<table>
<thead>
<tr>
<th>タイトル</th>
<th>パルプ及び製紙に関する研究 第5報 叩解度と紙力の関係に就て(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>著者</td>
<td>木村 良次 北野 昭俊 田村 辰也 舘 勇</td>
</tr>
<tr>
<td>担当機関</td>
<td>木材研究 京都大学木材研究所報告</td>
</tr>
<tr>
<td>発行日</td>
<td>1954-11</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/52775</td>
</tr>
<tr>
<td>テキストバージョン</td>
<td>publisher</td>
</tr>
<tr>
<td>部門</td>
<td>Departmental Bulletin Paper</td>
</tr>
</tbody>
</table>

京都大学
バルプ及び製紙に関する研究
（第5報）叩解度と紙力の関係に就て (2)
木村良次・北野昭俊・田村辰也・幡勇
(製紙研究所)

Yositsugu KIMURA, Akitoshi KITANO, Tatsuya TAMURA, and Isamu TACHI: Studies on Pulp and Paper Making (V) Relation between Beating Degree and Paper Strength (2)

緒 言

前報に於て、叩解度と紙力との関係を、赤松セミケミカルバルブに就て追求した結果、共の関係曲線の形が従来の一般形と偏倚する結果を得た事を報告した。本報に於ては、共の結果を市販のS. P. 及びK.P. に就て追試した結果を報告し、併せて、叩解状態の性質を察知する方法として、叩解バルブの沈降速度を測定する方法が、従来のSRを測定する方法よりも成如に於て優れている事を認めためて其の結果を報告する。

実験の部

実験 I. S.P. に就ての叩解度－紙力関係。
(1) 試料バルブの性質。

Table 1 Chemical properties and chemical components of pulp. (bone dry %)

<table>
<thead>
<tr>
<th>No. of pulp</th>
<th>S.P.-1</th>
<th>S.P.-2</th>
<th>S.P.-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cellulose</td>
<td>93.25</td>
<td>93.38</td>
<td>94.65</td>
</tr>
<tr>
<td>α-Cellulose</td>
<td>83.29</td>
<td>80.42</td>
<td>76.85</td>
</tr>
<tr>
<td>β-Cellulose</td>
<td>6.71</td>
<td>9.15</td>
<td>8.24</td>
</tr>
<tr>
<td>γ-Cellulose</td>
<td>3.25</td>
<td>3.81</td>
<td>9.16</td>
</tr>
<tr>
<td>alcohol-benzen extract</td>
<td>0.89</td>
<td>0.70</td>
<td>0.51</td>
</tr>
<tr>
<td>Lignin</td>
<td>0.21</td>
<td>0.31</td>
<td>0.41</td>
</tr>
<tr>
<td>Pentosan</td>
<td>5.65</td>
<td>5.26</td>
<td>4.94</td>
</tr>
<tr>
<td>Co-number</td>
<td>1.74</td>
<td>1.80</td>
<td>2.10</td>
</tr>
<tr>
<td>Relative viscosity</td>
<td>4.68</td>
<td>4.59</td>
<td>4.16</td>
</tr>
<tr>
<td>D.P.</td>
<td>1472</td>
<td>1436</td>
<td>1264</td>
</tr>
<tr>
<td>Reference</td>
<td>Non-treatment.</td>
<td>170℃ 1 hr. Cooking with water</td>
<td>170℃ 6hrs Cooking with water</td>
</tr>
</tbody>
</table>

—165—
市販のS.P. に共通のS.P. を圧縮中に於て、水煮して低聚糖の一部を崩壊させして得た三一種のバルブと未処理バルブに就て、叩解度・紙力関係を求めた。

用いたバルブの符号並に化学成分組成並に化学的性質は第1表に表示した。

以上三種のバルブに就て、前報と同様の条件下に叩解試験を行った。

(2) 実験結果

実験結果は第2表に表示した。前記結果を図示すると第1図以下第3図の如くである。

Table 2. Relation between "SR and Paper-Strength. (On S.P.)"

