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SUMMARY

Considering the amplitude outputs of 20-channel 74' -octave filter analyzer

of VI CV2 utterances as the components of 20-dimensional vector, we performed

multivariate analysis of variance with four factors-VI' C, V 2 and speaker; and

compared the amounts of the effects of each factor within themselves.

Choosing one of vowels la, i, u, e, 01 for VI and V 2 , and one of nasal consonants

1m, n, ul for C, we made all the combinations with them, and five adult males were

asked to utter these 75 kinds of words, which were used for the analysis. Then

we inspected the relation of the variance ellipsoids of each factor along their prin­

cipal axes; signified that the notion of direction as well as amount is necessary

for explaning the effects of each factor; and compared these analysis with the

principal-component analysis. Another thing we investigated by the method

of regression estimate was the relation between final vowels and each section of

words. Furthermore, we performed similar analysis on the basis of three-dimen­

sional vectors which consist of the formant frequencies extracted from the same

materials as above, and compared these with the case of spectra. The results

concerning speech sounds are as follows:

(1) Speaker-effect is considerably large, while consonant-effect is not so

large. However, the directions of three distributions of these two· effects and

vowel-effect meet at nearly rightangles with each other:

(2) Intensive correlation is seen between vowel and speaker-factor:

(3) In the case of formant frequency, the informations on any factor other

than vowel-factor are being decreased as compared with the case of spectrum

distribution.

INTRODUCTION

The reason that we make syllable sequences-consonant-vowel (CV), vowel­

consonant-vowel (VCV), etc.-an object of the basic analysis of the speech sounds

is that these phonemes-consonant and vowel-are not uttered independently.

I t is, of course, basically necessary to investigate the characteristics of the pho­

nemes uttered individually. However, it is more actual to investigate the char­

acteristics of each phoneme in the syllable sequences described above, since, par-
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ticularly In Japanese, consonants are seldom uttered individually, but uttered

respectively in the form of the syllable which accompanies a vowel.

We investigated the correlations of these phonemes-co-articulation-and

the individual differences between various speakers, making the syllable sequences

of VCV type an object of analysis.

Although formant frequencies have been utilized traditionally for this kind

of research, we have been keenly feeling restrictions on its analysis and insufficient

points in its way of explaining the co-articulation. The report of Broad and

Fertig(l) states that the patterns of influences of various kinds of initial or final

consonants on the vowel region of CVC syllables (sequences of consonant-vowel­

consonant: Only the vowel /1/ was used) are quantitatively displayed by an

analysis of variance (univariate). It has a statistical ground, so that it is quite

interesting. The first, second and third formants are still separately dealt with

as univariate, respectively, in their report. However, since there is no guarantee

that these formants are independent of each other, and since it is not clear how

many parts of sound information the formants share, their report is not sufficient

to explain co-articulation. Now,in this paper, it has become possible to deal

directly with the spectra of consonants as well as those of vowels by introducing

a method of multivariate analysis so that we could be released from the restric­

tions. Furthermore, we investigated, this time, not only the co-articulations

but also the influences of speakers. This fact may not be seen in any other re­

search.

We considered the components of spectrum distributions of a VCV word

at various time points as the components of multi-dimensional vectors at first;

performed multivariate analysis of variance with four factors-speaker, initial

vowel, consonant and final vowel; analyzed the characteristics of co-articulations

and individualities of speakers; and treated them quantitatively. (2)(3)

As a result of comparing the values of the factor-effects (obtained from the

results of this analysis of variance) with the discrimination scores of each factor,

notion of "Direction" as well as "Amount" was found to be necessary for explain­

ing these factor-effects for the first time. We also clarified the difference between

this analysis and the principal-component analysis.

Others, we made researches for, are the difference between information in­

cluded in spectra and that included in formants, and the correlation between

each section of VCV word and final vowel by the method of the multiple regres­

sion theory. We chose nasal sounds for C, in this chapter, in order to make the

analyses easy. This is because nasal sound possesses the best stationariness among

consonants.

2 ESTABLISHMENT OF EXPERIMENTAL OBJECTS AND FACTORS

Suppose a VI C V 2 (vowel-consonant-vowel) word like fame/. Choosing
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one of la,i,u,e,ol for the initial vowel VI and the final vowel V 2 , respectively, and

one of 1m, n, ul for the consonant C, we make all the combinations with them.

Then, 75 kinds of words are equipped. We made, further, 375 words as materials

for the analysis by asking 5 adult males to utter these 75 kinds of words in the sim­

plified nonreverberant room. Schematic representation of VI C V 2 word by

amplitude is seen in Fig. 1. 9 points of stationary or transition parts of every word

are chosen and denoted t=tl)"" tg , in turn, upon visual observation. Presume

the spectrum components at each time to be vector components, and vectors cor­

responding to the time t to be x(t).

t

Fig. 1. Schematic representation of V lCV2 word and definition of ti'
t = t l : stationary part of V h

t=ta : boundary of Vl-C,
t = t5 : stationary part of C,
t= t7 : boundary of C - V 2,

t = tg : stationary part of V 2'

If i is even, ti=(ti+l+tl_l)/2.

We performed multivariate analysis of variance for four-factor (speaker, VI' C

and V 2) design with single observation as Table 1 upon assorting the vectors which

correspond to the same time t from all materials.

Table 1. Multivariate analysis of variance for four-factor design with single
observation.

