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SUMMARY

The spectra, which represent nine consonants Ip, t, k, b, d, g, m, n, n/, were

defined at the boundary between following vowel. Nine consonants of 20-di

mensional vectors, which are projected orthogonally on three-dimensional sub

space (that is created by the three directions which promote separation in manner

and place of articulation), produce nearly a triangular prism. Although spatial

representation of vowels has early been tried, physical and analytic expressions

of consonants based on actual speech are supposed to be, for the first time, tried

here.

Nine Consonants were uttered as Cz of two-syllable CIV1CZV 2 (consonant

vowel-consonant-vowel) words. In order to inspect the existence of physical

spectra characterizing each consonant, multivariate statistical analysis of van

ance for four-factor design with repeated measurements was performed, con

sidering Cl, V l, C2 and V z as four factors.

1. INTRODUCTION

We have so far tried to express speech sound on a coordinate plane or in

three-dimensional space on the basis of parameters obtained by analyzing speech

sound, and to observe their mutual relations. F l-F2 formant plane, in which the

first and the second formant frequencies are regarded as parameters, is a most

popular example of them. Klein, Plomp and Polsw have tried to plot 12 kinds

of vowels of 50 speakers in space by spectral information. Considering spectrum

represented by the amplitude outputs of 18-channel 1/3-octave filters as 18-di

mensional vector, they performed the principal-component analysis. They then

insisted that if we present vowels on the plane determined by the first two principal

components, its configuration is similar to the configuration in Fl-F2 formant plane.

Thus by representing phoneme sound by relation of spatial disposition, it is

possible to give support, so called in phonetics, to a classified table of phonemes

and to a cardinal vowel figure from a physical point of view if the results coin

cide. Moreover, there would be much more profitable aspect since the measure

of distance was introduced.
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When it comes to consonants, however, expressing examples in this way would

be rare. The main reason is that it is not easier to analyze consonants than vowels,

for there are some difficulties on catching spectra of consonants at their instant

of explosion in such case as plosive consonants.

This study took nine phonemes jp, t, k, b, d, g, m, n, and vj as a preliminary

to this trial on spatial expression of phonemes including consonants. We ex

pressed these phonemes in the three-dimensional space after defining their spectra.

I t is spontaneously indicated that this expression has a profound statistical mean

ing.

2. CVCV UTTERANCES AND THEIR SPECTRA

It is actually rare that each phoneme is individually uttered. Particularly

in Japanese, it is common for consonants to be uttered with vowels like jkaj. We

pay attention, here, to C2 of two-syllable C1V 1C2V2 (consonant-vowel-consonant

vowel) word in order to consider consonants which are placed in much more com

plicated circumstances than in a monosyllable CV word.

Using jp, t, k, b, d, g, m, n, vj for Cl, C2 and ja, e, oj for Vl, V2, an adult

man spoke each word of all the combinations-729 kinds-three times at random.

He accented all the C1V l-mora dispite the fact that there are a lot of meaningless

words in the combinations above. The sounds were uttered in the simplified

nonreverberant room within one day and the total number of words was 2187.

The reason for choosing ja, e, oj as vowels was that we can have observations in

all possible combinations of any element of Cl, V l, C2 and V 2 by eliminating ji

and uj, since jti, tu, di, and duj do not occur in modern Japanese.

We will give a definition of speech spectra and procedure of segmentation be

low.

When let bl (t), ...... , bp (t) (p=20) represent, in order, amplitude outputs of

20-channell j4-octave filters (bank of 20 filters whose center frequencies cover

210 up to 5660 Hz) at time t, they are considered to represent speech spectra at

that time. After normalizing the square sum of these components at 1, we es

tablished p-dimensional vector x(t) by taking logarithm of its components.

That is,

Xi(t) =lOg{bi(t)/ltl-bj~-(~)--}, (1)

We defined p-dimensional vector x(t) =(Xl(t), ... ,xp(t)) with Eq. (1) which would

be used for the analysis (p = 20). Amplitude outputs of the filter analyzer are

A-D converted at intervals of 10 ms, then put into the computer in real time. On

the paper of the line-printer we represent the speech spectrum patterns of the

input with which we observed to determine the stationary parts or transition ones.

