker dependent, and do not reflect recent psychophysical results.

The possibility that spectra sampled at the release of stop consonants provide

distinctive shapes for place of articulation has been noted in several investigations

of natural speech. Halle, Hughes, and Radly (1957) have shown that spectral

analysis of the burst in isolation give rise to three classes of patterns associated with

the three places of articulation-labial, alveolar, and velar. Searle, Jakobson, and

Rayment (1979) have also shown that acoustic events derived from spectra sampled

in the initial few tens of miliseconds following the consonantal release can be used

to separate stop consonants into categories according to place of articulation. The

work of Fant (1960) in particular has attempted to characterize the distinctive

patterns derived from short-time spectral analysis of stop-vowel utterances.

Blumstein and Stevens (1979) described at some length the theoretical considera

tions (based on Fant, 1960) which predict that initial stops produced at each of the

three place of articulation in English should give rise to characteristically different

release "onset" spectra. In few tens of milliseconds following the stop release the

overall spectral shapes are, to the first approximation, unaffected by the vowel

context, although onset frequencies of formant transitions will differ across vowels.

These theoretical onset spectra were described by Blumstein and Stevens as diffuse and.

flat or falling for bilabial stop, diffuse rising for alveolar stop, and compact for velar

stops. Thus, in the Blumstein and Stevens view, the onset acoustic information at

the release of stop consonant, whether produced by noise burst, by aspiration noise,

by the first few pulses of phonation, or by some combination of these, constitute an

integrated acoustic cue to place of articulation that is invariant across vowel contexts.

As a consequence, Blumstein and Stevens (1979) developed three templates

intended to capture the essential characteristics of the three types of onset spectra.

In a study using natural adult speech in which onset spectra of stop consonant-vowel

syllables were fitted with the templates, over 80% of the consonants were correctly

categorized for place of articulation. In other work, Blumstein and Stevens (1980)

have shown that listeners were able to reliably identify place of articulation for stop

consonants in synthetic CV syllables on the basis of onset segments as short as 20-25

ms. These results were obtained for stimuli with or without initial bursts, and with

or without moving transitions of second and higher formants. Blumstein and
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Stevens have concluded that the short-time onset sepctrum constitutes the primary

cue for initial place-of-articulation distinctions, and the formant transitions provide

secondary, context-dependent cues.

In this study, using spectra of initial voiceless stop consonants in CV syllables

from 28 adult male speakers we examined whether the invariant characteristics of

the burst spectra which denote Blumstein's templates are also identified for Japanese,

and these invariant features are effective for discriminating stops across vowel

context and different speakers. Invariant stop consonant features are interesting

not only for psychophysical researcher but also for ASR system engineer, since

current complicated decision and learning processes of ASR systems will be replaced

by a very simple decision process which uses some invariant features without adap

tation.

I ACOUSTIC ANALYSIS

A. Methods

Twenty-eight male speakers (aged 22-35, university students in post graduate

course, all native Japanese of Kansai districts) were asked to read each of syllables

in natural speed and equal tempo. Each talker was allowed to practice reading

a list until he felt comfortable.

The experimental utterances included all possible Japanese voiceless stops

including jtij and jtuj which are usually pronounced as [ci] and [tsu]. Table I lists

the individual utterances both in phonetic symbol and Kana letters which were read

by the subjects. The subjects were instructed to read 7- and ':J as [ti] and [tu]

not [ci] or [tsu], and to try few times to adjust the recording level and pronouncia

tion speed. The list of utterances typed on a sheet in lexcial order of Japanese

dictionary consisted of 35 voiceless and voiced stop consonant syllables including

five vowels. The analysis results for voiced stops will not be reported here.

The utterances were produced in a silent room in front ofa SONY ECM-220FA

microphone and a Hitachi Lo-D D-77S tape recorder was utilized for the recordings.

Table 1. List of CV syllables which speakers were asked to utter, in both phonetic
symbols and Kana letters.

---------------==========;===============

tu te

pu pe 1::.0

71

-1

to

po

oeu

ta ti

a

pa pi

ka ki

ba bi

ku ke

bu be
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,~,

da di du de do

ga gi gu ge go
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Speech waveforms were digitized directly from the monitor output of the tape

recorder in order to avoid phase distortion. A JEIC 3118 low-pass filter with 70

dBJoct for anti-aliasing (the cut-off frequency was set to 8.9 kHz) and a DATEL

DAS-250 16-channel 12-bit AJD converter of 4-microsecond sampling period were

used for digitization. Through the AJD converter which was connected to a

FACOM U-200 minicomputer at the common bus with direct access mode, speech

data samples at every 54 microsecond (18.5 kHz sampling) were stored into a

cartridge-disc of 2-megabyte in real-time for about 1 minutes continuously.

Speakers were allowed to read a list in natural way so far as reading falls in the I

minutes of real-time recording interval. Individual utterances of CV segment was

interactively separated and filed on a magnetic tape with additional information

concerning speaker name, age, date, and description of phonemes.

Individual utterances were input from a digital magnetic tape to a minicomputer

and the waveforms were drawn on an X-Y plotter. From the initial 3500 samples

of data (190 ms), waveforms at the release were sampled manually using a cursor.

Smoothed spectrum was analyzed and displayed on the plotter (Fourier spectrum),

while corresponding parameters were computed by linear prediction algorithm

(LPC) and stored on a disk store. The time window for spectral analysis was around

20 ms of varying length guided by the visual observation. The smoothed spectrum

was displayed as a plot with a resolution of 13 Hz. Formants corresponding to

spectral peaks were computed from the solution of higher order polynomial equation

by the Muller method.

