
STUDIA PHONOLOGICA XI (1977)

Some Properties of Japanese Sounds through Perceptual
Experiments and Spectral Analysis

Sei-ichi NAKAGAWA and Toshiyuki SAKAI

SUMMARY

We have been studying on automatic speech recognition and our experience

taught ourselves that we had better investigate "What features are important

in phoneme recognition?", "Why is phoneme recognition difficult?" and "To

which extent is it difficult?" for developing a successful speech recognition system.

In this paper, we would try to answer to such questions through perceptual experi­

ments and statistical analyses of spectra.

First, we found the following properties of voiced consonants from perceptual

experiments.

(1) The change of speech power (energy) along with time-axis is not the

cue of perception of voiced consonants.

(2) More phonemic information of voiced consonant is contained in glide

than in a central part of consonant.

(3) Even if the glide is taken out of a VCV utterance, the intelligibility is

beyond 60%,....,70%.

Second, we obtained the following results from statistical analyses of static

features of voiced consonants.

(4) The spectral difference between any two vowels is larger than that

between two voiced consonants.

(5) The spectral difference between two voiced consonants having the same

manner of articulation is particularly small.

(6) jNj, jyj, jw/, Iml, Inl, and Igj are more influenced by the speaker-factor

than by adjacent phonemes (or context).

Third, we tried three-dimensional representation of consonants based on

the dynamic features of spectra and investigated the relation among consonants

in that space. Finally, we investigated the spectral change of consonants, caused

by the factor of speaker and vowel. The results are:

(7) jwj and jzj have the property of unvoiced consonants as compared with

other voiced consonants.

(8) The spectra of vowels and unvoiced consonants are not subject to the

influence of the speaker-factor so much as voiced consonants.
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(9) The spectra of lui, Iii and consonants followed Iii and lui are subject

to the influence of the speaker-factor more than others.

(l0) However, there is no significant difference of speaker-factor among

consonants for a long time interval.

I INTRODUCTION

Speech SCIence has progressed admirably in speech perception, analysis,

synthesis, and recognition. Although we have studied on automatic spoken

wird recognitionD and speech understanding of Japanese sentences2) for about four

years in such environments, we ran into a blank wall. There are two approaches

to recognize speech. One is the description of physical features (shape of

vocal tract, positions of lip-tongue and jaw, etc.). The other is the statistical

processing of observed values (spectrum, formants, zero-crossing number, LPC,

etc.). Although the former is promising in future, it has many problems to

be solved. The latter, on the other hand, is implicitly related to the physical

propetties of sounds, and the processing algorithm is simpler than the former.

Therefore, we adopted the latter approach.

Frankly speaking, our experience, however, taught ourselves that we had

better investigate in detail "What features are important in phoneme recognition?",

"Why is phoneme recognition difficult?" and "To which extent is it difficult?"

for developing a successful speech recognition system. In this paper, firstly we

point out a few significant points with respect to the automatic recognition of

voiced consonants through perceptual experiments. Next, we investigate some

characteristics of consonants by using static or dynamic features of short time

spectra, and finally we clear some groups of consonants which an automatic

recognizer is very difficult to classify.

II PERCEPTUAL EXPERIMENTS OF VOICED CONSONANTS

As a means of information media, speech has many kinds of information

(linguistics, emotion, personality, sociality, etc.). Therefore, speech is very redun­

dant judging from the viewpoint of linguistic information (or articulation). In

order to develop an automatic speech recognizer, we must know where and in

what form linguistic information is contained in speech waves. For the purpose

of this investigation, there are following three approaches: (a) evaluation of warped

speech wave, (b) speech analysis, and (c) speech synthesis3). Since (b) and (c)

represent or approximate natural speech by using a few feature parameters, we

can get easily the evaluation of a feature parameter with respect to linguistic

information. On the other hand, (a) is difficult to control the warp, although

the obtained results are reliable because there is a direct relationship between

natural speech and its processed speech. We adopted the evaluation method

by warped speech waves in order to investigate the phonemic information of voiced
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consonants. This method is divided into five types:

(1) direct warping of speech wave (ex. zero-crossing wave)4)-6).

(2) cutting off from speech wave in time domain7)-lO).

(3) cutting off from speech wave in frequency domainlD- 13).

(4) addition ofnoiselD,w,w.

(5) exchange or connection of fragments of speech wave15)-17).

In this paper, we describe the perceptual experiments of voiced consonants

by using methods of (1) and (2).

II-I EXPERIMENTAL SYSTEM AND TEST MATERIAL

A male adult (Mr. Ukita) uttered 165 consonants In vowel environments,

that is, VCV syllables (V = vowel, C=voiced consonant). These materials were

sampled by 10KHz, digitized to 10-bits and stored in a disk file of the medium-sized

computer NEAC 2200/250 through the in-house computer network KUIPNET18)

while controlling by the mini-computer MELCOM/70. The stored speech was

transformed into a warping wave by MELCOM/70 and into an analog wave

by D/A converter. It was passed into a low pass filter (cutting frequency=4.2

KHz) and recorded at analog tapes. The subjects of listening test were five male

adults. First, we recorded the speech without warping in order to check the

performance of this system, i.e., A/D, D/A, filter and so on. Table I shows this

confusion matrix for voiced consonants. The intelligibility was about 97.7%.