This study defines times tl, t2, ... , tlS as Fig. 1, corresponding to the stationary

or transition parts in each word.
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Fig.1. 01VI02V2 word and definition of tl'
t = t1 : stationary part of 0 1,

t = t3 : boundary of 0 1 - V l'

t=t5 : stationary part of VI'
t = t7 : boundary of VI - O2,

t = t9 : stationary part of O2,

t = t11 : boundary of O2 - V 2,

t=t18 : stationary part of V 2•

If i is even, tl = (t1+1 +t1-1) /2.

3. CONSONANT SPECTRA

It is a important problem whether consonants within different words show

characteristics determined independently of their phonemic environment or not.

If the characteristics of consonants differ in accordance with their circumstances,

we cannot physically measure them but only by auditory psychological means.

In order to inspect the physical independence in detail, we performed multi

variate analysis of variance for four-factor design with repeated measurements*)

on the speech spectra x(t) of CIV IC2V2 words, assigning four phonems CI, VI,

C2 and V 2 to four factors A, B, C, and D, respectively, in the following model (a=

c=9, b=d=3, e=3).

The linear model of multivariate analysis of variance for four-Jactor design with repeated

measurements (See Appendix A)

The model is defined as follows (t is omitted) :

Xljklm (1 x p) ="
+al+,Bj+rk+ b l

+Slj+'lk+7)ll +Ojk+ljl + Pkl

+ JJljk + Pm + O'lkl +rjkl

+~ljkl

+Xljklm,

general level

main effect

two-factor interaction

three-factor interaction

four-factor interaction

residual (2)

* As for detailed discussion about how to apply the multivariate analysis of variance to speech spectra,

see our report (2) or (3).
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where l~i~a, l~j~b, l~k~c, l~l~d and l~m~e. (See Table A.I in Ap

pendix A.) The constants a, b, c and d are the numbers of levels of the factor

A, B, C and D, respectively. The constant e is the number of repetitions.

The general level vector tc( I X p) is determined in order that effect vectors

al (I X p) -.. 9'Ijkl (I X p) satisfy the following conditions:
abc d

I: al=O, I: ~j=O, I: rk=O, I: (}I=O,
1=1 j=1 k=1 1=1

a b a cad

I: Slj = I: Slj = 0, I: elk = I: elk = 0, I: 1}1l = I: 1}1l = 0,
1=1 j=1 1=1 k=1 1=1 1=1

b c b d c d

I: {}jk = I: {}jk = 0, I: Ajl = I: Ajl = 0, I: Ilkl = I: Ilkl:=: 0,
j=1 k=1 j=1 1=1 k=1 1=1
abc a b d

I: J,./ljk = I: J,./ijk = I: J,./ljk :=: 0, I: Pljl = I: Pljl = I: Pljl = 0,
1=1 j=1 k=1 1=1 j=1 1=1

a c d bed

I: O'lkl = I: O'ikl = I: O'lkl =0, I: 't"jkl = I: 't"jkl:=: I: 't"jkl =0,
1=1 k=1 1=1 j=1 k=1 1=1
abc d

I:9'ljkl = I: 9'ijkl = I: 9'ljkl = I: 9'ljkl = 0.
1=1 j=1 k=1 1=1

(3)

Besides, assume that

liJklm '"" N (0, A), (4)

that is, 11jklm is assumed to be independently distributed according to the p-di

mensional normal distribution N (0, A).

The likelihood ratio test for null hypothesis.

Let us consider a test of the hypothesis for the main effect of factor A that

all the effects of A's levels are equal (there is no effect of A);

HA(t): al= •.. =aa=O (5)

We can test the hypothesis since it is possible to prove*) that the likelihood

ratio criterion

I IQ1+RI
y= {n-l2--~r(p+ll+I)}log IRI (6)

is distributed asymptotically according to x2-distribution with pll degrees of free

dom under the conditinos-n=a·b·c·d·e, !t=a-l, !t+l2=abcd, and n-abcd

~p-when n is sufficiently large. Where,

and

a
Ql=bcdeI: (Xl- ••• -x .....)'(Xl •••• -x .... .),

1=1
abc d e

R = I: I: I: I: I: (Xljklm - Xljkl .) , (Xljklm - Xljkl .) ,
i=1 j=1 k=1 1=1 m=1

I abc d e
X •••• '=-b--d-----I: I: I: I: I: Xljklm,

ace 1=1 j=1 k=1 1=1 m=1
I bed e

Xl• ••• =~-b-d-I: I: I: I: XIJklm,
C e j=1 k=1 1=1 m=1

(7)