I

~-~~._,_.~

Factor Level Main effect No. of levels

A : speaker Ai I ai i=l""'a (a=5)
--

I
B: V l Bj f3j j=l""'b (b=5)

C: C C k I h k=l"",c (c=3)

D: V 2 Di I 01 l=l"",d (d=5)



34 Koh-ichi TABATA and Toshiyuki SAKAI

If the outputs of the 20-channel 1/4-octave filter-bank (20 filters whose center

frequencies cover 210 up to 5660 Hz) are assumed to be b 1(t), b2(t), ... , bp(t) (p=

20), in order, bl(t), ... , bp(t) represent the phoneme spectra at time t. After nor­

malizing the square sum of these components at I, we established p-dimensional

vector x(t) by taking the logarithm of its components. Namely, we defined p­

dimensional vector

x (t) = (Xl (t), ... , Xp(t» with Xi (t) = log~ bi (~~-== (1)

,Jitb/(t)

which would be used for the analysis. The amplitude outputs of the filter ana­

lyzer were AD-converted at every 10 ms, then put into the computer by on-line

in real time. The speech spectrum patterns shaded by changing letters were

plotted on the line-printer,. and then marked either boundary points or stationary

parts upon visual observation.

3 LINEAR MODEL AND MULTIVARIATE ANALYSIS OF VARIANCE(4) (5) (6)

Suppose a linear model, which has the four factors mentioned above, at every

t( =tl, ... , t g ) for vectors x(t) = (xl(t), ... , xp(t)) that represent the spectra (Table I)

Xijkl(t) =,a(t) +ai(t) +J1j(t) +fk(t) +Oi(t) +eijki(t), (2)

(1 <i<a, I <j:;Sb, I ::;k::;c, I ::;l::;d)
abe d

E~=E~=E~=E~=~ ~
1=1 j=1 k=1 1=1

Sijkl '" N(O, A) : p-dimensional normal distribution. A=A(t). (4)

ai(t), J1j(t), rk(t) and Ol(t) represent the i-th main effect of factor A, j-th of

factor B, k-th of factor C and l-th of factor D, respectively. We determine ,aCt)

in order to satisfy the condition given by Eq. (3), and assume Sijkl(t) to be inde­

pendently distributed according to the p-dimensional normal distribution.

Letting" , " represent transposed matrix, the breakdown of the total

variance Q(pxp) (matrix of sums of squares and cross products) becomes as in

Eq. (5).

(We disregard t as long as there seems to be no misunderstanding.)
abe d

Q=E E E E (Xijkl- X ••••)' (Xijkl- X ••••) =QI+Q2+Qa+Q4+R, (5)
1=1 j=1 k=1 1=1

where
a

QI=E (Xi'" -X •..• )' (Xi ... -X ••.. )
1=1

b

Q2= E (X'j" -X •••• )' (X 'j •• -X •••• )
j=1

e
Qa= E (X •• k. -X •••• )' (X '.k. -X •• •• )

k=1

d

Q4= E (X ••• l-X •••• )' (X"'l -X •••• )
1=1
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and

abc

R=L; I; I;
i=1 j=1 k=1

d

~ (Xijkl-XI ... -X.j .. -X.. k. -X ••• I +3x .... )'
1=1

1 a b c d 1 b c d

x····=bClL; I; I; I; Xljkl, Xi ... = bcd I: I: I: Xjjkl,
a c i=1 j=1 k=1 1=1 j=1 k=1 1=1

1 a c d 1 a b d

X.j .. acd I; I: I; Xljkh X • • k. = I; I: I; Xjjkl,
i=1 k=1 1=1 abd 1=1 j=1 1=1

1 abc

X··.I abc I; I; I; Xljkl.
1=1 j=1 k=1

Ql' Q2' Q3' and Q4' represent the variances (Matrices of sums of squares and

cross products) corresponding to factors A, B, C and D, respectively, and R (Matrix

of sums of squares and. cross products) does the residual.

Now, we shall develop a test of the hypothesis for factor A at time t (=t1 ,

... , t g ) that all the effects of Ai are equal (there is no effect of A) ;

H A (t) : a l (t) = ..... =aa (t) =0. (6)

We can test the hypothesis since it is possible to prove that the likelihood ratio

criterion

(7)

is distributed asymptotically according to x2-distribution with pll degrees of free­

dom under the condition-n=a·b·c·d, ll=a-l, ll+l2=a+b+c+d-3, n-a­

b-c-d+3>p-when n is sufficiently large. (See Appendix A.) We obtained

test criterion J,I for each factor at t=t1, ••• , t g based on the materials mentioned

above (Fig. I). As the degree of freedom of the factors are different from each

other (See Table 2)

Table 2. Degrees of freedom of Qi ;

degrees of freedom of R is n-a-b-c-d+3 (n =abcd)

Factor A B a D

Qi Q1 Q2 Q3 Q4

II a-I b-l c-I d-I

pll pea-I) pCb-I) pee-I) p(d-I)

II +l2 a+b+e+d-3 a+b+c+d-3 a+b+e+d-3 a+b+c+d-3

, and so are the value of x2-1 % significant level different from each other, we sig­

nified the normalized criterion

, J,I

J,I = (Value of x2-1% si:-g-n~i-=fi-ca-n-t-----'-=l-ev-e-cI'---c-o-rr-e~s-p-o-nding (8)
to the degrees of freedom of J,I)

In Fig. 2. From Fig. 2, it can be said that

(1) The .effect (main effect) of the speaker-factor is the largest among four

factors at the stationary part of nasal consonant:
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(2) The effect of the vowel-factor is the largest at the stationary part of

vowel among four factors.

(3) Although a result does not insist that an effect of V 2 (VI) is observed

at the stationary part of VI (V2) (11'<1), it may be necessary to scheme a more

accurate experiment in order to assert it.

(4) At the stationary part of VI (V2), the effect of factor C is observed but

it is smaller than that of speaker-factor.

(5) The effect of factor C is maximum at the part of C among all sections.

The effect of C at V 2 is larger than that of C at VI'

30

~

20
t::
0
.~

.8
'c:u

.~
'""2
E

10
Z

1

---V2

Fig. 2. Multivariate analysis of variance for four-factor design with single
observation.