There was no confusion for vowels (This fact will be holded for following experi­

ments). Table 2 represents the confusion matrix of clipped speech for our infor­

mation.

Table 1. Playback (A/D~D/A).

(97.7%)

~ m n g b d r z
m 98.8 1.2
n 100
g ICO

b ICO

d 2.5 97.5
r 1.2 98.8

z 11.1 1.4 87.5
'-

Table 2. Zero-crossing wave.

(63.8%)

'~ m n g b d r z
m 63.0 25.9 3.7 4.9 2.5
n 7.4 72.8 3.7 1.2 2.5 11.1 '·2
g 3.7 70.4 3.7 21.0 1.2
b 1.2 3.7 4.9 70.7 16D 1.2 2.5

-~ 1.2 8.6 I~§~ t-E?0.5 .___I,~£-----

r 8.6 7.4 4.9 77·8 $1------

z 6.9 20.8 2.8 40.3 1.4 27.8

II-2 PERCEPTUAL EXPERIMENT BY NORMALIZATION OF SPEECH POWER

The level of speech power does not depend on only the subglottic pressure,

but also depends on the shape of vocal tract. In general, the power of voiced

consonants is smaller than that of vowels. Furthermore, the change of power

depends on a kind of consonants and context. We examine whether the manner

of change gives the cue for perception of voiced consonants or not.

The speech power at a time interval [t, t+T-I] is defined as follows:

_(~t+T-l 2 • )1/2
E t,t+T-1- T ~ S (1) ,
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Sltl~ Sltl~
E E

before normolizotion otter normol izotion

Fig. 1. Normalization of speech power.

Table 3. Normalization of speech power.

(96.4%)

~ m n g b d r z
m 1.2 97.5 1.2

n ICO

9 ICO
b 2.5 4.9 92.6

d 2.5 2.5 92.6 1.2

r ICO

z 1.4 1.4 1.4 4.2 91.7

where s(t) is the amplitude of speech wave at time t, and T is fixed interval. We

set T to 10 ms. Speech wave, s(t), is normalized by the power as follows:

set) s(t) , s(t+ 1) s(t+ 1) , "', s(t+T-l) = s(t+T -1)
Et , t+T-l Et , t+T-l Et , HT-l

Such eliminates the change of speech power along with time-axis. Fig. 1 illustrates

this processing. Table 3 shows the confusion matrix of this listening test. From

this result, we find that the change of speech power is not the cue for perception

of voiced consonants, although many automatic speech recognition systems take

advantage of the change for the detection of voiced consonants.

II-3 ROLE OF GLIDE FOR 'PERCEPTION OF VOICED CONSONANTS

Voiced consonants are transient sounds except for nasal. In particular,

there is a significant transient part between a consonant and its preceding vowel

or following vowel. We call them as on-glide or off-glide, respectively. The

glide contains the influence of coarticulation by a consonant and vowel. If we

can identify a voiced consonant in the case of eliminating the glide, an automatic

recognizer will not require many standard patterns for voiced consonant recogni­

tion. In this section, we investigate which contains more linguistic information,

stationary or glide.

We selected 21 V1CV2 utterances out of 165 materials mentioned above;

V1=/a/, lei, /0/, C=/m/, /n/, /g/, fbi, /d/, /r/, /z/, and V2=/a/. We segmented

each VCV syllable into following five parts by the observation of speech wave
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displayed on CRT connected to MELCOM/70, and stored in a disk file of NEAC

2200/250 again.

A. stationary part of preceding vowel.

B. on-glide.

C. central part of voiced consonant.

D. off-glide.

E. stationary part of following vowel.

Fig. 2. Segmentatation of VCV utterance.

Fig. 2 shows these parts. The criterion of glide taken out of speech wave was

such that it contained two or three pitch periods and contained explicitly the

influence of both consonant and vowel. Segmented speech waves were compiled

as stimulus of following four listening tests: (a) A+C+E, (b) A+C+C+E, (c)

A+B+D+E, (d) A+B+S+D+E, where S denotes the silence part of 20 ms.

(b) has the longer processing time for perception of voiced consonants than (a).

Note that there is no such difference on processing time for machine recognition.

The confusion matrices of these perceptual experiments are shown in Table

4 (a)--(d). The intelligibility of (a)--(d) was 69.5%, 75.9%, 85.7% and 84.8%,

respectively. The confusion between /z/ and /d/ was sustained by the similarity

between these spectra of this speaker (see Table 10). We should note that the

stationary part of vowel might also contain the influence of consonant and there-

Table 4. Confusion matrics of voiced consonants taken out of VCV utterances.