Because of the laborious nature of this manual procedure, the measurements

had to be restricted to the most crucial aspects of the stop consonants-the burst

spectrum, the onset frequencies of F 2 and F 3 following the stop release and the

steady frequencies of F 2 and F 3. Although the release spectrum are affected by the

following vowel context (especially for velar stops), there are some invariant

features included in the spectral patterns across vowels and speakers. The extracted

raw data consisted of two sets of LPC alpha parameters for burst release and onset

and formant frequencies for steady vowel. A set of fifteen utterances was produced

by each of twenty-eight speakers.

B. Feature Analysis

We will consider only burst spectrum here after, since we believe some invariant

features reside in this portion. The first problem is how to measure a burst spectrum,

that is, time window, spectrum estimation method, and computation of spectrum.

The second is feature extraction, that is, conversion of spectrum patterns into more

effective set of parameters.

The initial stop consonant consists of burst, aspiration, vowel onset, and vowel.

The burst part of consonant is the sudden release of articulators from a state of

complete occlusion. The aspiration follows (the excitation of the vocal tract by
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Fig. 1. Examples of waveforms and spectra sampled at the release of three voiceless stop
consonants as indicated. Superimposed on the waveforms is the time window (of
width 26 ms) that is used for sampling the spectrum by Blumstein and Stevens.
(Reproduced and rearranged with permission, from Blumstein and Stevens, 1979).

glottaly generated turbulence).

The time window shape which Blumstein used, is shown in Fig. 1, puts greater

emphasis on the earlier portions of the signal for a spectrum calculated at an onset.

He chose a 26 ms time window because it seemed to produce spectral shapes

that were optimally similar to the theoretically derived curves. Owing to the

varying burst length and voice-onset time for these stops (also superimposed with

speaker effects), the portion of the consonantal onset actually measured varies across

the different consonants. Note that for [b], the 26 ms time window includes both

burst and some portion of voicing onset, whereas for [g] essentially only the burst

is measured.

We did not apply fixed window, though, Blumstein claimed fixed window

is sufficient for a short time onset spectrum. Firstly, we intended to derive spectrum

which is invariant across vowel as much as possible. Therefore our time window

did not include vocalic portion. A 26 ms time window is too long for Japanese

stops, since the aperiodic portion is not so long as Blumstein's observations. Japanese

voiceless stops are weakly pronounced rather than English correspondents. Burst

portion have to be carefully separated. In case of voiceless stops, the time window

we applied includes the initial frication burst and possibly a portion of aspiration,

but never extended into the onset of voicing. A varying length of time window

(half-Hamming) positioned at the burst onset was used in deriving the spectra (see

Fig. 2). Note that the aspiration portion is lightly weighted in order to emphasize

burst spectra.

Examples of spectra for several naturally produced voiceless consonants in
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Fig. 2. Examples of waveforms and spectra sampled at the release of the three voiceless stop
consonants as indicated. The amplitude of the waveforms is represented in sone
scale, i.e., a power of voltage measured in linear scale with the exponent is set to
1/3 so as to emphasize the burst portion only for displaying purpose and not used in
the following spectrum computation. Superimposed on the waveforms is the time
window (half-Hamming) that is used for sampling the spectrum. Short-time
spectra are determined for the first difference of the sampled waveform (sampled at
18.5 kHz) and are smoothed using a linear prediction algorithm, i.e., they represent
all-pole spectra (26-th order) that provide a best fit to the calculated short-time
spectra with pre-emphasis.

Japanese are shown in Fig. 2. These are linear prediction spectra obtained by

pre-emphasizing the high frequencies and varying time window beginning at the

consonantal release. The first difference of the waveform was calculated (in effect

pre-emphasizing the high frequencies). A smoothed spectrum was calculated using

a 26-pole linear prediction algorithm which is effective to estimate spectrum from

very small number of time samples. Optimal prediction order was decided examin

ing the final prediction errors, and resulted in a little higher order than vowels, since

the burst portion should be represented by a pole-zero model instead of an all-pole

autocorrelation model.

C. Spectral analysis

Although numerous methods have been proposed for representing the spectral

characteristics of speech, such as band pass filter sampling and analysis-by-synthesis,

there are a number of reasons why linear prediction techniques are becoming

widely used (Markel and Gray, 1976). Because the model spectrum represents

a smoothed version of the data spectrum with a very small number of parameters.

The model used for representing the input data spectrum IX[exp(jB)]1 2 is given by

IA (:~OW = !ACz) 1:=ejO

where a2 is a gain constant.

(1)
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The spectral model is based upon the autocorrelation method. The first pro

perty of important is that on a log magnitude scale, A[exp(jO)J or ljA[exp(jO)] for

either the autocorrelation or covariance method has zero mean provided that A(z)

has all of its zeroes within unit circle, i.e.,

j " I 1

2
dO± _"In A (ej O) -27T = ° (2)

In the autocorrelation method of linear prediction, the gain coefficient {)2 is equal

to the total squarred error a. The gain factor matches the energy or average value

of the input spectrum IX[exp(jO)] 1
2to the model spectrum a2/IA[exp(jO)JI2.

The model log spectra for the burst portion without gain factor are normalized

spectra, will be used in the following discriminant analyses, since due to varying

time window and recording level, the energy level did not account for discrimination.