4 RELATION BETWEEN NORMALIZED CRITERION

Z./ AND DISCRIMINATION SCORE

The larger normalized criterion z/ for factor A is than I, the more ai (i =

I""-'a) differ greatly from each other. Hence, when a certain x (one of Xijkl

(t)) is given, it may be easier to discriminate in which category (that cor­

responds to the level Ai in the case of factor A) x belongs. We tried discrimina­

tion in each case of all factors at t( =t l , ••. , tg) by using the distance which is based
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on quadratic form in order to investigate the relation between 11' and discrimina­

tion. For example, we calculated the mean vector Xl ... (t) and the sample covari­

ance matrix Sl(t) for the category which corresponds to each level A (i= 1, ... , a)

of factor A at time t, using x's which belong in that category.
1 bed

Xl ... (t) bcd I; I; I; Xljkl (t) (9)
J-l k-l I-I

1 bed
SI (t) = b d I; I; I; (Xljkl (t) -Xl ... (t»' (Xljkl (t) -Xl'" (t» (10)

C j-1 k-l 1..1

Assume,now, that we discriminate that given x(t) (one of Xljkl(t)) belongs in the

Table 3. Discrimination scores in each factor (%).

Factor I
No. of I t1 I t, I '. I t. I " I" 1"1,·1,,categories

A : speaker I 5
1

100 199.8199.81100
1
100 199.8199.8199.5198.7

B: VI I
5

1
100

1

100 I96.5 1 79.5 169.91 64.5 I 55.7 I 52.8 I 53. 1

C: C I 3 1 69.6 1 73. 1 I 85. 1 195.2 195.5 I 95.5 I 89.1 I 80.3 I 77.9

D: V 2 I 5 154.7153.3158.1 164.0 172.0 1 82•7 196.0 1100
1
100

100 'T'------------------Z--:O..-.-...-......__.....

90

~ 80......
~

~
d

.S
~ 70c:
·8
~§
0

60

•
••

3010521
50+----r------,.-------r-----r------;

0.5

Normalized criterion lI'

Fig. 3. Discrimination scores vs. normalized criterion v'.
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category Ai where "i" makes

(x(t) -Xi ... (t»Si-1 (t) (X(t) -Xi ... (t»'+log \Sj(t) I (11)

minimum among i= 1, ... , a.

If every category has the normal distribution and frequencies of occurrence of

each category of Al'.........Aa are the same, the notion of discrimination of Eq. (11)

corresponds that "The' category, in which the probability of the occurrence of

given x(t) is the largest, is Ai'" (Bayes' theorem.) The discrimination scores

for each time and each factor obtained by this judgement are presented in Table

3. The discrimination scores of the factors, whose effects were the largest in ana­

lysis of variance at each time, are nearly 100%, and that of the factors, whose

effects are the second largest, are not so unexpected, too. Although C-effects

at the stationary part of nasal (t=t5) and at the boundary between nasal and

vowel (t=t7) are considerably small comparing with the largest effect, we should

notice that the discrimination scores of the nasals are 95.5% and 89.1 %, respec­

tively.

We will speak further of the fact that there is the relation described in Fig.

3 between the discrimination scores obtained here and the normalized criterion

11'. Thus, it is found that 11' has close relations with the discrimination score

though 11' means originally the $tatiiStics .foc testing the hypothesis.

5 GEOMETRIC REPRESENTATION OF MULTI-FACTOR DISTRIBUTIONS

As signified in Section 4, it is supposed that the directions of the distributions

of variances of each factor may be different from each other by the reason that

t~e discrimination scores of the second and the third largest factors (which possess

cqnsiderably small value of effect as compared with the largest effect) do not be­

come worse. As it deals with ratio IQi+RI/IRI, that is, the ratio of the vari­

ance of each factor to the residual variance, in analysis of variance as described

by Eq. (7), we can observe only, so to speak, the relative largeness of the distribu­

tions of each factor.

Therefore, we scheme geometric interpretation of the distribution as follows

in order to clarify the relation between the directions of distributions of each factor.

At first, if we generally let It, A be the expected vector and the covariance

matrix of the probability vector of X (1 X p), respectively, we may think that

(x- It) A-I (x- It)' =p+2 (12)

expresses geometrically the pattern of the variance of x, where Eq. (12) represent

a concentration ellipsoid(4
) for x.

In this paper, we are going to signify the variance of X by utilizing the fol­

lowing ellipsoid (13) which is similar to the above ellipsoid (12) (similarity ratio

1/-VP+2).
(x-f1) A~1 (x-f1)'=l. (13)

Where f1 and A are the maximum likelihood estimates of It and A, respectively.



Multivariate Statistical Analysis of Japanese vav Utterances 39

(Let Xl, ... , x n be sample vectors, then
_ In ~ 1 In ,
p.:=:X.:=:-~ XI, and A:=:-Q:=:-~ (Xi-X.) (Xi-X.).)

ni=l n ni=l

The reason is that (13) is easy to understand numerically because the distance

between center f1 and the point of intersection (produced by the ellipsoid repre­

sented by Equation (13) and the principal axis-eigenvector-corresponding to

eigenvalue of A) is just -vld; if one of eigenvalues of A is di (i= l""'p). (See Ap­

pendix B).

Next, as shown in Appendix C, Ql+R can be thought to express the vari­

1
ance of factor A, and -(Ql +R) can be also thought to express the covariance

n

matrix of factor A.

We, further, project the variance Ql+R onto the new vector space obtained

by normalizing the original vector space by the residual R.

Suppose the nonsingular linear transformation

X - of:=: X (R/n) -i, (14)

where R is the residual variance, and n (=abcd) is sample size. (x and of are

vectors in the original space and the new space, respectively.)

Then, the covariance matrix ~(Ql+R) is transformed to
n

1 - - 1 1n(QI + R) :=:R-2 (Ql +R)R-2. (15)

(See Appendix D.)