(0) A+C+E (69.5%) (b) A+C+C+E (75.9%)

~ m n g b d r z
m 100

n 100

g 93.7 6.7
-- -

b 6.7 86.7 6.7

d 20 6.7 73.3

r 100

z 60 40

~ m n g b d r zIn

m IOJ
n 6.7 93.3
g 80 20

b 93.3 6.7

d 6.7 6.7 40 46.7

r 100
z 6.7 6.7 40 46.7

(el A+S+O+E (85.7%) (d) A+S+S+O+E /84.8%)

'in~ m n g b d r zIn

m 100
n 100

g 100

b 100

! d 86.7 13.3
r 100

Lz 20.0 66.7 13.3

~ m n g b d r z IIn

m ICD

n 100
g 100

b 1m

d 1m
r 6.7 6.7 86.7

z 13.3 80.0 6.7
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fore that if we exchange the consonant part for the same kind of consonant In

different context, the intelligibility might decrease. Nevertheless, we could con­

clude at least following two facts for the design of an automatic recognizer.

(1) More linguistic (or phonemic) information of voiced consonant is con­

tained in glide than in a central part of consonant.

(2) Even if the glide is taken out of a VCV utterance, the intelligibility

is beyond 60%,..,.,70%.

The second fact is very important knowledge for us. Because we can treat the

central part. easier than glide. The classification rate, 60%, of voiced consonants

is sufficient for an automatic spoken word recognizer or speech understanding

system19).

Next we made an experiment of voiced consonant classification by machine

for comparison with human listeners. The speech materials were analyzed by

a filter bank, and converted into a series of short time spectra, each of which con­

sisted of 20 components (see the next chapter). We extracted a spectrum from

a voiced consonant part for each VCV syllable, and classified this spectrum into

one of seven consonants on the basis of Euclidean distance. The reference patterns

were calculated from speech materials of ten male adults. Table 5 shows the

confusion matrix. This result was better than the perceptual experiment (b).

However, if the optimum value is selected as the duration of consonants in the

experiment (b), they may become the same result.

Table 5. Confusion matrix of voiced consonant classification
by using Euclidean distance.

(79.6%)

I~ m n g b d r zIn

m 76 8 4 12
n 4 76 8 4 8
g 4 60 12 20 4

b 8 4 80 8
d 7 73 20
r 4 96
z 4 96

From these experimental results we obtained in conclusion that the precise

detection of voiced consonants is more important than the development of the

classification technique for automatic voiced consonant recognition.

III STATISTICAL ANALYSIS OF VOICED CONSONANT SPECTRUM

Statistical analyses of speech spectra have been made by many researchers.

For example, techniques of multidimensional scaling and principal component

analysis have been devised by a group of Dutch investigators20),2D. These men

examined the correlation between the physical and perceptual dimensions, using

a multidimensional scaling of speech spectra obtained by an 18-channel 1/3-octave
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filter bank. Also investigating vowel configuration by use of a principal com­

ponent analysis, they found a high correlation between the configuration of the

average vowels in the factor space and their configuration in the F1- F2 formant

plane. Other statistical analysis was made by Tabata, who performed multivariate

statistics by four factors (speaker, initial vowel, consonant and final vowel) on

a set of VCV utterances spoken by five male adults22).

From different points we investigated the statistical properties of speech

spectra. To provide the speech material, 245 meaningful words of VCV-types

were spoken by ten male adults. In these words, V was selected from the five

vowels lal, Iii, lui, lei, and 101, and C from the consonants INI, Iy(or j)/, Iwl, Iml,
Inl, Igl, Ibl, Idl, Igl, Irl, and Iz/· By visual observation of the spectral patterns

of these words, one spectral frame was extracted from each vowel and three from

each consonant. We should note, of course, that these are static features of

phonemes, although the characteristics of voiced consonants are usually dynamic.

A speech signal is first passed into a pre-emphasis circuit with a slope of 6-dB

per octave below 1600 Hz because of improving the signal-to-noise ratio at high

frequencies, and then fed into the 20-channel filter-bank. After they are full-wave­

rectified and smoothed by the low-pass filter (cut-off frequency: 40 Hz), the out­

put waves are sampled at every 10 ms interval and digitized with an accuracy

of 10 bits. The center frequencies of the 20 channels used increase in order by

a factor 21/4 (210 Hz through 5660 Hz). Since a spectrum is the output of a 20­

channel filter bank, it can be considered to be a 20-dimensional vector. Hereafter

we will use the following notations for representation of spectrum.

Z(t): the amplitude outputs of the 20-channel l/4-octave filters at time t, where

Z(t) =Zl(t), Z2(t), "', Z20(t) are the output of a representation of the output

of the sonagraph.

y(t) : the normalized Z(t), that is, y(t) =Z(t)/IZ(t) I, where IZ(t) 1= (Z12(t) +Z22(t)

+ ..,+Z202 (t) )1/2.

x(t) : the logarithmic transformation of y(t), that is, Xi (t) =log Yi (t).