We use the spectrum to denote model log spectrum from now on. A 26-th

order spectral model with parameters {aI, a2, ... , a26} has been calculated, based

upon input data sampled at 18.5 kHz. To have a frequency resolution of 30 Hz

in spectrum, N' must satisfy fs(kHz) IN';::::; .03 or N' ;::::;333. A spectrum is represented

with 256-point fast fourier transformation. Choosing the closed power of two L=9

and N'=5l2 and a frequency resolution (distance between discrete samples) of

36.1 Hz. Using Fortran FFT subroutine to compute LM(ljA) at the discrete

frequencies f k =36.l k, k=0,1,2, ... ,256, the Y array is filled with zeroes since the

input sequences is real, and the X array is filled as follows:

(3)

t
512

t t
2829

t
27

X = {I, aI, a2, ... , a26, 0, 0, ... , O}

t t t
index 1 2 3

After calling the FFT subroutine with L=9, LM(l/A) is computed from the

Fortran variables X(J) (for real part) and yeJ) (for imaginary part) as

S(J)~ 10 loglO {IA( e"~iJ,=!2) I' }= -10 loglO[X
2(J)+Y2 (J) ]

for J = 1,2, ... ,257. (4)

D. Feature selection

The selection of variables is key problem in pattern recognition and is termed

as feature selection or feature extraction. Feature selection is considered a process

of mapping the original measurements into more effective features. We have pre

sented the burst spectrum by a 256-point log magnitude spectrum, however, this

representation is sufficiently detailed, is too much redundant, because correlation

between adjacent frequency components are high. Too many parameters cause

computational complexity, singular matrix problem, and degraded computational

preCISIOn. Theoretically one of efficient way of reducing dimensionality of feature

space is to expand by principal components. Although this method reduces
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redundancy as a whole, it does not evaluate effectiveness of feature set based on

discrimination. We have tried this method and found that it is not so efficient

provided small number of majour components are used for classification.

The critical bandwidth derived from the psychophysics of human auditory

system is efficient representation of spectral features also for recognition system.

We have compared several representations, i.e., original 256-point spectrum, equal

bandwidth spectrum, critical bandwidth spectrum, and principal component repre

sentations, and found that the critical bandwidth was best with log magnitude power

scale. In order to approximate critical bandwidth components up to I kHz, 10

segments were derived out of 30 components by averaging every 3 components, and

from 1 kHz up to 9.25 kHz bandwidth of following components were merged so as

to be proportional to log frequencies resulting 18 segments, hence amounted to 28

new components as a whole. This 28-dimensional feature vector representation

for each burst spectrum was used as an input for the next decision process.

Although above mapping from spectrum to critical band spectrum is linear,

in many application of pattern recognition, there are important features which are

not linear function of original measurements, but are highly nonlinear functions for

the given data. Such examples are second order statistics as covariance matrix or

cross terms of two components. From the examination of variance-covariance

matrices of each class of consonants, there were several components which showed

prominently different values between two classes. Some of these components will

be shown to be effective features for recognition.

From these features, our task is to select the features so as to maximize a criterion.

This process is described in the following decision process as a variable selection step.

II. DECISION PROCESS

The final step in the phoneme recognition is to decide from the feature detector

data what phoneme was uttered. Because we are obviously dealing with noisy data,

an analysis based on statistical decision theory seems most appropriate.

First, we will state statistical classification methods have yielded successful

classifiers. Second, the procedure by which a subset of the available features is

selected for use in the classifier must be defined in the next section. Ifd is the number

offeatures to be used in making the classification, then a pattern (f1,f2, ... ,fd) is a point

in Ed (d·dimensional Euclidian space) with L being the value of the i-th feature.

A pattern correspond to the d feature measurements for a segment or frame of speech.

A training set consists ofN patterns Xn , i<n<N, which are used to "train" the classifier

to identify the class correctly. A classifier's decision is said to be correct if it agrees

with this listener's classification. In general, if patterns are drawn from R classes,

then the objective of training is to devide the feature space Ed into R regions, with

region r corresponding to class or category r, 1<r<R. The division of the feature
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space into R region can be described by a set ofR discriminant functions gr, 1~r~

R, where a pattern x is considered to be in class i if

gi(X) > gj(x) for all j *" i, 1 ~ i, j ~ R. (5)

Different types of classifiers are obtained by making different assumptions about such

factors as the statistical properties of the features and the form of the discriminant

functions.

A minimum distance classifier is one discriminant method. Each class r for

which gr is minimum, I ~r~R. This corresponds to mean vector Inr and its d X d

covariance matrix Cr. The discriminant functions to classify a pattern x are

distance measure of the form

(6)

where vectors are assumed to be column vectors, and superscript t denotes transpose.

Pattern x is considered to be in the class r for which gr is minimum, I ~r~R. This

corresponds to a Bayes classifier, in which it has been assumed that the joint probabi

lity density function of the feature measurements for each class is a multivariate

Gaussian distribution.

This classification method has the advantage of simplicity: given an adequate

training set, all that is required to obtain the classifier is computation of the mean

vector and covariance matrix for each class. Possible disadvantages of the method

are the assumption that the probability density functions of the features are Gaussian,

and the large size of the training set needed to produce an accurate estimate of the

mean vector and covariance matrix for each class.

The Bayes liklihood ratio test has been shown to be optimal in the sense that

it minimizes the expected cost or error. However, in order to construct the

liklihood ratio, we must have the conditional probability density function for each

class. In most applications, we must estimate these density functions using a finite

number of sample observation vectors. Estimation procedures are available, but

they may be very complex or require a large number of samples to give accurate

results. Even if we can obtain the densities, the liklihood ratio test may be difficult

to implement; time and storage requirements for the classification process may be

exceSSIve. Therefore, we are often led to consider a simpler procedure for designing

a pattern classifier, leaving a finite set of parameters to be determined. The simplest

and most common choice is the linear classifier.

When covariance matrices are equal for each class, that is Cr=C, 1::::;;r~R,

the discriminant functions are reduced to a set oflinear functions ofx as

1gr= -Inrt C-l x+2 Inrt C-l Inr (7)

The advantage of this method is robustness with respect to non-normality and

unequal covariance matrices (Lachenbruch, 1975).