So that R itself becomes

l-R :=: R-!RR-! :=: I p (16)
n

(Note that (Ql +R)R-1 is also considered to be another normalization, but it

is not always symmetric matrix, so that it is unsuitable for geometric expression.)

We will continue to discuss Eq. (15). As the residual matrix R is symmetric

and positive difinite (provided, n-a-b-c-d+3>p. See Eq. (A.7) of Appen-
1 1 1

dix A), R2 exists. Where R2R2=R and R-! is the inverse matrix of Rt Matrix

Ql is symmetric and its rank is a -1 (provided a-I::;p), and R! is also symmetric

and real nonsingular. Accordingly R-!Q1R-! becomes symmetric and its rank

is a-I. Hence, it follows that the eigenvalues of

R -!Q1R-!z' :=: dZ'

are d1>d2 •••>da_ 1>O (with probability 1) and da= ... =dp=O.

Then the eigen-values of
1 1

R-2 (Ql +R)R-2 a' :=:Aa' (17)

become A1>A2> .. .>Aa_1>1, Aa= ... =Ap= 1. Because, A=d+ 1 is shown from the

fact
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(18)

When A1 is named the maximum eigenvalue, and the eigenvector a 1 correspond­

ing to it is provisionally named the first principal axis of the ellipsoid which is

expressed by

x[~ (Q1+R) J-1x'=x[R-!(Q1+R)R-tJ-1x'=1 (19)

and which represents the variance of factor A, .JJ; and a1 are considered to be

the amount and the direction of the substantial proportion of the variance of factor

A, respectively.

At t=t1 (at the C-V2 boundary), the maximum eigenvalues and the first

principal axes of speaker-factor (Q1+R), C-factor (Qa+R) and V 2-factor (Q4+
R) were computed, then the results became (2.4\ a1), (1.4\ c1) and (2.5 2

, d1),

respectively. These are illustrated in Fig. 4.

al

Speaker~factor
2.4

Residual

Cofactor

Cl

d 1
Fig. 4. Geometric representation of multi-factor distributions (t=t1).

The intersections, made by three ellipsoids (that are represented by x[ ~ (Ql+

R) ]-1 x'=l (i=1,3, 4)) and three planes that are determined by a1 & Cu C1&
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d1 and d1 & a h are also illustrated in the figure. (How to obtain the intersec­

tions is in Appendix B.) The angle () between vectors x and y is defined by () =

cos-1 7Y
'1' The angle between a 1 and C1 is 93·, and so on. Besides,

(xx') "2 (yy') "2

x( ~ R)-1 x' =xlpX' =:xx' =: I

for the resiual R. From this description, it can be realized that the principal

axes of the variances of these three factors meet n~arly at right angles with each

other: Similarly, the distributional relations between the speaker-factor «'t+
R) and C-factor (Q,s+R) at t-t li (that is the stationary point of C), and that bet­

ween speaker-factor (Q1+R) and V 2-factor (Q4+R) at t=tg (that is the stationary

point of V 2) are as Fig. 5. From this figure, we can understand that the discrimi­

nation score does not decrease since the directions of the variances are different

from each other even if the amount of variance is slight.

Fig. 5. Geometric representation of multi-factor distributions (t=tli, t=tg).

6 COMPARISON WITH PRINCIPAL-COMPONENT ANALYSIS

Klein, Plomp and Pols(7) express vowels by using the first four principal com­

ponents of a principal-component analysis and argue the distribution of vowels

and speaker's individualities, regarding the amplitude outputs of 18-channel 1/3­

octave filters as the components of l8-dimensional vector. (They dealt with

600 utterances-12 kinds of vowels by pronounced by 50 male speakers.) How­

ever, their explanations are not direct because they consider projection of vowels

on the plane determined by the principal axes of a principal-component analysis

which make neitheI; the vowel-factor nor the speaker-factor maximum.
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We observed the following in order to clarify how each factor is expressed

by a principal-component analysis.

Total variance Q of Eq. (5) is exactly the same as the saIIlple covariance

matrix S which is used in a principal-component analysis. (8)(9) Namely, Q=

nS, where n is the number of x's. As the eigenvectors of S are arranged in order

of largeness of the eigenvalues corresponding to them, and are named eu e2 , • •• ,

respectively, ,the inner product by x (=Xljkl(t) -x... . (t)) and em makes the m-th

principal component of x (eie/=l, eie/=O, i~j). If the 2-dimensional vector

made by the first and the second principal components is represented by x, x de­

notes the orthogonal projection of x on e1 -e2 plane. (The variance explained by

the first and second principal compenent in this case is 83% of the total variance.)

The breakdown of the total variance Q by using x similarly to Eq. (5) is as

Q=Q1+Q2+QS+Q4+R, (20)

where Ql, R have the same meaning as Ql and R in Eq. (5) do, and p=2. In
I abc d_

this case, x.... b d L: L: L: L: Xljkl = 0, because
a c 1-1 j=1 k=1 1=1

a b cd. lab c d

abcd 'fl j~1 El ~IXljkl = abcd 1~1 jL;1 El ~1 (Xljkl-X .... ) =0.

Similar to the preceding section, R represents the residual variance. Variance

of factor A, for example, can be regarded as Ql+R. And let x(~ )-1 X'=I,

x[ ~ (Q1 + R) J-1x' = I be the ellipsoids which denote these variances, respectively.

The illustrations of the ellipsoids are drawn in Fig. 6.

Vz= factor

e1 Speaker
-factor

Fig. 6. Principal-component analysis (t=tll, t=tg).
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One of that denotes speaker-factor (Ql+R), factor C(Qs+R), and residual R

at t=t li , and the other denotes speaker-factor (Qs+R), factor V 2(Q.+R) and

residual R at t=tg • Comparing Fig. 6 with Fig. 5, it is understood that the factors

which have the second and less largest effects are lost in the variance of the factor

which has the largest effect, and that the ratios of these variances to the residual

variance are not so favorable.