In speech recognition, we may prefer the relative intensity between frequency

components of speech sound spectrum to the instantaneous amplitude Z(t). In

other words, we normalize the square sum of the spectral components to 1, yielding

y(t). Meanwhile, the auditory sense for the intensity of speech sound is said to

be proportional to the logarithm of the intensity itself.

Now we assume that the spectra of each phoneme are distributed in a 20­

dimensional vector space according to the multivariate normal distribution p(x/i) :

p(x/i) = (21r)n/~11'Jl72 exp{ - ~ (x-mi)Ii-1(x-mi)t},

where, X is a spectrum, mi and Ii are the mean vector and the covariance matrix

of phoneme i, respectively, n is equal to 20 and t denotes the transposition. For

every phoneme, we obtained the Ii, IIil and mi for all the speakers and the indivi-
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dual speaker.

From these distributions, we can calculate the distance between two phonemes

i and j in the spectral space. Various concepts of distance have been dfined for

such a purpose, e.g., Minkovski distance, Mahalanobis generalized distance, Kul­

lback distance, Chernoff distance and Bhattacharyya distance, etc. In recently,

Goodman23) calculated the distance between two phonemes from the minimum

residual metric used by Itakuraw . However, this distance is not taken account

of the sound variation of the same kind of each phoneme. We use Bhattacharyya

distance, because it has a same order relation to the misrecognition rate in the

recognition scheme based on Bayes' rule25).

Bhattacharyya distance B(i, j) is defined as following26):

.. _~ _. o{l\+l:j}-lo _. t 1~ (1(l:i+l:j)/21)
B(I,J) - 8 (mi ffiJ) 2 (mi ffiJ) + 2 log ll:il1f2IIjl1f2

Table 6. Bhattacharyya distance between spectral distributions of two
phonemes to all speakers.

I~ a i u e a r\j-y -~-r-"m n g b d g r z

a 08.06.1 3.9 3.1 4.43.7 2.3 5.7 5.0 4.6 5.9 5.5 6.8 4.07.4
i 8.0 02.1 3.4 5.5 1.9 2.3 7.5 2~~.-f&~.3 2.0 2.4 2.2 2.3 3.3
u 6.1 2.1 03.3 2.5 1.4 2.83.7 1.7 1.60.80.9 1.7 2.1 1.72.8
e 3.9 3.4 3.3 0 3.93.3 1.04.94.53.2 2.6 3.5 2.94.02.1 4.1
a 3.1 5.5 2.5 3.9 0 2.6 3.8 1.1 3.9 3.9 2.5 2.6 3.6 4.4 2.7 5.6
N 4.4 1.9 1.4 3.3 2.6 03.23.5 1.3 1.3 1.4 1.8 2.73.32.1 4.5
Y 3.7 2.3 2.e-,: 03.8 3.2 0 4.2 4.03.4 2.3 3.0 2.8 4.2 I. 6 4.1
~~ 7.5 3.7 4.9 1.1 3.5 4.2 04.8 4.9 3.7 3.8 4.9 6.3 3.?:...ll
m 5.7 2.9 I. 7 4.5 3.9 1.3 4.04.8 0 1.0 I. 7 1.9 3.1 4.02.2 5.6
n 5.02.61.63.23.91.33.4 4.9 1.0 01.51.72.03.71.63.9
Q 4.61.30.82.62.51.4 2.3 3.7 1.7 1.5 00.9 1.3 1.6 L~l.&

b 5.92.00.9 3.5 2.6 1.8 3.0 3.811.9 1.70.9 0 1.2 f--:Qc!-:~1 .. 5
d 5.52.4 1.7 2.93.62.7 2.84.93.1 2.0 1.3 1.2 0 1.9 1.5 1.7

g 6.82.22.14.04.43.3 4.2 6..3~.!4'Q.3.7 1.62~1.9 03.12.7
r 4.02.3 1.7 2.1 2.7 2.1 1.63.2 2.2 1.6 1.4 1.3 1.5 3.1 03.5

r-z7~4r3.32.8 4.1 5.64.5 4.1 7.7 5.63.9 2.6 3.5 1.7 2.7 3.5 0
__ .~~__ ,-_ ~L...._~_-"---'

Table 6 shows the Bhattacharyya distance, which is calculated by using the

spectrum of each phoneme averaged over all the speakers and phoneme environ­

ments. From this table, we find that the distance between two vowels is larger

than that between two voiced consonants. The distance between two voiced

consonants having the same manner of articulation (jm, n, g/ or Ib, d, g/) is

particularly small. This fact suggests that classification of these phonemes is

more difficult than classification of those having the same place of articulation

(jm, b/, In, d/or Ig, g/). Note that the distance B(a, w) between the vowel la/
and semi-vowel Iwl is comparatively small in spite of the difference in articula­

tion. This is caused by the special fact that the semi-vowel Iwl is always followed

by the vowel lal in Japanese. Conversely, the distance between Igl and another

phoneme is comparatively large, because Igl always appears only at the initial

position of words.
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Table 7. Bhattacharyya distance between spectral distributions of two
phonemes for each speaker, averaged over all speakers.