B. Stepwise Discriminant Analysis

We have chosen to use the discriminant analysis program contained in the
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BMDP (Biomedical Computer Program-P) released by Hitachi Co. for M-series

VOS3 system for this purpose (Dixon and Brown, 1977). The program BMDP7M

permits stepwise discriminant analysis, i.e., direct categorization of all of the data,

or establishment of category boundaries within a portion of the data (the "known"

subset), then application of these boundaries to determine (i.e., predict) the phonemes

in the reminder of the data (the "unknown" subset). BMDP7M performs a multiple

group discriminant analysis. The variables used in computing the linear classifi

cation functions are chosen in a stepwise manner. At each step the variable that

adds most to the separation of the group is entered. Both forward and backward

selection of variables arepossib1e; at each step the variable that adds most to the

separation of the groups is entered into (or variable that adds the least is removed

from) the discriminant function. By specifying contrasts we can state which group

differences are of interest; these contrasts guide the selection of variables. For each

case the group classifications are evaluated. Based on the posterior probabilities,

a classification table is computed (prior probabilities can be specified for use in these

computations). In addition a Jackknife-validation procedure can be requested

to reduce the bias in the group classifications. The program computes canonical

discriminant functions and plots the first two to give an optimal two-dimensional

picture of the groups. Output includes means, standard deviations, F-statistics

for distance between pairs of groups, and degrees of freedom for each variable at

each step, Wilks' A (V-statistic) for multivariate analysis of variance, and Mahala

nobis D2 of each case from each group mean.

00010 PROBLEM TITLE='DISCRIMINATION EXCPT KITAZ & OKU (82 6 26)'./
00020 INPUT VARIAB=32.FORMAT='(4F2.0,28E12.5)'.UNIT=8./
00030 VARIAB ADD=11.USE=7,12,17,19,21 ,26,31 ,34,37,41 ,42,43.
00040 GROUPING=3./
00050 GROUP CODE(3)=1 TO 3.NAMES(3)=P,T,K.USE=1 TO 3./
00060 TRANSF X1=X( 5)*X( 5). X2=X(19)*X(19). X3=X1+X2. X(33)=SQRT(X3).
00070 X1=X(15)*X(15). X2=X(22)*X(22). X3=X1+X2. X(34)=SQRT(X3).
00080 X1=X(11)*X(11). X2=X(31)*X(31). X3=X1+X2. X(35)=SQRT(X3).
00090 X1=X(18)*X(18). X2=X(31)*X(31). X3=X1+X2. X(36)=SQRT(X3).
00100 X1=X(28)*X(28). X2=X(32)*X(32). X3=X1+X2. X(37)=SQRT(X3).
00110 X1=X( 7)*X( 7). X2=X(13)*X(13). X3=X1+X2. X(38)=SQRT(X3).
00120 X1=X( 8)*X( 8). X2=X(23)*X(23). X3=X1+X2. X(39)=SQRT(X3).
00130 X1=X(13)*X(13). X2=X(27)*X(27). X3=X1+X2. X(40)=SQRT(X3).
00140 X1=X(14)*X(14). X2=X(23)*X(23). X3=X1+X2. X(41)=SQRT(X3).
00150 X1=X(23)*X(23). X2=X(Z8)*X(28). X3=X1+X2. X(42)=SQRT(X3).
00160 X1=X(21)*X(21). X2=X(24)*X(24). X3=X1+X2. X(43)=SQRT(X3).
00170 X1=X(1) EQ 4. X2=X(1) EQ 5. X3=X1 OR X2.
00180 X4=X(3)+6. X(3) = X4 IF X3./
00210 PRINT NO STEP.NO POST.NO POINT/
00220 DISC ENTER=4.00.REMOVE=3.999./
00230 ENOl
00240,FINISHI

Fig. 3. Complete list of Control Language for BMDP7M which we used to classify [p], [t],
and [k], and yielded 84.2% of correct recognition. The data and variables are
described in Control Language instructions and X(3) is specified as the variable that
classifies the cases into three groups-P, T, K. In TRANS paragraph new variables
are generated as a set of sum square roots of pairs of input variables. The last two
lines in the TRANS paragraph is for excluding data from 4th and 5th speakers
which the recording condition was invalid due to hardware missetting. X(l) is
speaker index, X(2) is practice number, and X(4) is vowel index.



58 Shigeyoshi KITAZAWA and Shuji DOSHITA

C. Control language and listings

The method we have used is shown in Fig. 3 as a list of the control language.

Three groups of stop consonants are [p], [t], and [k]. Variable X(3) is a grouping

variable. Variables X(5)-X(32) are raw data of critical bandwidth spectrum.

(Note that from here after the variable X(J) denotes the value S(J) /5.0 in section

I.C.) Variable transformation is specified in the TRANSF paragraph, and X(33)

X(43) are generated. In the following forward and backward step, starting with

no variable in the classification function, variables are entered and removed at a

time according to the criterion specified. Variables are entered into the classification

function if they have F-value larger than ENTER, removed from if F-value less than

REMOVE.

III. RESULTS AND DISCUSSION

A. Mean vector and standard deviations

The mean vectors of each category obtained averaging zero mean vectors of

each sample across 18 speakers (see Fig. 4(a)), shows the invariant characteristics

of the burst spectra as Blumstein stated. Diffuse and flat for [p], diffuse and rising

for [t], compact for [k]. Note that [t] mean vector has a peak at 5.3 KHz region,

and [k] mean vector has peaks at 1.2 kHz region corresponding to second formant

of back vowels and 4.7 kHz region corresponding to third and higher formants of

front vowels. Probably because the plosion ofJapanese bilabial stops is not as strong

as that of English and has very short duration, the shape of the burst spectrum of

bilabial stop is rather flat and not so low frequency peak prominent, and only a few

samples have falling shape of spectrum as the Blumstein's template. Because

alveolar stops are not followed by such a long aspiration as that in English, samples

with rising shape of spectrum are not dominant.