To be brief as to characteristics of the principal-component analysis in this

study, what is mainly explained is about the superior factor, but it is difficult for

the inferior factors to be explained sufficiently. It is just like, "The weak become

the victim of the strong."

7 DISCUSSION ABOUT THE RESIDUAL

By the model of Eq. (2), it is presumed that Eq. (4)

Cijkl =Xijkl-P.-ai- (3j-rk-Ol (21)

has the p-dimensional normal distribution N(O, A). If fl., ai, {3h rk and 01 are

replaced by maximum likelihood estimates X ...• , XI .•• -X...• , ..• , and X ...I-X.•••

(Eq. (A.2) of Appendix A), then Xijkl replacing Cljkl,

Xljkl=Xljkl-XI ... -X'j" -X •• k. -X .. 'l +3x .... , (22)

is desired to be distributed according to N(O, A). Now, we are going to investi­

gate the distributional pattern of each coordinate component upon transforming

coordinate in order that 1=(1jn)R becomes a diagonal matrix. We utilized

1, maximum likelihood estimate of A, instead of A which is unknown.

Arrange the eigenvalues of 1 in order of largeness; denote them by (Jl2, ... , (Jp2;

and let 't"l"'" 't"p represent the eigenvectors which correspond to them.

If the m-th component of

Yljkl= (Xijkl 't"l',.,., Xljkl 't"p')

is supposed to be Ym, ijkl. These components are uncorrelated with each other.

If Xijkl--N(O, 1),

Ym, ijkt!(Jm--N (0, 1) : Single dimensional standard normal distribution.

is obtained, since

Ym, Ijkl=Xljkl 't"m'--N(O, 't"m 1't"m') =N(O, (J2m).

The observed cumulative frequency distribution SN(X) of Ym,ljkt/(Jm, plotted on

normal probability coordinates, becomes, for example, as Fig. 7, when t=t7 and

m= 1. The distribution shown in Fig. 7 is well-approximated by the normal

distribution.

To examine whether these observed cumulative frequency were obtained from

the population having the normal distribution or not, we will utilized KS-test

(Kolmogorov-Smirnov one-sample test). (See Appendix E.)

Let Fo(X) denote the cumulative frequency distribution function of the stand­

ard normal distribution N(O, 1), that is, the straight line of Fig. 7, and the band

of F o(X) ±Da (from the mathematical table of KS-test, the critical value Da=
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7% when N =375, level of significance a=5%) is between two dotted lines in

the same figure. The fact that the line denoting SN(X) does not cross beyond

the dotted lines reveals that Ym.,ljkl!dm. has the standard normal distribution N(O,

I). Fig. 8 shows the result of obtaining D for each Ym.,ljkl!dm (m=l ........p) at t=t1

and of comparing this with significant-level value D.... Each value of D is smaller

than D ... so that all of these seems to have univariate normal distributions. AI~

though Yljkl is not always distributed according to p-dimensional normal distribu~

tion even if every component of Yl.jkl has the univariate normal distribution, the

assumption on residual X'ljkl may be almost appropriate, considering from these

results.

8 ANALYSIS BY FORMANT FREQ.UENCY

We analyzed the same speech materials in a way similar to Section 3, con~

sidering the first, the second and the third formant frequencies (represented by

F1, F 2 and Fa, respectively) as three-dimensional vectors (p=3). "Formant Fre~

quency Extraction by a inverse Filter and Moment Calculation" (10) reported by

Nakatsui and Suzuki was used for extracting the formants from the spectra, ob~

tained through the 1/4-octave filters mentioned before. To describe the accuracy

of this measurement, the error of extracting the frequencies in the case of the syn~

thetic speech sound is less than 3.60/0.(11) However, we sometimes relied on visual

inspectation since it is not always easy to extract in the actual case which con~

tains nasalized vowels.

Formant frequencies obtained in the same data mentioned above at t (=tt,

ta, t1, tg), and we carried out multivariate analysis at these times. (Only !a,u,o!

Speaker
1.45 -factor

/Ql+R

1.47

Speaker-factor

Fig. 9. Geometric representation of multi-factor distributions in the case of the
formant frequencies (t=t1, t=t.).
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are used as objects for V 2 in the case of formant. VI & C are the same as before.)

The illustration of the ellipsoids, that represent variance of factors in the meaning

of Section 5 when t=t7 , t9~ is as Fig. 9.

Meanwhile, Table 4 gives the discrimination scores obtained by formant in the

meaning of Section 4. By comparing Fig. 9 with Fig. 4 and Fig. 5, it is possible

to explain the reason that the discrimination score for each factor in the case of

using formants becomes worse than in the case of using spectra.

Generally, it can be said that formant is rather a "vocalic factor." The

informations on any factor other than vowel-factor are being decreased as com­

pared with the case of spectrum distribution.

Table 4. Discrimination scores in each factor (%) ; by formant
frequencies.

Factor
I

No. of

I
t1

I
ts I

t 7
i

t9categories

A : speaker
I

5
I

43.1 I 45.3
I

56.0
I

46.2

B: VI I
5

I
96.0 I

84.0
I

30.7 I 24.0

c: c
I

3
I

37.3 I 49.3
I

64.4
I

49.3

D: V2 I
3

I 37.3 I 39.6
I

77.3
I

99.6

9 REGRESSION ESTIMATE BY USING FINAL

VOWELS AND ANALYSIS OF VARIANCE

In the analysis up to the section above, the spectrum sections at different

time points (t=t1-t9) have been treated as independent sections of each other.

Here, one aspect of the correlation between the spectrum sections at various time

points in VCV words is examined.

Suppose the equations of multivariate linear regression at each time t in order

to analyze similarly to Section 3 after eliminating the influence of the final vowel

from each spectrum section.