"" a i u e a N y w m n g b d 9 r z
a 015.9 11.3 8.4 6.2 12.6 10,4 8.0 13.2 11.5 11.8 102 11.0 15.5 7.4 15.9
i 15.9 o 5,4 7.5 13.3 7.3 8.1 21.5 9.9 9.2 5.5 6.0 7.5 7.3 5.8 8.6
u 11.3 5,4 06.8 5.6 6,4 8.8 10.6 6.8 6.2 4.5 3.7 5.9 6.0 4.7 7.2
e 8.4 7.5 6.8 07.8 10.0 5.7 15.6 12.5 100 7.4 8.0 7.9 9.9 5.1 10.8
0 6.2 13.3 5.6 7.8 o 9.4 11.1 6.0 11.3 10.4 8.4 6.5 9,4 10.8 6,4 13.1

N 12.6 7.3 6,4 10.0 9.4 017.2 16.8 8.1 7.6 8.1 9.1 12.5 15.5 9.6 17.2
Y 10,4 8.1 8.8 5.7 11.1 17.2 016.5 18.1 16.0 12.2 11.0 12.1 15.7 8.0 16.1
w 8.0 21.5 10.6 15.6 6.0 16.8 16.5 019.2 18.1 14.7 12.1 20.6~.9 11.6 28,4
m 13.2 9.9 6.8 12.5 11.3 8.1 18.1 19.2 o 6.6 9.0 8.5 13,4 15.1 9.8 20.5
niLS 9.2 6.2 10.0 10.4 7.6 16.0 18.1 6.6 o 7.8 7.9 9.5 14.1 8.6 14.3
g 11.8 5.5 4.5 7.4 8,4 8.1 12.2 14.7 9.0 7.8 05.6 6.9 9.4 6.7 10.5
b 10.2 6.0 3.7 8.0 6.5 9.1 11.0 12.1 8.5 7.9 5.6 o 5,4 7.1 4.9 9.6
d 11.0 7.5 5.9 7.9 9.4 12.5 12.1 6).6 13.4 9.5 6.9 5,4 o 8,4 6.3 6.8

9 15.5 7.3 6.0 9.9 10.8 15.5 15.7 20.9 15.1 14.1 9,4 7.1 8,4 09,4 8.8
r 7.4 5.8 4.7 5.1 6,4 9.6 8.0 11.6 9.8 8.6 6.7 4.9 6.3 9.4 o 9.3
z 15.9 8.6 7.2 108 13.1 17.2 16.1 28,4 20.5 14.3 10.5 9.6 6.8 8.8 9.3 0

Table 7 shows the Bhattacharyya distance obtained by averaging the distance

calculated for each speaker. Note that it is generally larger than the former in

Table 6; however it must be remembered that this is calculated from a smaller

number of phoneme samples. If a speaker is fixed, in short, the recognition be­

comes easier than that for unspecific speakers. This conclusion is consistent with

Tabata's conclusion22), that is, the effect of the speaker - factor is larger than

consonant - factor at a stationary part of the nasal consonants.

Table 8 shows the variance of spectral distribution for each phoneme in the

spectral space. We use three measures as follows:

(a) The first is a logarithmic transform of the determinant of covariance for

each phonemic spectral distribution over all speakers, that is, log [det Ii]'

(b) The second is an average over all speakers of the logarithmic transform of

the determinant of each phonemic distribution for each speaker (inter-speaker),

that is, average log [det Iis].
8

These measures are approximately based on the same order relation of the

determinant of volume (or variance) of distribution in the space. For example,

we can presume that lal is the most stable vowel in the spectral space, and lui is

unstable.

(c) The third measure is an average of the Bhattacharyya distance over all

speakers (inter-speaker), that is, ave.rage B(ij, h), where i denotes a phoneme, j
J,k

and k denote speakers.

From third measure, we find that INI, Iyl, Iwl, Iml, Inl and Igl are more

influenced by the speaker-factor than by adjacent phonemes (or phoneme-factor).

It is consistent that the nasal spectrum has been effectively incorporated in speaker

recognition27),28). If we want to identify a speaker by using vowel spectrum,

we had better use the spectrum of Iii.
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Table 8. Variance of each phoneme in the spectral space.

( a) Iagarithmic transform of
determinant of spectral
distribution to all speakers.

( b) average over all speakers af
logarithmic transform of
determinant af spectral
distribution for each speaker.