<table>
<thead>
<tr>
<th>S.P.</th>
<th>SR</th>
<th>Beating Times (min.)</th>
<th>Breaking Length (m.)</th>
<th>Burst Factor (kg/cm²)</th>
<th>Tear Factor (gr.)</th>
<th>Thickness mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.P.-1</td>
<td>8</td>
<td>0</td>
<td>846</td>
<td>0.6</td>
<td>22.8</td>
<td>13.8</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>10</td>
<td>5501</td>
<td>4.8</td>
<td>50.3</td>
<td>12.0</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>15</td>
<td>5603</td>
<td>5.5</td>
<td>54.3</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>20</td>
<td>6183</td>
<td>5.3</td>
<td>60.2</td>
<td>9.3</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>30</td>
<td>5435</td>
<td>5.2</td>
<td>72.6</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td>52</td>
<td>40</td>
<td>5969</td>
<td>5.5</td>
<td>57.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>45</td>
<td>6097</td>
<td>5.7</td>
<td>70.9</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>60</td>
<td>6180</td>
<td>5.9</td>
<td>70.2</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>75</td>
<td>7263</td>
<td>5.2</td>
<td>58.4</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td>78</td>
<td>80</td>
<td>7114</td>
<td>6.0</td>
<td>49.6</td>
<td>7.6</td>
</tr>
<tr>
<td></td>
<td>79</td>
<td>90</td>
<td>7018</td>
<td>6.3</td>
<td>57.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>100</td>
<td>7056</td>
<td>6.7</td>
<td>57.0</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>87</td>
<td>180</td>
<td>7325</td>
<td>6.8</td>
<td>57.0</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>300</td>
<td>8366</td>
<td>6.6</td>
<td>57.1</td>
<td>4.0</td>
</tr>
<tr>
<td>S.P.-2</td>
<td>22</td>
<td>5</td>
<td>4147</td>
<td>2.7</td>
<td>47.4</td>
<td>13.8</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>10</td>
<td>4776</td>
<td>3.9</td>
<td>48.5</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>20</td>
<td>4819</td>
<td>4.2</td>
<td>48.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>52</td>
<td>25</td>
<td>4678</td>
<td>4.2</td>
<td>45.6</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td>54</td>
<td>30</td>
<td>4861</td>
<td>3.9</td>
<td>41.5</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>40</td>
<td>5344</td>
<td>4.0</td>
<td>33.2</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>84</td>
<td>90</td>
<td>6172</td>
<td>5.5</td>
<td>29.9</td>
<td>4.8</td>
</tr>
<tr>
<td>S.P.-3</td>
<td>10</td>
<td>0</td>
<td>1113</td>
<td>0.3</td>
<td>4.8</td>
<td>13.5</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>5</td>
<td>2481</td>
<td>0.4</td>
<td>2.9</td>
<td>12.0</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>5</td>
<td>2439</td>
<td>0.4</td>
<td>2.0</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>5</td>
<td>2494</td>
<td>0.4</td>
<td>2.0</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>10</td>
<td>2829</td>
<td>0.8</td>
<td>2.7</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>12</td>
<td>2872</td>
<td>0.8</td>
<td>2.4</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td>53</td>
<td>20</td>
<td>2850</td>
<td>0.5</td>
<td>1.3</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>66</td>
<td>20</td>
<td>1848</td>
<td>0.2</td>
<td>0.5</td>
<td>5.4</td>
</tr>
</tbody>
</table>

第1図の説明

三種のS.P. に就て、叩解度（SR）に対する紙張力（断裂長で表わす）の関係図を示した。

S.P.-1, S.P.-2 の三種のバールフは、前報で認めたと同様の、二段上昇線を明らかに示している。
木村・北野・田村：パルプ及び製紙に関する研究

事が判る。

借一種のパルプS.Pー3（纖維素の崩壊度の大なるもの）は二段上昇曲線を示さず，従来の一般形と同形の関係曲線を示した。

Fig.1. Breaking length−SR Curve (for S.P.)

Fig.2. Bursting strength−SR Curve (for S.P.)

第2図の説明

叩解度（S.R）に対する破壊強度の関係曲線である。第1図断裂表の場合と略同様の関係にある事が判る。

第3図の説明

叩解度（S.R）に対する引裂強度の関係曲線である。前報の場合とやや趣が異っている。即ち叩解の初期には上昇曲線となっている点が，前報のセミケミカルパルプの場合と異なっているが，前報の場合は叩解開始前に既に或程度の破綻処理が施されているためであると考えられる。

第3図の曲線から，引裂強度も，其の強度因子として纖維形状に依る因子（長さ，巾等）の他に纖維間の絡合性が一つの因子となっている事が推論出来る。

即ち，纖維間の接着力が関係している事が判る。

実験 II. K.P. に就ての叩解度一紙力関係。

市販のK.P.に就て，同様の関係を追求した実験である。尚，遊離状叩解（Free-Beating）と粘状叩解（Wet-Beating）との差異を見ようとして，ロール歯とペットプレートとの間隔を0m.m.の場合と3m.m.の場合の二つに続いて実験した。
(1) 実験結果
実験結果は第3表に示した。同図結果を図示すると第4図以下第6図の如くである。