Let Xa(t9 ) (a stationary part of the final vowel) represent a known vector,

and Xa(t) observation vector;

presume

Xa(t) (l xp) =v(t) +Xa(t9) ·B(t) +Sa(t) (t=tu ••• , t8) (23)

Sa (t)--....N(O, A), B(t): pxp matrix; A=A(t);

and estimate vet) and B(t), where Xa IS one of Xljkl and a=l, ... , n. Onlyfa,u,of

are used as V 2 in this section. (VI' C are the same as in Section 3). Hence,

n=a' b·c·d=5 X 5 X 3 X 3=225. Supposing X'(p X n) = (Xt'(t) , ... , xn'(t)), Z'(p+l

xn)=(zt', z/, ... , zn'), and za(l xp+l)=(l, Xa(t9 )), vet) and B(t), maximum

likelihood estimates of vet) and B(t), respectively, are obtained from Eq. (23).

[~~g]= (Z'Z)'_I (Z'X). (24)
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By using these v(t) and .8(t), estimate Xa(t) from Xa(t g) in each word, one of the

same VCV words used in Eq. (23), and let Xa(t) be the estimate of Xa(t).

The results of the multivariate analysis of variance for the difference .fa(t);

~a(t) =Xa(t) -Xa(t) =Xa(t) -vet) -Xa(tg) ·.8(t)

(similarly to Section 3) is drawn as Fig. 10. (Dotted lines of the same figure indi­

cate the analysis for Xa(t) itself.)

As a result, V 2 and the speaker-effect decreased:

Therefore,

(1) the effect of C became the largest in the region between C and V 2 among

all effects:

(2) the relative value of effect VI to other effects increased at part V 1 •

This reveals that intensive correlation is seen between V 2 and speaker-effect.

(The correlation (canonical correlation) between vectors x and y has close

relations with the regression theory between x and y.)

c
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Fig. 10. Comparison between the analysis of variance of ~a and that of Xa. ~a is the
difference between Xa and its regression estimate by Xa(t g).

1

10 CONCLUSION

Considering the spectrum components as the components of multi-dimensional

vector, we performed multivariate analysis of variance in sections at various time
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point of the VI CV2 utterance with four factors-VI, C, V 2 and speaker; and com­

pared the amounts of the effects of each factor within themselves. Then we in­

spected the relation of the variance ellipsoids of each factor along their principal

axes; signified that notion of direction as well as amount is necessary for explan­

ing the effects· of each factor; and compared these analyses with the principal­

component analysis. Another thing we investigated by the method of regression

estimate was the relation between final vowels and each section of words. Fur­

thermore, we performed similar analysis on the basis of three-dimensional vectors

which consist of the formant frequencies extracted from the same materials as

above, and compared these with the case of spectra. The results concerning

speech sounds are as follows:

(I) Speaker-effect. is considerably large, while consonant-effect is not so

large. However, the directions of three distributions of these two effects and

vowel-effect meet at nearly right angles with each other:

(2) Intensive correlation is seen between vowel and speaker-factor:

(3) In the case of formant frequency, the informations on any factor other

than vowel-factor are being decreased as compared with the case of spectrum

distribution.
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ApPNDIX A

The Asymptotic Distribution of the Likelihood Ratio Test Criterion

in Multivariate Analysis of Variance for Four-Factor Design withSingle
Observation(·)(6)(6)

49

Let us consider the asymptotic' distribution of the likelihood ratio test criterion

indicated by Eq. (7). Arrange Xljkl (the number of which is n=a·b·c·d) of Eq.

(2) in a certain order, and assume a-th vector to be Xa (a= 1, ... , n), and X'(p X

n)=(x/, ... ,xn'). Then let F'(axn)=[f1a], G'(bxn)=[gja], H'(cxn)=[hka], and

M'(dxn)=[mla], where,

{
I, if Xa e{xljkd j=I, ... , b; k=I, ... , c; 1=1, ... , d}

f1a= 0 h ., ot erWlse,

and gja, hka, mla are similarly defined.

Meanwhile, if we define that In'(1 X n) = (I, ... , 1), B/(p X a) = (ctl ', ••• , ,aa'), B2'(p X

b)=(I1/, ... ,l1b')' Ba'(pxc)=(r/, ... , re') and B;(pxd)=(o/, ... , od'),it is possible

to alter Eq. (2) to

€ (X) = In,u + FBI + GB2 +HBa+ MB. = (In FGHM) (,u'B1'B,'Ba'B.')' == ZB

where € denotes "expected value"; Z= (In FGHM) the design matrix of the ex­

periment; B unknown parameter matrix. From Eq. (4), the density function

of X is

(27t) - ~n IA I-~ exp{-i-tr A-I (X - ZB) , (X -'- ZB) },

where tr indicates the trace of matrix. From this density, we will find :8 and A­
the maximum likelihood estimates of B and A, respectively. B satisfies

Z'ZB=Z'X, (A.l)

but since Z'Z has not its inverse matrix, we obtain :8 by comparing the both sides

of (A.I) under the condition of Eq. (3), that is, In'B1=O, ... , In'B.=O.

fJ.=x .... , B/= (ci/, ... , cia) = (X1 •• .'-X••••', ••• ,Xa •••',-X ••••'), ••• , :8.'. (A.2)

Therefore, the maximum likelihood estimate of A is

nA= (X-ZB)'(X~ZB) = (X-In,u-FB1-GB2 -HBa-MB.)'

. (X-In,u-FB1-GB2 -HBa-MB.)
abc d

=2::; 2::; 2::; 2::; (Xljkl-Xi ..• -X.j .. -X..k.-X ••• 1+3x....)'
1=1 J=1 k=1 1=1

. (Xljkl-Xl ... -X .j .. -X "k. -X ••• I+3x .•...) (A.3)

which coincides with the residual R itself of Eq. (5).