( c) overage of inter-speaker for
Bhattachoryya distance.

f\ b
No. of

a c samples
a -73.4 -84.9 3.9 1088
i -58.4 -73.0 6.\ 838
u -54.2 -67.4 4.8 880
e -67.3 -80.9 5A 885
a -66.7 -76.6 3.9 921
N -57.5 -88.3 20.5 750
Y -67.7 -97.3 21.5 450
w -74,4 -103.2 15.4 450
m -62.0 -88.8 17.8 750
n -61.1 -88.4 17.9 750
g -55.6 -77.5 11.9 750
b -56.9 -73.9 7.8 750
d -60.0 -82.\ 10.5 450
g -53.3 -71.1 7.2 750
r -63.5 -80A 7.\ 750
z -60.1 -80A 8.8 750

VI THREE-DIMENSIONAL REPRESENTATION OF CONSONANTS

57

If each phoneme can be plotted in a few (two or three) dimensional space

on the basis of acoustic features, we can understand intuitively the acoustic rela­

tionship to one another and get the designing policy of an automatic recognizer.

There is the representation by first two or three formant frequencies as the typical

model. Klein et al. obtained a three-dimensional representation of vowels by

use of a principal component analysis of spectraw . Tabata and Sakai plotted

Japanese consonants in a three-dimensional space by use of a multivariate statistical

analysis of spectra29). However, they used the static features of consonants as

parameters, although the property of consonants is dynamic. On the. other hand,

I tahashi et al. tried a three-dimensional representation of Japanese consonants by

use of a (non-metric) multidimensional scaling from a viewpoint of perception30).

They obtained the dissimilarity between phonemes from the confusion matrix

of listening test. We also tried a three-dimensional representation of Japanese

consonants by use of a (metric) multidimensional scaling like Itahashi et al. But

we obtained the dissimilarity from dynamic features of consonants based on their

spectra.

First, we must obtain the dissimilarity matrix taking account of dynamic

features of consonants. We adopted the time alignment method by using Dynamic

Programming. The 58 Japanese monosyllables (CV, C=l!m/, Inl, Ibl, Idl, Igl,
Irl, Izl, lsi, lei, Ihl, IpI, Itl, Ik/l, V =l!a/, Iii, lui, lei, loll) were uttered by five
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male adults. These utterances were converted into time series of short time

spectra by a filter bank. Each spectrum consists of 20 components correspond­

ing to the outputs of a 20-channel filter bank and each spectrum was normalized

as 1.

Now, let us consider the dissimilarity D(A, B) between two sequences of

short time spectra, a=al, az, "', aI and b=bl, bz, "', b J , corresponding to two

syllables, A and B. We define the distance between two spectra, at and bj, as

follows:

where lal = Ibl = 1 and atk is an output value of k-th filter. Using this distance,

we can define the dissimilarity between two syllables as follows:
k k

D(A, B) = min [L;d(aik' bjk) ·~hJjL;Jk,
(il. h), ...• CiTe, jk) k=l k=l

where the sequence of coordinates (il,jl), (iz,jz), "', (ik,jk) should satisfy following

conditions:

k

Jk=(ik-ik-l)+(jk-jk-l), that is, L;Jk=I+J-1.
k-l

j-r<i<j+r.

Further, the sequence of coordinates can pass continuously to the left to right or

bottom to up way only less than m times on the i-j plane, and then must pass to

the diagonal way more than n times (constrained DP-matchingW ). We adopted

r= 10 and m=n= 1. This dissimilarity is calculated easily by using Dynamic

Programming technique. This measure of dissimilarity is symmetric and ranges

from 0 to 2. Finally, we must define the dissimilarity between two consonants.

For example, let us consider the dissimilarity between jmj and jnj. We define

this dissimilarity as following:

D(fmj, jnj) = ; (D(fmaj, jna/) +D(fmij, jnij) +D(fmu, jnu/)

+D(fmej, jne/) +D(fmoj, jno/)
Table 9 shows the average dissimilarity to five speakers between all pairs of con­

sonants.

As similar, we calculated the dissimilarity between voiced consonants of a

male speaker described in Chapter 2. Table 10 shows this dissimilarity matrix.

From this matrix, we find that the spectral difference between jzj and jdj of this

speaker is very small, that is, this fact is consistent with the result of perceptual

experiment.

From Table 9, we find the following facts:

(1) The spectral difference between vowels IS very large. On the other hand,
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Table 9. An average dissimilarity matrix between phonemes for five speakers.

(x 1000)

""
a i u e a y w m n b d g r z s c h P t k

a 01058 898 896 798 574 422 442 520 516 526 466 458 580 588 360 282 334 318
i 1058 o 784 982 1076 552 558 464 314 456 504 564 390 388 384 316
u 898 784 01014 896 554 622 640 508 496 498 700 798 688 516 406 438
e 896 982 1014 o 692 454 396 430 432 432 366 474 552 310 294 334 328
a 798 1076 896 692 o 540 472 532 422 542 408 496 648 698 314 372 462 400
Y 574 554 540 o 524 548 554 520 406 500 408 510 612 594 632 550 460 574
w 422 524 0 428 520 426 506 474 430 572 646 474 378 474 500
m 442 552 622 454 472 548 428 o 326 468 472 498 460 606 682 686 560 474 452 546
n 520 558 640 396 532 554 520 326 o 498 410 492 432 550 640 644 600 520 420 538
b 516 464 508 430 422 520 426 468 498 o 374 374 370 512 666 608 498 412 444 476
d 526 432 542 406 506 472 410 374 o 382 346 410 566 554 492 438 492
g 466 314 496 432 408 500 474 498 492 374 382 o 396 466 616 532 474 438 426 384
r 458 456 498 366 496 408 430 460 432 370 346 396 o 480 600 526 486 444 374 476