* Mr. Masatoshi Kubo, a student of Kyoto University co-operated in accomplishment of the mathe
matical proof of this model. So that only the result of it is described here, refering to his graduation
thesis for the bachelor degree of Kyoto University so as to realize the proof.(4)
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1 e
Xljklo = - L; Xljklm •

e m=l

(8)

Result of Analysis of Variance for Four-Factor Design

We performed analysis of variance at each t (=ts, t4, ts, t6, t7, t9, tl1, t12, t13)

according to the model explained above. Namely, we computed respectively

the test criterion li (Eq. (6)) for the hypothesis that there are no effect of each

factor or no interaction between each factor. We normalized li by the value

of significant level as the following equation, because the degrees of freedom cor

responding to main effects and interactions are different from each other and so

are the values of 1% significant level of :xZ test different from each other. (See

Table A. 2 in Appendix A.)

I li_.,.---=--
li = -(Value of 1% significant level of :xZ test corresponding

to the degrees of freedom of li)

The illustration of value for test criterion li ' normalized above is as Fig. 2. In the

figure, Cl, VI, Cz, Vz represent main effects, and V1Cz, CzVz the two-factor inter

actions, and VICZVZ the three-factor interactions, and so on.

The following is revealed from this figure:

(1) In the stationary parts of each phoneme, the main effect of the phoneme

is maXImum:

(2) The interaction between two contiguous phonemes is, of course, smaller

than the each main effect, but larger than the main effect of any phoneme other

than the two contiguous phonemes:

(3) The two-factor interaction between the two phonemes, that are not

just contiguous to each other, is considerably smaller than the interaction of two

contiguous phonemes. Therefore, the influence (on co-articulation) specific to

the combinations of the phonemes which put a few other phonemes between them

IS small:

(4) There is hardly any interaction in the case of more than three factors.

We did not illustrate any three-factor interaction whose li' is less than 1, but only

the effects of three-factor interactions of three-phoneme V1CZVZ and C1V1Cz

(which are contiguous to each other) are significant:

(5) (1) and (2) above show the substantial proportion of the total variance.

Accordingly, in the case of adopting an rough model upon omitting consideration

of interaction, we have only to take account of the effects of the just preceding

and following phonemes. We may not think of the effect of the phonemes apart

farther than them.

(6) Influences of the preceding and following vowels of VI and Vz on Cz

are almost the same.

Let us discuss, again, whether consonants are physically independent of their

phonemic environment or not.
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Fig. 2. Multivariate analysis of variance for four-factor design with repeated
measurements.
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Looking at Fig. 2, it is possible to persuade ourselves that the effect of Cz is

sufficiently significant as compared with the residual at t = t9, tu, etc., and that

there exist definite physical characteristics which are independent of their phone

mic environment.

As we see Fig. 2, however, a spectrum of any section in a utterance does not

represent one phoneme only. Influence of other articulationally-combined pho

nemes always intervenes. Therefore, it is insufficient to conclude that spectra

Xijklm(t) measured within the regions of consonants represent spectra of consonants.

At t = tll when spectra of consonants Ip, t, k, b, d, g, m, n, vI are defined as men

tioned later, the effect of the vowel V 2 is so overpowering that the characteristics

of consonant may be lost in the vowel if Xijklm itself is used as spectrum of consonant.

We will adopt main effect vector rk (k = l......,c) of C2 in the linear model of

Eq. (2) as spectrum of consonant. rk is a vector which is determined only by the
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(9)

k-th consonant of C2, and is a value independent of its phonemic environment.

In other words, rk represents a spectrum which is regarded as a pure component

of consonant C2 after removing any component concerned with other phonemes

except C2 from Xijklm. Although the problem is whether obtained rl""rc must be

sufficiently and significantly different from each other as well as they are seeming

ly different, Fig. 2 clarifies this point.

We will now consider at what time point t we had better adopt rk(t) as a

consonant vector. Fig. 2 says that the effect of C2 is maximum at the middle of

the preceding vowel and the following one, that is t=t9. It seems really maxi

mum on the whole of the nine consonants, but what we can only classify in this

time point are manner of articulation (Ml, M2, M s of Table I) and nasal sounds

(1m, n, u/); we can seldom do voiceless stops (lp, t, k/). (It will be clarified in

the following section.)

Accordingly we want to select a time point at which these nine phonemes have

equally balanced distribution even if the main effect becomes small. We pre

sumed main effect vectors of C2-factor at the boundary of C2 and V2 (t::::tu) to

be spectra of the respective consonants.