The standard deviation of vectors are shown in Fig. 4(b). While both [p]

and [t] classes have approximately uniform standard deviations, [k] class has domi

nant two peaks because two groups are combined together in one group. The

multidimensional distribution functions for both [p] and [t] classes are approximately

similar, but [k] class is a composit of two mode distributions corresponding to front

and back vowels. Therefore classification functions need to reflect covariance at

least for [k] class conditioned to treat [k] class as one group.

B. [p]-[t] discrimination

Discrimination between [p] and [t] class has been conducted and resultant

classification functions and classification matrix and histogram of canonical variable

were obtained (see Fig. 5). Variables entered into the classification functions after

forward and backward stepping were X(7), X(l7), X(2l), X(23), and X(26), and

Jackknifed classification score was 89.5%. Transformed variables were less effective
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than original spectrum, therefore not entered into. The histogram of canonical

value shows good discrimination.
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Fig. 4. Mean vectors (a) and standard deviations (b) for three category
across samples from 18 speakers. The feature vector is critical
band spectrum.



60 Shigeyoshi KITAZAWA and Shuji DOSHITA

C. [tJ-[kJ discrimination

Discrimination between [tJ and [kJ class has been conducted and resultant

classification matrix is shown in Fig. 6(a). Variables entered were X(5), X(12),

X(17), X(19), X(21), X(27), and X(31), and Jackknifed classification was 81.6%

correct which is a rather low score than [pJ-[t] classification. Since the distribution

of [kJ class is different from the other classes (see Fig. 4(b)), it is necessary to consider

cross terms of two variables. Variables entered were X(5), X(12), X(17), X(19),

X(21), X(31), X(37), X(41), and X(43). Variable X(27) was removed and 3

transformed variables were entered. Jackknifed classification score rose to 87.1 %.

CLASSIFICATION FUNCTIONS

GROUP
VARIABLE

7 X(7)
17 X(17)
21 X(21)
23 X(23)
26 X(26)

CONSTANT

CLASSIFICATION MATRIX

P

0.87591
0.57934
0.85234

-0.04259
0.42447

-1 .08601

Fig. 5 (a).

T

-1.96406
-0.43005
-0.28252

0.38795
1 .12993

-2.72504

GROUP PERCENT NUMBER OF CASES CLASSIFIED INTO GROUP -
CORRECT

P T
P 89.5 170 20
T 89.5 20 170

TOTAL 89.5 190 190

JACKKNIFED CLASSIFICATION

GROUP PERCENT NUMBER OF CASES CLASSIFIED INTO GROUP -
CORRECT

P T
P 89.5 170 20
T 89.5 20 170

TOTAL 89.5 190 190

Fig. 5 (b).

HISTOGRAM OF CANONICAL VARIABLE

T
TT T.
TT TT T

T TTTT TT T T TT T P
TTT TTTTTT TT T P T TTP T P T P
TTT TTTTTTTT TT TT P P TTPP T TP PPPP P P P
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T TTTTTTTTTTTTTT TTT PTT PPPPPPTPPPPPPPPPPPPPPP PPPPPPPPP
T T TT TTTTTTTTTTTTTT TTT TTPTT PPPPPPTPPPPPPPPPPPPPPP PPPPPPPPP

T T T T TT TT TTTTTTTTTTTTTTTTTPTTTPPP PPPPPPPPPPPPPPPPPPPPPP PPPPPPPPPP
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+ .••• + .... + .••. + •••• + •••• + •••• + •••• 2 .... + •.•• + •••• ¥ ••• '+.'0 .+ •••• 1 .... + •••• + .... + ••.• + .•.. + ..•• + ..•. + .•.•
-3.2 -2.4 -1.6 -.80 0.0 .80 1.6' 2.4 3.2 4.0

-3.6 -2.8 -2.0 -1.2 -.40 .40 1.2 2.0 2.8 3.6

ON THE AXIS. INDICATES DIVIDING POINT AND .NUMBERS THE GROUP MEANS

Fig. 5 (c).

Fig. 5. Results of [p]-[t] discriminant analysis by BMDP7M across 28 speakers utterances
of three voiceless stop consonants. Classification functions (a), classification matrix
(b), and histogram of canonical variable (c).
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CLASSIFICATION MATRIX

GROUP PERCENT NUMBER OF CASES CLASSIFIED INTO GROUP -
CORRECT

T K
T 84.7 161 29
K 80.0 38 152

TOTAL 82.4 199 181

JACKKNIFED CLASSIFICATION

GROUP PERCENT NUMBER OF CASES CLASSIFIED INTO GROUP -
CORRECT

T K
T 84.2 160 30
K 78.9 40 150

TOTAL 81.6 200 180

Fig. 6 (a).

HISTOGRAM OF CANONICAL VARIABLE

K
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K K
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K K KKKK KK KKKKKKKKKKKTTKKT KTTTTTTTTTTTTKTTTTTKTT T
K K KKKK KK KKKKKKKKTKKTTKTTKKTTTTTTTTTTTTTTTTTTTTT T T

K KKKK K KKKKKK KK KKKKKKKKTKKTTTTTKTTTTTTTTTTTTTTTTTTTTTTTTTT TT T T
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Fig. 6 (b).

Fig. 6. (a) Classification matrix of [t]-[k] discriminant analysis BMDP7M across 28
speakers utterances of three voiceless stop consonants. (b) Histogram of canonical
variable.

Classification functions, classification matrix and histogram of canonical variable

are in Fig. 7.