Subsequently, consider the hypothesis that there is no effect of factor A

H A : a l = ... =aa=O, that is, B1=O (A.4)

Let /1, :82, :8a, :8., and A be the maximum likelihood estimates of ,u, B2, Ba, B., and

A under the hypothesis H A , then,
.. - I B"" , - ( " ") B"" ,p. - X ....:, 2 - x. I •• - X •••• , ••• , x. b •• - X • • • • , •••• , • ,
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abc d

=1:; 1:; 1:; 1:; (Xijkl- X.j:.-X .. k.- X.•. l+2x ....)'(Xijkl- X.j ..
1-1 j-l k-l 1-1

a
-X"k' -X".l+2x .... ) = bcd1:; (Xi"'-X ••••)' (Xi"'-X ••••)

1-1

abc d

+ 1:; 1:; 1:; 1:; (Xijkl-Xi ... -X.j ..-X. 'k'-X ... 1+3x .. ..)'
1=1 j=1 k=l 1=1

• (XOU-XI••• -X.j .. -X •• k.-X ••• l+3x ....) =Ql+R (A.5)

Thus, the likelihood ratio criterion for the hypothesis H A is

InAI IRI
w InAI IQl+ R I. (A.6)

This distribution of w under the hypothesis (AA) is obtained from Cochran's

theorem.

Let Y=X-ZB=X-Inp-FBI-GB2-HBa-MB4, and break down Y'Y as follows:

Y'Y=Y'( l~n')y+ Y' (~~~_ l~n')y+ Y' (~~ _ ln~n' )Y+ Y'

. (HH' _ Inln')Y + Y' (MM' _ lnln')y + Y' (1 _ FF'
abd n abc n n bcd

_ GG' _ HH' _MM' 3 Inln')Y
acd abd abc + n

==Y'WoY+Y'W1Y+Y'W2Y+Y'WaY+Y'W.Y+Y'WllY

== Vo+ VI + V2+ Va + V. + Vll.
(In: n-dimensional unit matrix.)

Where n X n matrices-Wo,... , Wll-are all idempotent matrices, for example, as

W 2_ ( FF' _ Inln')2 _ FF' lnln'_w
1 - bcd n - bcd - n - l'

These are easily verified if we pay attention to following relations.

F'F=bcd la, In'F=bcd la', Fla=ln, F'G=cd lalb'.

Therefore, taking the trace of matrices in order to obtain the ranks of each matrix,
I n a 2 n n

tr(Wo) =1, tr(W1) =-bd 1:; 1:; fia --=-bd -I=a-l,c (1\ =1 1=1 n c

tr(W2) = b-I, tr(Wa) =c-I, tr(W4} =d-I,

tr(Wll) =n-a-b-c-d+3 (A.7)

are obtained. And since n=(1)+(a-I)+(b-I)+(c-I)+(d-I)+(n-a-b-c

-d+3), V o, ••• , V ll are independent of each other and can be expressed by Co­

chran's theorem as follows:

"".Vi = 1:; u/U j , Uj (l xp) .......N (0, A), (i=O, I, ... ,5).
j=1

Where, 't'i is the rank of Wi shown in Eq. (A.7), and Uj are assumed to be dis­

tributed independently of each other. (When 't'i>P, Vi is distributed according

to Wishart distribution W(A, p, 't'i)') Now, keeping attention to la'B1 =lb'B2

=lc'Bs=ld'B.=O, substitute X-ZB for Y in VI' and express VI as the function of

Xijkl' Then
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a
VI = bcdL; (Xi . ..-X ••• •-ai)' (Xi .. .-X • ••• -ai).

i-1

Particularly when H A : Bl=O is true, Vl=Ql.

On the other hand,
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abc d
V5=L; L; L; L; (Xijkl-Xi ... -X.j .. -X .. k.-X ... l+3x ....)'

i-I j=1 k-l 1=1

. (Xijkl-Xi ... -X.j .. -X .. k.-X ... l+3x •...) =R (A.8)
•

V5=R holds no matter what Bl""'B4 may be, and R"",W(A,p,'t"5) when 't"li~n-a

~b-c-d+3>p.

Therefore, the moment of w of Eq. (A.6) is accurately obtained so that we

can learn its asymptotic distribution by Box.

Namely, v=-{n-l2-(p+ll+I)j2}logw is distributed as a Chi-squared vari­

ate with pll degrees of freedom as the sample size n tends to infinity. Where.ll=

a-I, l2=b+c+d-2, n-a-b-c-d+3>p.

ApPENDIX B

The Intersection Produced by the Ellipsoid and the Straight Line or

the Plane

The point of intersection, produced by the ellipsoid xA-lX' = I and the straight

line kC through the origin (k represents arbitrary real number), is expressed by

±Cj -J CA-lC'. (It is obtained by substituting kC for X in xA-1 X' = 1.)

As the distance between the origin and the point of intersection IS

/ CC'
VCA-IC' (B.l)

this expression coincides with -JT when C is the eigenvector of AC'=ilC'. (C'

=ilA-1C'; CC'=ilCA-1C; il=CC'jCA-1C'.)

The intersection, drawn by the ellipsoid and the plane determined by Cl
and C 2, will be obtained by connecting the points of intersections which are pro­

duced by the ellipsoid and arbitrary straight lines on the plane which pass through

the origin.

Since an arbitrary straight line is expressed by klCl+k2C 2 upon choosing kl
and k2 arbitrarily, the distance between the point of intersection (made by the

straight line) and the origin is obtained by substituting klCl+k2C 2 for C in Eq.