Actually, maximum likelihood estimate of rk

rk=X.. k • • -X•.•••

IS used (See. Eq. (A.2) in Appendix A).

4. CLASSIFICATION FROM THE VIEWPOINT OF MANNER

AND PLACE OF ARTICULATION

Consonants /p, t, k, b, d, g, m, n, ul are classified from the viewpoint of manner

of articulation or place of articulation as described in Table 1. We examined

whether this kind of classification was also reflected in the spectrum distribution.

C2 is interpreted in two ways-manner of articulation (M-factor) and place of

articulation (P-factor)-as Table 1.

Assume M1""Ms levels for M-factor and P1""PS levels for P-factor, respectively.

These M-factor and P-factor are assigned to the first factor and the second one,

respectively, of the analysis of variance of four-factor design of Eq. (2). And

V1 and V2 are assigned to the third factor and the fourth, respectively, as before.

We did an analysis of variance on trio-sequence ""V1C2V2 (disregarding Cl from

C1V1C2V2 sequence) which has repetitions corresponding to the number of con

sonants Cl (nine in this time), regarding M, P, V1, V2 as four factors.

We consider, for example, utterances of /pame, tame, kame, bame, dame,

game, marne, name, uame/ to be utterances lame/ repeated nine times. In this

case we used the first utterance out of three-repeated utterances of each combina

tion in C1V1C2V2 words (2187/3=729 data).

Normalized criterion Ji', in the same way as in Section 3, is shown in Fig. 3.
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Table 1. Classification from the viewpoint of manner and place of articulation.
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P l Labial