D. [p]-[t]-[k] discrimination

Variables were selected out of combination of variable set used in [p]-[t]

discrimination and [t]-[k] discrimination, and resultant classification functions

used X(7), X(12), X(17), X(19), X(21), X(26), and X(31). Jackknifed classifica

tion score was 77.0%, and dominant confusion occurred between [t] and [k] (see

Fig. 8). Therefore we tried to improve discrimination by introducing cross terms.

Finally entered variables into the classification function were X(7), X(12), X(17),

X(19), X(21), X(26), X(31), X(34), X(37), X(41), X(42), and X(43). Note that

newly entered cross terms were X(34) and X(37) which were effective for [p]-[t]

discrimination, and X(41), X(42), and X(43) which were effective for [k] discrimi

nation. The Jackknifed classification score was 83.3% for data of 28 speakers

independent of vowel context. The improvement in correct recognition due to

cross terms was statistically significant, furthermore the plots of canonical variables

show more compact distribution of each class (compare Fig. 8(c) and Fig. 9(c)).
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CLASSIFICATION FUNCTIONS

GROUP
VARIABLE

5 X(5)
12 X(12)
17 X(17)
19 X(19)
21 X(21)
31 X(31)
37 X(37)
41 X(41)
43 X(43)

CONSTANT

CLASSIFICATION MATRIX

T

-1.78204
0.26094

-0.21664
1.29858

-0.63856
0.01383
3.36407
1.35855
0.91230

-6.56025

Fig. 7 (a).

K

-2.36057
1.44018
1.46730
0.48770
0.15209
0.98129
2.62532
2.42677
2.25753

-10.15124

GROUP PERCENT NUMBER OF CASES CLASSIFIED INTO GROUP -
CORRECT

T K
T 88.9 169 21
K 85.8 27 163

TOTAL 87.4 196 184

JACKKNIFED CLASSIFICATION

GROUP PERCENT NUMBER OF CASES CLASSIFIED INTO GROUP -
CORRECT

T K
T 88.9 169 21
K 85.3 28 162

TOTAL 87.1 197 183

Fig. 7 (b).

HISTOGRAM OF CANONICAL VARIABLE
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K KK KKK KK KKKKKKKKKK KKKKKKKKKK TKKKTKTTTKTTTTTTTTTTTTTTTTT TTTT T TT
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Fig. 7 (c).

Fig. 7. Results of [t]-[k] discriminant analysis by BMDP7M across 28 speakers utterances
of three stop consonants using enhanced features including cross terms. Classification
function (a), classification matrix (b), and histogram of canonical variable (c).

CLASSIFICATION FUNCTIONS

GROUP p T K
VARIABLE

7 X(7) 0.73966 -2.21307 -2.53393
12 X(12) -0.96358 -0.31893 1.12619
17 X(17) 0.16826 -0.63041 0.60715
19 X(19) -0.12377 0.20937 -0.70888
21 X(21 ) 0.20171 -0.92495 -0.02633
26 X(26) 0.06253 0.75377 0.78980
31 X(31 ) -0.93626 -0.60977 0.30854

CONSTANT -1.75494 -2.94150 -3.48165

Fig. 8 (a).



Discriminant Analysis of Burst Spectrum for Japanese Initial Voiceless Stops

CLASSIFICATION MATRIX

GROUP PERCENT NUMBER OF CASES CLASS I FIED INTO GROUP -
CORRECT

P T K
P 86.3 164 21 5
T 75.8 21 144 25
K 72.1 2 51 137

TOTAL 78.1 187 216 167

JACKKNIFED CLASSIFICATION

GROUP PERCENT NUMBER OF CASES CLASSIFIED INTO GROUP -
CORRECT

P T K
P 86.3 164' 21 5
T 74.7 22 142 26
K 70.0 2 55 133

TOTAL 77.0 188 218 164

Fig. 8 (b).

OVERLAP OF DIFFERENT GROUPS IS INDICATED BY •
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Fig. 8. Results of [p]-[t]-[k] discriminant analysis by BMDP7M across 28 speakers
utterances of three voiceless stop consonants. Classification functions (a), classification
matrix (b), and plot of canonical variables (c).
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CLASSIFICATION FUNCTIONS

GROUP P T K
VARIABLE

7 X(7) 1 .41562 -1.27225 -1.60248
12 X(12) -0.64084 0.25155 1 .59993
17 X(17) 0.64497 -0.03672 1 .61363
19 X(19) 0.55729 0.95163 0.18325
21 . X(21 ) 0.29110 -0.79347 -0.17860
26 X(26) -0.13492 0.66397 0.55657
31 X(31) -0.27537 -0.15901 0.76527
34 X(34) 1 .24083 1.407t14 2.16286
37 X(37) 3.31852 2.66767 1.94789
41 X(41) 1.14530 -0.01889 0.87371
42 X(42) -0.58546 '1.21333 1.30226
43 X(43) 1 .45071 1. 18489 2.57691

CONSTANT -6.63453 -7.47735 -11.68442

Fig. 9 (a).

CLASSIFICATION MATRIX

GROUP PERCENT NUMBER OF CASES CLASSIFIED INTO GROUP -
CORRECT

P T K
P 88.4 168 18 4
T 81.1 20 154 16
K 83.2 5 27 158

TOTAL 84.2 193 199 178

JACKKNIFED CLASSIFICATION

GROUP PERCENT NUMBER OF CASES CLASSIFIED INTO GROUP -
CORRECT

P T K
P 88.4 168 18 4
T 79.5 21 151 18
K 82.1 6 28 156

TOTAL 83.3 195 197 178

Fig. 9 (b).

E. Speaker difference in discrimination

As we stated in section II, statistical method have to be carefully applied when

the number of samples is not large. In order to validate previous results, a stronger

test was applied. In computing classification function, one of speaker's utterances

were excluded in order to reveal speaker's idiosyncrasies (Jackknifed classification

was insufficient, since only a test sample was excluded and the other samples of the

speaker under test were included in computation of the classification function).