(B. I).
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ApPENDIX C

Variance of Factor A

Let €A(Xijkl) be the expected value of Xijkl (=,a+ai +(1J+rk+ol +Sijkl) under

the hypothesis that H A: a 1 = ..• =eta =Ois true. Then, fromEq.(A.5) in App~n­

dix 'A, the maximum likelihood estimate of €A(Xijkl) is

€A(Xijkl) =.u+~j+rk+al=X",,+ (x.j ••-x ••••) + (X •• k.-X ••••)

+ (X ... l-X ••••) (C.l)

Since ,a-.u~O, (1j-~{""O, rk-rk~O and Ol-al~O,

the difference between sample vector Xijkl and €A (Xijkl) IS approximately equal

toal+Sijkl as follows:

Xijkl-€A (Xijkl) = (,a- P) +ai + ({1j - ~j) + (rk - rk)

+ (O.1- al) +sijkl~ai+Sijkl (C.2)

Therefore, the above difference may be considered to be the deviation only due

to factor A (Ah .•• , Aa).

(Of course, if hypothesis H Ais actually true (it means al=O), Xijki-€A (Xijkl)~Sijkl

and this difference is the residual itself.) Hence the matrix of sums of squares

and cross products on the basis of the deviation (C.2)
abe d A A

L: L: L: L: (Xijkl-€A(Xijkl))' (Xijkl-€A(Xijkl))
i~l j~l k~l 1-1

abe d
=L: L: L: L: (Xljkl-X .... - (X.j •• -X ••••) - (X •• k.- X ....)

i-I j-1 k-1 I-I

- (X ••• I-X ••••))' (Xijkl-X .... - (X.j •• -X ••••) - (X .. k.-X ••••)

a
- (X •• ot-X ••••)) =bcdL: (Xl ••• -X ••••)'(Xi ••• -X ••••)

i-I

abe d
+ L: L: L: L: (Xijkl- Xl ... - X.j .. -X .. k.-X .. ol+3x ....)

i"'l j~1 k=l 1=1

. (Xijkl-Xi ... -X .. j,-X .. k,-X".1+3x ...•) =Ql+R (C.3)

can be considered to represent the variance of factor A.

Moreover, let A be the maximum likelihood estimate of the covariance matrix

A under the hypothesis H A: a1= ... =aa. Then, from Eq. (A.5) in Appendix A

nA=Ql+R,
whose expression is coincident with Eq. (C.3).
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ApPENDIX D

The Vector Space Normalized by the Residual R
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Suppose the following nonsingular transformation (not al ways orthogonal

transformation) .
_1-

x-x=x(R/n) 2 (D.!)

Where R is the residual given by Eq. (5), n is the sample size (n=abcd), and x

and x ~re vectors in the original and new spaces, respectively.
I 1 .a

Then, -Ql=--~ (Xi ••• -X ••••)'(Xi ••• -X ••••) (Ql given by Eq. (5)) IS trans-
n n 1=1

formed to

1 Q- 1 ~ .(_ _ )'(_ _)
- 1=-LJ Xi ••• - X •••• Xi •• ·- X ••••
n nl=1

=~t (R/n) -t (x i ••• - x ....) , (x i ••• - x ....) (R/n)-t
n 1=1

J{a . } 1=R 2 ~ (Xi ••• -X ••••)'(Xi ••• - X ••••) R-2
1=1

=R-tQIR-!

and

1 R{ .) 1 R R-1RR-1 In pxp -n = 2 2= p.

Similarly,

~(Ql+R)-~(Ql+R)=R-! (Ql+R)R-!,n n

and

[
1 - - J-1

1 1 1X n'-(Ql+R) x'=x [R-"2 (Ql+R) R-"2r 1x' =x (R/n) "2

. [}(Ql +R) J-1

(R/n)! x' =x(~ (Ql +R) ) -1 x'.

(D.2)

(D.3)

(DA)

(D.5)
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ApPENDIX E

The Kolmogorov-Smirnov One-Sample Test(12)

The Kolmogorov-Smirnov one-sample test is a test of goodness of fit. That

is, it is concerned with the degree of agreement between the distribution of a set

of sample values (observed scores) and some specified theoretical distribution.

It determines whether the scores in the sample can reasonably be thought to have

come from a population having the theoretical distribution.

Briefly, the test involves specifying the cumulative frequency distribution

which would occur under the theoretical distribution and comparing that with

the observed cumulative frequency distribution. The theoretical distribution

represents what would be expected under H o.

Let Fo(X) =a completely specified cumulative frequency distribution func­

tion, the theoretical cumulative distribution under H o. That is, for any value

of X, the value of Fo(X) is the proportion of cases expected to have scores equal

to or less than X.

And let SN(X) =the observed cumulative frequency distribution of a random

sample of N observations. Where X is any possible score, SN(X) =k/N, where

k=the number of observations equal to or less than X.

Now under the null hypothesis that the sample has been drawn from the

specified theoretical distribution, it is expected that for every value of X, SN(X)

should be fairly close to Fo(X). That is, under H owe would expect the differences

between SN(X) and Fo(X) to be small and within the limits of random errors.

The Kolmogorov-Smirnov test focuses on the largest of the deviations. The

largest value of Fo(X) -SN(X) is called the maximum deviation, D;

D =maximum IF0 (X) - SN (X) I (E.l)

The sampling distribution of D under H o is known. The Table E.l gives Da, the

critical value of D when N is over 35. If N is over 35, one determines Da, the

critical values of D by the divisions indicated in Table E.I. For example, sup­

pose a researcher uses N =43 cases and sets a=.05. Table (E.l) shows that any

D equal to or greater than Da= ~3& will be significant. That is, any D, as de-

fined by formula (E. I), which is equal to or greater than D a = 1.36 =.207 will
v' 43

be significant at the .05 level (two-tailed test).

Table E.!. Table of Da (critical value of D) in the Kolmogorov­
Smirnov one-sample test.

--

Sample size
a. Level of signigicance for D=max IFo(X) -SN(X) I

(N) 0.20
I

0.15
I

0.10
I

0.05
I

0.01

Over 35

I
1.07

I
1.14

I
1.22

I
1.36

I
1.63

yN yN yN -17N- yN-