P2 Alveolar

Pa PalataljVelar

M l Voiceless stop

M 2 Voiced stop

M a Nasal

Place of articulation

Factor P

P l P2 Pa

.... .::
~ M l Ipl ItI Ikl0.8

tl~ ...
':::l B M 2 Ibl Idl Igl
.:: u u
ro· ...

~~~ M a Iml In/ In/

---~----V2

70

50

~

c:
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'I::
.8
'I::
u

""d
C,)
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2 30
~

Z

10

L---r==:==-=-r=~~----..--------i---,------r--t

Fig. 3. Multivariate analysis of variance for four-factor design with repeated
measurements.
VI' V 2 =/a,e,o/, M= (MI, M 2, M a) : manner, P= (Ph P2, Pa) : place.
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The effects of manner and place of articulation are sufficiently separated. Espe

cially amounts of the both effects at part V 2 are almost the same, and interactions

between both are small at that part (More in detail, interactions at V2 are larger

in place of articulation than manner of one).

To verify the adequateness of the classification in Table 1, we perform analysis

of variance for four-factor design of X, Y, VI, V2 based upon classification mixing

elements of manner and place of articulation intentionally. The results are shown

in Fig. 4.

Thus, we can see that the classification according to Table 2 is not good,

because interaction of X, Y is large far beyond the main effects of them.

Furthermore, why the main effect of VI is smaller than V2 is that we assumed

C1VIC2V2 word to be .......,VIC2V2• In despite of the fact that the influence of C1

VI

~
C2 t V2
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t 5 t7 t9 tlI t l 3

Fig. 4. Multivariate analysis of variance for four-factor design with repeated

measurements.
V 1,V2 =/a, e, 0/, X= (Xl> X 2, X a), Y= (Y1, Y2, Va).
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Table 2. Some sort of classification.

Factor Y

YI Y2 Ya
--

X Xl Idl Ipl lui
I-<

B X 2 Ikl Inl Iblu
til
~

Xa Iml Igl ItI

30 VI--+-- Cz ---+, -- Vz 30 VI~ C2 V 2

C 2 = I p,t:,k / V o I C 2 ) b,d,g I
I

::,. ::,.

,§ 20 § 20

.8 't
'f ·c

(.;

<:J .g
~
~

10 10
l-

i i

I t
ts t7 t9 ill t13 ts 17 t9 tll tl3

( 1 ) C 2 = / p,t,k /; Voiceless stop. e2 ) C 2 = / b,d,g / ; Voiced stop.

30

C2 =/m,n,ul

~

§ 20

:~
u

]

~
i

ts

(3 ) C 2 = / m,n,I) /; Nasal

Fig. 5. Multivariate analysis of variance for three-factor design with repeated
measurements. VI' V 2 =/a, e, 01.

=Ip~t,k,b,d,g,m,n,:ul on VI is considerably large, we disregarded it. This increased

noise at part VI, which accordingly made the ratio to the term of residual worse.

It would be relatively easy to classify in manner of articulation since the ef

fect of it was enough large at time t9, as clear in Fig. 3. So~ we examined the
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effects of consonants belonging to each manner of articulation (Ml, M2, Ms), respec

tively. Let us schme analysis of variance for three-factor design with repetition

corresponding to the number of Cl (nine), assigning the three factors to Vl, C2, V2

in trio-sequence ,""VlC2V2 disregarding Cl from CIVlC2V2. Models for three-factor

design can be defined in the same means as Eq. (2) "-'Eq. (4).

The results of performing analysis of variance for three-factor design respec

tively on three cases of C2-C2 =Ip, t, k,l, C2=Ib, d, gl, and C2 = 1m, n, vi-are pre

sented in Fig. 5.

It is understandable from Fig. 5 that we can distinguish nasals 1m, n, vi at

t=t9, but absolutely not voiceless stops. Meanwhile, all the three cases are al

most equally distinguishable at t =t11.

Above is explained why we adopted rk at t =t11 as consonant spectra.

5. EXPRESSION IN THREE-DIMENSIONAL SPACE

According to the preceding section, we will express the nme consonants Ip,
t, k, b, d,g, m, n, vi with vectors

rl'""r9=rp, rt, rk, rb, rd, rg, rm, rn, ru

(maximum likelihood estimates by 2189 words at t=t11).

Now we would like to provide a less than three-dimensional space in which