The 28-speaker data set was divided into a training set of "known" utterances and

a test set of "unknown" utterances. The test set contained all utterances of one

speaker and the training set contained remaining 27-speaker data set. The classifi

cation functions were obtained from the covariance matrix of 27-speakers, using this

function the test set was discriminated. This test was repeated for each speaker's

test data set in turn. The prediction run to discriminate [pJ-[tJ-[kJ yielded 82.3%

overall accuracy averaged for all speakers (see Table 2). Jackknifed classification

degraded about 1% of accuracy than within class test, and "unknown" speaker test

degraded also 1% than Jackknifed classification. Since these degradations were

very small and the number of samples was not small (190 samples for each class),
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Fig. 9. Results of [p]-[t]-[k] discriminant analysis by BMDP7M across 28 speakers
utterances of three voiceless stop consonants using enhanced features including cross
terms. Classification functions (a), classification matrix (b), and plot of canonical
variables (c).

the estimated classification function will work about 80% accuracy for other unknown

data set. Although we have to take account of the number of samples for each

speaker, performance varied widely among speakers (e.g., 600/0 to 100%). The

precise prediction of performance for individual unknown speaker was not possible

now because of small number of samples.

F. Vowel dependent discrimination

The 28-speaker data set was divided into 5 groups according to the consonant

following vowel. A group of data set contained 114 utterances of 28-speakers stops

followed one of 5 vowels. Table 3 summarizes the results of discriminant analysis

on [p], [t], and [k]. Table 3(a) is the confusion matrix resulting from a within

dataset classification of 114 utterances involving 28-different speakers. The program

was able to classify 90.4% for vowel [a], 93.0% for [i] ,95.6% for [u], 86.8% for [e],

and 92.1 % for [0] of utterances correctly, using 12 of the features discussed in section

D.
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Table 2. Predictive classification of unknown 28 speakers utterances. Overall percent
correct is 82.3%.

Actual Is k IClassified I S k· Classified I Ski Classified: Ski Classified
h · ~ff ~ff ~ff ~ff

P oneme p t k P t kip t kiP t k

p SG 10 4 1 MN 5 0 0 HR 5 0 0 OG 4 1 0

t 2 13 0 0 3 2 1 4 0 0 5 0

k o 2 13 0 0 5 0 1 4 0 0 5

P DC 15 o 0 SK 3 1 1 YS
I

5 0 0 HY
I

5 0 0

t 4 9 2 0 4 1 0 5 0

I

3 1 1

k 0 o 15 0 1 4 I 0 0 5 0 0 5
I

P KB 13 2 0 NS 5 0 0 HS I 5 0 0 YR 5 0 0

t 5 10 0 0 5 0

:

1 4 0 0 4 1

k 2 2 11 0 1 4 0 0 5 0 0 5

P NR 12 3 0 SZ 4 0 1 YM 5 0 0 NY 5 0 0

t 1 122 0 5 0 0 4 1 0 3 2
k 3 0 12 0 1 4 0 1 4 0 0 5

P NK 13 0 2 NG 2 3 0 KS 5 0 0 SD 5 0 0

t o 15 0 1 4 0 0 4 1 0 5 0

k o 3 12 0 0 5 0 1 4 0 2 3

P MM 4 1 0 TM 3 2 0 KM 4 1 0 ST 5 0 0

t 0 5 0 1 4 0 0 5 0 0 5 0

k 0 2 3 0 2 3 0 2 3 0 3 2
- ---

p MY 4 1 0 AR 4 1 0 MT 5 0 0 KT 5 0 0

t 3 2 0 0 3 2 0 4 1 0 3 2
k 2 0 3 1 2 2 0 2 3 0 1 4

Table 3. Classification of CV initial three stop consonants under fixed following vowel
environments. (a) Within-dataset classification of known utterances. Overall
percent correct is 91.6%. (b) Jackknifed classification. Overall percent correct
is 89.5%.

(a) Classification

Actual Ca Ci Cu Ce Cophoneme

C p k P k P k P k P k

P 33 5 0 37 0 1 36 0 2 33 5 0 34 4 0

t 5 33 0 0 35 3 0 38 0 6 30 2 4 34 0

k 0 1 37 0 4 34 3 0 35 1 1 36 1 0 37

Percent 90.4 93.0 95.6 86.8 92.1correct

(b)

p 32 6 0 36 0 2 36 0 2 33 5 0 32 6 0

t 5 33 0 0 35 3 1 37 0 8 28 2 4 34 0

k 0 3 35 0 5 33 4 0 34 1 2 35 1 0 37

Percent 87. 7 91. 2 93.9 84.2 90.4correct
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Of more significance are the results in Table 3(b). Here the classification

functions were derived from all the data except the case being classified. This pre

diction run yielded 89.5% of accuracy. The errors are not uniformly distributed

but instead are mostly in [e]. Of cource the number of samples for a group of vowel

may not be sufficient to test a hypothesis of difference with statistically significant

level.

IV. GENERAL DISCUSSION

While the overall performance of the discriminant analysis averaged over the

three places of articulation was 84.2% (82.3% for unknown speaker test), as com

pared to the Blumstein-Stevens (1979) result of 84.2% for voiceless stops, this com

parison is very good coincidence. Although, Lahiri and Blumstein (1981) found

the cross-language difference in French and Malayalam stops, the gross shape of

onset spectrum we measured for Japanese stops differ from Blumstein's ternpIates,

the invariant property for place of articulation in stop consonants was also shown

with more than 80% correct identification score across vowels and speakers. Since,

for example, velar spectrum peak in the mid-frequency shifts depending the following

vowel, velar stops are usually dealt in vowel dependent environments. In case of

vowel dependent analysis, the averaged result over the five vowels was 89.5%,

hence in some sense vowel dependent, but this dependency differs from vowel to

vowel, [u] 93.9% was most dependent and [e] 84.2% was most independent.