410 466 480 364
1--

602 582 494 540z 580 504 700 474 648 510 572 606 550 512 0 350
5 588 564 798 552 698 612 646 682 640 666 566 616 600 364 o 306 620 624 530 548
c 390 688 594 686 644 608 532 526 350 306 o 506 550 440
h 360 388 516 310 314 632 474 560 600 498 554 474 486 602 620 506 o 352 416 360

-~

4441582p 282 384 406 294 372 550 378 474 520 412 492 438 624 550 352 o 324 400
t 334 334 462 460 474 452 420 444 438 426 374 494 530 416 324 o 342
k 318 316 438 328 400 574 500 546 538 476 492 384 476 540 548 440 360 400 342 0

the difference between 1m, nl and Is, cl, and among Ib, d, g, rl and Ih, p, t, kl

is small.

(2) The difference between a vowel and an unvoiced stop is also small. But

this is caused by the fact that the duration of an unvoiced stop is much shorter

than that of a vowel.

However, we can not know intuitively the spectral relationship among pho­

nemes in the case of a matrix. Now, by using a multidimensional scaling method,

we can plot each phoneme into a three-dimensional space on the basis of acoustic

features from the dissimilarity between all pairs of phonemes. In general, multi-

Table 10. A dissimilarity matrix between voiced
consonants (for Chapter 2).

(xIOOO)

~ m n g b d r z
m 0 328 432 354 426 402 422
n 328 0 378 400 336 358 346
g 432 378 0 392 300 356 302
b 354 400 392 o 338 350 352
d 426 336 300 338 o 292 238
r 402 358 356 350 292 o 272
~1---

z 422 346 302 352 238 272 0

Table 11. Coordinates in the three
dimensional space.

~- X Y z
y -26.7 -140.5 15.8
w -106.9 44.2 -11.7
m -157.0 -26.7 -76.4
n -97.5 -103.6 -70.0
b -90.3 12.0 89.5
d -21.0 -89.1 41.2
g -25.1 15.7 78.8
r -39.2 -28.6 34.5
z 138.7 -94.8 42.3
s 234.9 -39.8 -79.0
c 217.8 44.2 \9.5
h 1.5 \77.5 -4.1
p -57.3 105.2 -14.5
t -9.8 18.9 -57.6
k 37.8 105.4 -8.1
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Fig. 3. Three-dimensional representation of Japanese consonants
(additive constant= -300).

dimensional scaling methods are divided into two types; metric3Z) and non-metric33).

Since we can regard our definition of dissimilarity as metric measures and it also

satisfies approximately the properties of distance, we adopted a metric multidimen­

sional scaling method (see Appexdix). The results are shown in Table 11 and

Fig. 3.

From Fig. 3, we can observe the relationship between voiced/unvoiced, mannar

of articulation (nasal/stop/fricative/ ... ) and place of articulation (labial/alveolar/

palatal/velar... ). In particularly, /w/ and /z/ have the property of unvoiced

consonants as compared with other voiced consanants.

V SPECTRAL VARIATION BY SPEAKER-FACTOR

Next, we investigated the spectral difference between an arbitrary pair of

five speakers for the same kind of CV syllables similar to Table 8(c). We define

the difference of a C i V j syllable as following:

1--2:; D(CiVjSm, CiVjsn),
sCzm,n

where Sm and Sn denote the kind of speakers. Table 12 shows the results. From

these we can conclude following facts:

(l) The spectra of vowels and unvoiced consonants are not so subject to the

influence of the speaker-factor as voiced consonants. Therefore the speaker­

independent classification of voiced stops is more difficult than unvoiced stops,

since the spectral differences among fbI, /d/ and /g/ are almost the same as those
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Table 12. Spectral difference between speakers for the same kind
of CV syllable.

(xIOOO)

~ a i u e a overage

- 520 652 620 454 482 546

y 526 686 452 555

w 406 406
m 532 788 698 550 556 625

n 576 784 720 528 496 621

b 574 762 794 490 542 632

d 534 576 578 563

g 620 710 740 528 544 628

r 506 536 722 520 498 556

z 484 592 628 520 570 559

5 446 460 501 446 352 441
c 514 550 532

h 456 658 702 464 528 562
p 400 670 670 452 426 524

t 500 484 446 477

k 452 672 620 470 488 540
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among IpI, ItI and Ikl, and the above mentioned fact.

(2) The spectra of lui, Iii and consonants followed by Iii and lui are more subject

to the influence of the speaker-factor than others.