we can well understand the behavior of manner and place of artiuc1ation. If

we can have the space like this, we have only to project orthogonally respective

vectors in the 20-dimensional space on its subspace whose dimension is less than

three.

Let aml, ama represent eigenv:ectors (putting them in

the corresponding eigenvalues) of covariance martix:

S 1 (' I ')m=3 rptk rptk+rbdg rbdg+rmnu rmnU

order of largeness of

(10)

which consists of three vectors of Eq. (11), that IS,

rp+rt+rk rb+rd+rg rm+rn+rU (11)
rptk 3 rbdg 3 rmnU =---3-----·

(Note: rptk+rbdg+rmnu=O)

The extent of separation concerned with manner of articulation must be relative

ly favorable in these directions.

Likewise, suppose that apl, a p2 are eigenvectors of covariance martix Sp which

consists of three vectors of

(Note: rPbm+rtdn+rkgU=O), (12)

then the extent of separation concerned with place of articulation must be also

favorable.

Let us project orthogonally the 20-dimensional vectors rp"-'ru on its three-
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Table 3. r= Crl' r2' rs) which is the orthogonal projection of

r (l x p) on WI' Cp=20)

47

v

r rt r2 rs

p 4.53 -4.20 -3.27

t 4.83 3.48 -0.85

k 3.70 -2.75 1.07

b 1.16 -1.11 -1.92

d 1.00 6.75 1.68

g 0.78 -0.83 4.48

m -5.69 -1.76 -1.55

n -5.83 3.95 -0.81

tJ -4.48 -3.53 1.17

\
\

Iell

\ Inl
\3.80
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\
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Fig. 6. Three-dimensional representation of Japanese consonants and 90%-probability

ellipsoid of the residual R/n.
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dimensional subspace which is generated by there vecotrs ami, api and ap2' An

arbitrary vector (through the origin) that belongs to the subspace W1 generated

by {ami, apI, a p2}, is represented as

X1aml +X2apl +xaap2 =xA, (13)

provided A'(p X 3) =(amt', apt', a p.') , x= (Xl, X2, xs).

Let rpA to be the orthogonal projection of rp on W1. Since r-rpA is at right

angles to a arbitrary vector xA belonging to W1,

0= (rp-rpA, .iA) = (rpA' -rpAA', .i). (14)

.i is arbitrary, then

rpA'=rpAA', that is, rp=rpA' (AA') -1. (15)

We made Table 3 by obtaining rp""-'ru-orthogonal projections of rp""-'ru on

W1 through above process. The result of expressing rp""-'rU in three-dimensional

space, whose coordinate axes are ami, a p1 and ap2 becomes as Fig. 6. All the vec

tors in Fig. 6 are moved parallel along the axis ami, in order to make it easier to

understand. So that actual origin is represented by G.

This reveals that nine phonemes compose nearly a trianglular. prism, clarify

ing relation between manner and place of articulation.

In Fig. 6 we also show the 90%-probability ellipsoid

1
I I

250

5
I 1

500

10
I

lK 2K

15
I

20 channel

4K Hz

0.2

0.1

0.6

of---"-==",.--,'~C---r-------l'----'---++---f---'-d--ff---,
I

I
I

I,

"/

-0.2

-0.4

Fig. 7. Direction cosines of am!> am., a p1 and a p2 '
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x(:R/n)-1x '=X2p(a) (16)

(where xp2(a) is the number such that Eq. (B. I ) in Appendix B holds when p =

3, a=O.I) corresponding to the residual

R(3 x 3) = (A' (AA') -1)'R (A' (AA') -1) (17)

by Xljklm(l X 3) which is orthogonal projection of 20-dimensional vector Xljklm on

the above three-dimensional subspace, where R(20 X 20) is the residual variance

as in Eq. (7) or Eq. (A. I ) and n=abcde.

(See Appendix B and Appendix C)

We can see vertices of this prism separated significantly from each other as

compared with the size of the residual ellipsoid R/n.
We showed the direction cosines of eigenvectors-ami, am" apI, a p2-in Fig. 7.

The patterns are never contrary to the traditional spectral knowledge on manner

and place of articulation.

6. CONCLUSION

We analyzed nine consonants, and investigated relations of their relative

distribution in three-dimensional space. These consonants were placed at pho

neme C2 of C1V1C2V 2 words (all of the total combinations of C1, C2=/p, t,k, b,d,g,