The results which BMDP7M, a one of common program package for statistical

analysis, computed and validated by Jackknife classification and by "unknown"

speaker tests were found very stable. BMDP7M uses linear classification functions

which is suitable and recommended in application fields, although the Bayesian

decision is theoretically best. Further the disadvantage of linear classifier in classifi

cation power was compensated by inclusion of transformed variables.

The good performance achieved in this study is probably due to enhanced features

in four points. First, spectrum extracted from wider frequency range of 9.25 kHz

than usual 5 kHz range was effective for discrimination, since in the variable selection

steps in BMDP7M some of higher frequency components were selected and contri

buted much for discrimination. Second, time varying window was adopted to

select precisely the burst portion while sacrificing frequency resolution for compensa

tion. However, we have no comparing data to Blumstein's fixed 25.6 ms time

window. Third, the burst spectrum was averaged critical bandwidth wise, since

we have found this representation is better performance in discriminating the place

of articulation than other representation such as, original LPC log spectrum (256

point), uniform bandwidth spectrum, or principal components ofspectrum. Fourth,

cross terms that were designed as contrasts between within-class covariance matrices,

were very effective in discriminating velar stops. There are of course other well

known features of stops, i.e., formant locus or direction of transitions, however, none
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of them results more than 80% performance when used under the vowel context and

speaker independent environments.

Differences from other stop consonant studies have to be discussed. Our

spectrum measurement is similar to Blumstein's method, but we used varying time

window length because of above mentioned reason. Decision process is completely

different. We used simple statistical procedure while Blumstein's procedure is

descriptive and difficult to implement. Searle et al. (1979) used ciritcal band

spectrum transformed into abstract features including formant transition accom

plished 800/0 correct overall voiceless stops for unknown data set, 77% including

detection and classification errors. The discriminant analysis program contained

Statistical Package for Social Studies was used for decision process. I ts high

performance was due to combined spectral and transitive features and statistically

optimized decision process.

In Japanese, direct comparison is possible, several researches were reported

recently. Kobatake and Noso (1980) used majour two components of the principal

component analysis on the burst spectrum represented by uniform 470 Hz bandwidth

filter bank. Vowel dependent Bayesian classification of voiceless stop consonants

resulted 78% correct recognition on unknown utterances. Degraded performance

was probably due to information loss in feature reduction process. Tanaka (1981)

using spectral peak locus in 50 ms after release of stop as a feature set, and represent

ing typical patterns in stop consonant category by 14 potential functions, yielded

84% correct recognition of voiceless stops for 4 male speakers. These features are

essentially vowel dependent. Ide, Honma, Makino, and Kido (1982) using 29

channel 1/6 octave filter output of five frames of every 10 ms, yielded 72% for burst

spectrum, 90% for successive four frames. Direct comparison is difficult with our

76% for unknown without cross term result, since they included [p, t, k, c]. Mikami

and Ohba (1981) using 3 pole LPC analysed burst spectrum to discriminate [p, t]

and [k] for 100 speakers, i.e., contrasting diffuse and compactness, yielded overall

92.2% correct recognition of unknown dataset under the condition that the following

vowel is known, however too much simplified feature limit final recognition.

From comparison of these results, our results was good, although we used

only burst spectrum as features. However, it is true that features after burst portion

or vowel onset to transition seem also possible to accomplish almost same recognition

rate as shown by Searle and Tanaka.

The problem remained is how to discriminate remaining equivocal 20%. The

invariant hypothesis is approximately true but has limitation of itself, as we have

already shown, due to dependency on vowels and speakers. Among our database,

some of burst spectrum distributed quite close to other center of category and their

liklihood were as high as more than 90% of predictive probability. Recently

Blumstein, Isaacs, and Mertus (1982) claimed that the gross shape of the onset

spectrum may contribute to phonetic decision, it did not provide the primary
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perceptual attribute to identify place of articulation. An opposite conclusion

against his previous studies! According to his perceptual test of synthetic plosives,

the majority of responses corresponds to the onset formant frequencies appropriate

to the particular phonetic category.

Secondary cues such as directions offormant motions or frequencies of particular

formants at consonantal release also provide significant information with regard to

place of articulation (Blumstein and Stevens, 1980). This use of secondary cue is

most clearly seen when the primary attributes of the onset spectrum are equivocal,

so that the spectrum does not demonstrate strong unambiguous properties such as

compactness or diffuseness, or is neutral with respect to the grave-acute distinction.

Some of spectrum showed on the boundary of two category or opposite property

from listener's identification. There were some utterances provide not clear and

unambiguous indication of place of articulation. For these utterances, the direction

of formant motions, or the stimulus duration, were apparently used by the listeners

to resolve the ambiguity with regard to place of articulation.

Probably, interaction among the burst spectrum, the onset formant frequencies,

and the direction of formant transition has to be considered to overcome 20%

ambiguity. Optimized feature vector and multi-staged decision by repeated dis

criminant analysis between two classes of consonants in turn so as to find more

effective parameter set may also rise score.

SUMMARY

We determined the extent to which the onset spectra of natural CV utterances

consisting of [p, t, kJ in the environment of five vowels could be correctly classified

by the linear discriminant functions. Over 80% of the utterances were correctly

classified independent of vowel context and speaker difference. Thus, the spectrum

at the burst onset does seem to produce, also in Japanese, an invariant gross shape

for place ofarticulation which Blumstein and Stevens (1979) have claimed.
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