However, we should note that those conclusions are not taken account of

the spectral variation of a phoneme by many pronunciations of the same speaker

in the various contexts unlike the preceding chapter.

Therefore, we investigated the intra-speaker variation for every syllable.

The five speakers uttered all syllables on two times and uttered them again after

a week and a month. Table 13 shows the ratio of the inter-speaker variation to
the intraspeaker variation. From these, we can guess that the most ten efficient

syllables for speaker recognition are Iii, Ikil, Ikol, Igal, Inal, Inil, Inul, Ihil, Imil

Table 13. Ratio of inter-speaker variation to intra-speaker variation.
(a) (b)

time interval = immediately

~ a i u e 0 overage

- \.88 2.33 1.96 1.66 \.62 \.89

Y 2.27 2.91 1.92 2.37

w 1.51 1.51

m 2.27 2.77 2A2 2.24 2.32 2.40
n 2.47 3.16 2.69 2.28 2.16 2.55

b 2.02 2.27 3.62 1.73 \.9\ 2.31

d 1.84 \.76 1.60 I. 73
g 2.08 1.97 1.98 1048 1.35 1.77

r 2.06 2.16 2.67 2.08 1.73 2.14

z 1.89 2.06 2.00 1.98 1.83 1.95

5 1.86 1.80 2.37 1.70 1041 I. 83

c 2.42 2.04 2.23

h 1.95 3.29
1

2.\5 1.52 1.93 2.17

p 2.25 2.56 2.48 1.78 1.60 2.13
t 2.29 1.92 1.65 \.95
k 1.92 2.33 2.01 1.77 2.07 2.02

time interval = a week

Ic;z
"

a i u e 0 overOg~

- \.97 2.22 1.78 1.57 2.19 1.95;

y 1.85 2.27 1.47 1.86

w 1.49 \.49

m \.89 \.98 1.49 1.80 165 1.76

n 2.40 2A5 1.81 1.58 1.43 \.93

b 1.89 1.9\ 1.68 1.\9 1.38 l. 61

d 2.\0 1.85 1.48 1.81

g 2.04 1.66 1.77 1.36 1.53 1.67

r 1.46 1048 1.56 1.33 1.18 lAO

z 1.57 1.66 1.59 1.54 1.90 1.65

5 1.70 1.43 1.7\ 1.56 lAO 1.56

c 1.90 1.68 1.79

h \.78 1.98 1.80 lAO 1.69 1.73

P 1.64 1.80 1.69 1.43 1.37 1.59
t 1.91 1.53 \.74 1.73

k 1.65 2.43 1.50 1.39 2.10 I.~
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(c)

time interval =a month

~ a i u e 0 overage

- 1.81 1.57 1.53 1.43 1.39 1.55
y 1.88 1.91 1.31 1.70
w 1.35 1.35
m 1.76 1.57 1.55 1.57 1.62 1.61
n 1.91 1.61 1.59 ].48 1.52 1.62
b 1.44 1.76 1.85 1.24 1.31 1.52
d 1.41 1.45 1.43 1.43
g 1.93 I. 71 1.88 1.47 1.51 1.70
r 1.59 1.03 1.92 1.39 1.34 1,45
z 1.67 1.64 1.56 1.45 1.90 1.70
s 1.78 1.26 1.50 1.34 1.28 1,43

c 1.54 1.57 1.56
h 1.88 2.02 2.05 1.62 1.67 1.85
p 1.44 1.64 1.51 1.47 1.41 1,49
t 1.91 1.45 1.57 1.64
k 1.81 2.15 1.73 1.69 1.76 1.83

and Iyul for a short time interval between test and reference samples. However,

there is no significant difference of speaker-factor among consonants for a long

time interval.
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ApPENDIX

A Metric Multi-dimensional Scaling Method32)

Let us denote the experimentally obtained distance between objects i and

j by du. We suppose that the experimental procedure is inherently symmetrical,

so that dIj=dJi . We want to represent the n objects by n points in r-dimensional

space. We make a matrix from du as follows:

B= (biJ)

bu =-1(1-±d iP+1-±diP - _l_~ ~ d i J2- d i j2)
2 n i~l n j~l n 2 i=l j~l

The following theorems from Young and Householder hold for the B matrix.

1. If the matrix B is positive semidefinite, the distances between the stimuli may

be considered as distances between points lying in a real, Euclidean space.

2. The rank of positive semidefinite matrix B is equal to the dimensionality of

the set of points.

3. The positive semidefinite matrix B may be factored to be obtain a matrix

A, where

B=AA'

If the rank of matrix B is equal to r, where r::;:n, then matrix A is an n X r

rectangular matrix whose elements are the projections of the points on r orthogonal

axes with origin at the i-th point of the r-dimensional, real Euclidean space, that

is, vIjZu represents the coordinate on the j-th axis for the i-th object.

(

Zit )
z,~ z~' : eigenvector for the eigenvalue l,.

Znt

j
V}JZll v;:;-Z12 ...

VA2Z21 VkZ22 •••

V4Znr