m,n,u/, and V1, V2=/a,e,oj). To begin with we extracted, from speech spactra

(20-dimensional spectra), components which represent independently of co-arti

culation, then selected the boundary of C2-V 2 as a section at which these consonants

are evenly separated. When being projected orthogonally the nine consonants on

three-dimensional subspace which is generated by three directions and promotes

separation of consonants in viewpoint of manner and place of articulation, they

took the shape nearly of a triangular prism in the space. It is guaranteed by

multivariate statistical analysis that these vertices are significantly different from

each other.

Spatial expression of consonants from physical and analytical points of view

based on actual speech seems, for the first time, to be tried in this study, though

spatial expression of vowels has been investigated from the early stage.
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ApPENDIX A

Supplement to the Linear Model of Multivariate Analysis of Variance for

Four-Factor Design with Repeated Measurements.

The breakdown if total variance.

Let "'" denote the transposed matrix, then the breakdown of total variance

Q (p X p) (matrix of sums of squares and cross products) is as follows: (See Table

A.I.)

Q=Ql+Q2+Q3+Q4+Q5+Q6+Q7+Q8+Q9+QI0

+Qll +QI2+Q1S+Q14+QI5+R, (A.l)

when
abe d e

Q = L' L' L' L' L' (Xijklm -x. ....)' (Xijklm -X . ....),
1=1 j=1 k=1 1=1 m=1

Ql=bcde ±(Xl .... -X •••••)'(Xi •••• -X .....),
1=1
b

Q2=acde L' (X.j ••• --X •••••)'(X.j ••• -X••••• ),
j=1

e
Qs=abde L' (X .. ke.-X .....)' (X •• k .. -X .....),

k=1
d

Q4=abce L' (X .. • l.-X.....)' (X ... l.-X .....),
1=1

a b
Q5=cde L' L' (Xlj ... -Xi .... -X.j ... +X .....)'

1=1 j=1
· (Xlj ... -Xl .... -X.j ... +X .....),

a e
Q6=bde L' L' (Xi.k •• -Xl .... -X .. k .• +X.....)'

1=1·. k=1
• (Xl.k •• - X l •••• -X •• k •• +X•••••),

a d
Q7= bce L' L' (Xi .. l.-Xi .... -X.. el.+x.....)'

1=1 1=1
· (Xl .. l.-Xi .... -X... l.+X ),

Q8=ade ± t (X.jk .. -X.j ... -X .. k .. + X )'
j=1 k=1

• (X.jk •• -X.j ••• -X•• k •• +X•••••),

b d

Q9=ace L' L' (x.jel.-x.j ... -x.. el.+x.....)'
j=1 1=1

· (X.j.l.-X.j ...-x... le+x .... .),
e d

QlO=abe L' L' (X •• kl.-X •• k .. -X•• el.+x .....)'
k=1 1=1

· (x .. k!.-X •• k •• -X••• l.+X •••.••),

abe

Qll=de L' L' L' (Xijke.-Xij ... -Xl.k .. -X.jke.+Xi .... +X.j ... +X.. k..
1=1 j=1 k=1

-X•• ~ • •)'. (Xijk .. -Xij ... -Xi. k. . -X. jk .. +Xi .•.. +X .j ... +X •• k. . -X•• •••),

a b d

QI2=Ce L' L' L' (Xijel.-Xlj ... -Xl .. 1.-X.jo!.+Xl .... +X.j ... +X... l.
1=1 j=1 1=1
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and

- X •••••) , . (Xij. I. - Xij .•• - Xi •• I • - X. j . I • + Xi ...• + x. j ••• + X • •• I • - X • ••••) ,

a c d

Q1s=be L: L: L:(Xi.kl.-Xi.k •• -Xi.o1.-X •• kl.+Xi •••• +X •• k •• +X•• o1.
i=1 k=1 1=1

-X••• ••)'. (Xi. kl.-X i.k •• -Xi •• l.-X .• kl. +Xi • ••• +X •• k • •+X •• • l.-X•••••),

bed

Q14=ae L: L: L: (X.jkl.-X. jk •• -X.j o1.-X •• kl.+X.j ••. +X•• k •• +X•• 01.
j=1 k=1 1=1

-X•...•) '. (X.jkl.-X.jk •• -X.j.i.-X•• kl.+X.j ••• +X •• k •• +X ••• I.-X •••••),

abc d

Q15=e L: L: L: L; (Xijk1.-Xijk •• - X ijo1.- Xi.kl.-X.jkl.+ X ij ••• +X1.ko.
1=1 j=1 k=1 1=1

+ Xi •• 1• + X. jk •• + x. j .1 • + X •• k 1• - Xl •••• - X • j ••• - X •• k •• - X ••• I •

+X••• ••)'. (X1jk1.-Xijk •• -Xij .1.-Xi.kl.-X1 .jkl.+Xij ••• +Xi.k •• +Xi •• l.

+ X. jk •• + x. j • I • + x . . k1 • - Xi •••• - X • j ••• - X • • k .• - X • •• 1• + x . ....) ,
abc d e

R= L: L: L: I: L: (Xijklm -X1jkl.)' (Xijklm -Xijkl.),
i=1 j=1 k=1 1=1 m=1

I abc d e

X. • • • • b d L: L: I: I: L: X1jklm,
ace i=1 j=1 k=1 1=1 m=1

I bed e
Xi····=-b--d----L: L: L: L: Xijklm, ... ,

c e j=1 k=1 1=1 m=1

I abc e,
X • •• 1• = -b·--L: L: I: L: Xijk1m,

a ce i=1 j=1 k=1 m=1

Table A.l Multivariate analysis of variance for four-factor design
with repeated measurements.

Factor Effect vector Ql

A at Q 1

Main effect B fdJ Q 2

C fk Q3

D "I Q 4

AB €Ij Q5

AC elk Q 6

Two-factor AD 1}11 Q7

interaction
BC DJk Q 8

BD AJ1 Q 9

CD Pkl QI0

ABC JJUk Q11

Three-factor ABD pIjI Q12

interaction
ACD aikl Q13

BCD 'Z"jkl Q14

Four-factor ABCD Q15interaction ~ijkl
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1 c d e
Xlj"'=~d-~ ~ ~ Xljklm, ••• , X.j.1.

C e k=1 1=1 m=1

1 d e
Xijk"=·-d--~ ~ Xljklm, ••• ,

e 1=1 m=1

1 e
X ljkl • = ---~ Xljk1m •

e m=l

XI.kl.

ace

---~ ~ ~ Xljk1m, ... ,
ace 1=1 k=1 m=1

1 b e

-~b-e-~1 ~1 Xljk1m, ••. ,

Table A.2 Degrees of freedom of Q i ; /;1 +/;2=abcd, and degrees
of freedom of R is n-abcd. (n=abcde)

Factor Q i /;1

A Q 1 a-I

B Q2 b-1

C Q3 c-1

D Q4 d-l

AB Q 6 ab-a-b+1

AC Qa ac-a-c+ 1

AD Q 7 ad-a-d+1

BC Q s bc-b-c+1

BD Q9 bd-b-d+ 1

CD Q10 cd-c-d+ 1

ABC Qn abc - ab - ac - be + a + b + c-1

ABD Q12 abd-ab-ad-bd+a+b+d-1

ACD Q 13 acd - ac - ad - cd +a + c + d-1

BCD Q 14 bed - be - bd - cd + b + c + d - 1

ABCD Q 16 abcd-abc-abd-acd- bcd+ab+ac+ad+ bc+bd+cd-a- b-c-d + I

The maxzmum likelihood estimates of main effects and interactions.

K=X ••••• ,

al=Xl •••• -X ••••• ,

Pj=X.j ... -X..... ,
A

rk=X •• k •• -X ••••• ,

bl=X••• l.-X••••• ,
A

Blj = Xlj ••• - Xi •••• - X • j ••• +X • •••• ,

elk =Xl. k •• - Xl •••• - X •• k •• +X •• ••• ,
A

7}Jl =Xl •• 1. - Xl •••• - X • •• 1 • + X ••••• ,

ojk =X. jk •• - X • j ••• - X •• k •• +X ••••• ,

i j 1=X. j • 1. - X. j ••• - X • •• 1. + x . .... ,
A

Ilk1 =X •• k1.-X •• k • • -X •• • 1. +X •• ••• ,
A

J,./ljk =Xljk •• - Xij ••• - Xi. k •• - X. jk •• +Xl •••• +X • j ••• +x . . k •• - X ••••• ,
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A

Pijl = Xij • 1 • - Xij ••• - Xi •• 1 • - X. j • 1 • + Xi . ...+x. j ••• + X .. . 1 • - X . .... ,
A

O'ikl = Xi. kl. - Xi. k •• - Xi . . 1. - X .• kl. + Xi .... + X •. k •• + X •. . 1. - X ..... ,
A

't" jkI = X. jkl • - X . jk •• - X. j • 1 • - X .. kl • + x. j ••• + x . . k •• + X ... 1 • - X .••.. ,
A

9'ijkl =Xijkl.-Xijk •• -Xij .I.-Xi.kl.-X.jkl. +Xij ••• +Xi. k •• +Xi . . 1. +X. jk ••
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+X. j .1. +X.. kI.-Xi ••• • -X. j •• • -X.. k •• -X... I.+X •.•..•

ApPENDIX B

Probability Ellipsoid

(A.2)

If x( 1 X p) is distributeed according to the p-dimensional normal distribu

tion N (p, A), (x- p)A-l(X- p)' has a x2-distribution (Chi-squared distribution)

with p degrees of freedom.

Let Xp2 (a) be the number such that

Pr{Xp2>Xp
2(a)} =a, (B.l)

where Xp
2 has a x2-distribution with p degrees of freedom.

Thus,

Pr{ (x- p) A-I (X- p)' SXp
2 (a)} = I-a. (B.2)

In the p-dimensional space of x,

(x- p) A-I (X- p)' SXp 2 (a) (B.3)

represents the surface and the interior of a ellipsoid whose center is p. The shape

of the ellipsoid depends on A-I, and the size on xp
2 (a) for given A-I. The interior

of the ellipsoid (B.3) is considered to contain (I-a) x 1000/0 of the population and

is called the "Probability ellipsoid."

If A-l=Ip , for example, (B.2) says that the probability is I-a that the distance

between X and p is less than y' Xp 2 (lX), where I p is the p-dimensional unit matrix.

ApPENDIX C

Matrix of Sums of Squares and Cross Products in Subspace.

Let B (p X q) be the orthogonal projection matrix of p-dimensional space on

its q-dimensional subspace,

x(l x p) ~X (l x q) = xB. (C.l)

And, let a matrix Q be such a matrix of sums of squares and cross products,
n, 1 n

Q (p X p) = L; (Xi-X.) (Xi -X.), x.=---L; Xi (C.2)
i=1 n i=1

Then Q is transformed by the above projection as follows.
v n
Q (q x q) = L; (Xi-X.)' (Xi-X.)

i=1

= iB' (Xi-X.)' (xi-x.)B
i=1
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where
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=B' (i (Xl-X.) '(Xl-X.» B
1=1

=B'QB,

v 1 ~ v
X.=~L..., Xl •

n 1=1

(C.3)

Now let us consider the Eq. (17).

Since R is a matrix of sums of squares and cross products, and B=A' (AA't 1

from Eq. (15), then the residual R in the subspace is equal to

R= (A' (AA') -1)' R(A'(AA') -1). (CA)