<table>
<thead>
<tr>
<th>'SR</th>
<th>Beating times (min.)</th>
<th>Breathing Length (m.)</th>
<th>Burst Factor (kg/cm²)</th>
<th>Tear Factor (g.)</th>
<th>Thickness (m.m. (100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K.P.</td>
<td>34</td>
<td>25</td>
<td>8301</td>
<td>7.7</td>
<td>83.9</td>
</tr>
<tr>
<td></td>
<td>53</td>
<td>50</td>
<td>9212</td>
<td>8.9</td>
<td>89.4</td>
</tr>
<tr>
<td></td>
<td>57</td>
<td>55</td>
<td>9453</td>
<td>9.2</td>
<td>89.2</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>65</td>
<td>9058</td>
<td>9.8</td>
<td>84.1</td>
</tr>
<tr>
<td>0m.m.</td>
<td>70</td>
<td>80</td>
<td>9139</td>
<td>8.9</td>
<td>80.9</td>
</tr>
<tr>
<td>interval</td>
<td>84</td>
<td>100</td>
<td>8899</td>
<td>8.8</td>
<td>76.4</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>110</td>
<td>8625</td>
<td>8.4</td>
<td>75.0</td>
</tr>
<tr>
<td>plates</td>
<td>89</td>
<td>180</td>
<td>8932</td>
<td>9.7</td>
<td>72.9</td>
</tr>
<tr>
<td></td>
<td>93</td>
<td>360</td>
<td>9567</td>
<td>11.0</td>
<td>66.3</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>1500</td>
<td>12291</td>
<td>12.3</td>
<td>65.6</td>
</tr>
<tr>
<td>K.P.</td>
<td>10</td>
<td>1622</td>
<td>1.3</td>
<td>81.0</td>
<td>27.5</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>2471</td>
<td>2.0</td>
<td>116.2</td>
<td>20.9</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6970</td>
<td>6.9</td>
<td>136.3</td>
<td>12.0</td>
</tr>
<tr>
<td>3m.m.</td>
<td>15</td>
<td>10567</td>
<td>10.1</td>
<td>137.7</td>
<td>10.3</td>
</tr>
<tr>
<td>interval</td>
<td>75</td>
<td>10443</td>
<td>10.2</td>
<td>103.1</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>9524</td>
<td>8.9</td>
<td>58.8</td>
<td>9.0</td>
</tr>
<tr>
<td>plates</td>
<td>92</td>
<td>8193</td>
<td>7.4</td>
<td>48.0</td>
<td>8.0</td>
</tr>
</tbody>
</table>

第4図の説明
K.P. に就て、叩解度（SR）に対する抗張力（曲げ長で示す）との関係を追求した結果である。
結果は、堅い叩解条件（0m.mの場合）と緩慢な叩解条件（3m.mの場合）の場合で異なる事が判った。
即ち前者の場合は二段上昇曲線を示すが、後者の場合は二段上昇曲線を示さず、従来の一般説を示した。

尚、前者の場合も、セミキルナルノルブや S.P. の場合と異なり、非常に高叩解度（即ち SR 85 内外）に達して後上昇曲線が見られた。叩解時間にして約 6 時間叩解の頃より上昇傾向が表われ、約 2.5 時間叩解後も上昇傾向を示した。同図では横軸に SR を採っている故、次の関係は明確ではないが、SR は約 90 度に達すると叩解曲線を示しても、甚だ値は変化せずに一定となるから、同図の如く SR 90 から急クーブで上昇する如く見えるのである。
木村・北野・田村：パルプ及び製紙に関する研究

尚、後者の場合は二段上昇曲線が見られなかったが、叩解を単純時間続けるならば第二の上昇曲線が現われるのではないかと思われる。

以上の現象の説明として、次の如く考える事が出来ると思う。

叩解を単純すると同時に繊維の切断、短小化が起きるが、其の後、パルプの性質、叩解の方法等に依って異なる、第一上昇曲線の後に、多少程度中が見られるのは、上記の繊維又はフィブリルの切断、短小化等に由来する強度低下の傾向が現れたものと解釈する事が出来る。

斯の様な強度低下の原因は叩解がある強度進行すると停止、或は緩慢となる。従つて強度上昇の傾向が再び現出して第二の上昇曲線となると考える事が出来る。

従つてK.P.の如き叩解に際する、繊維の切断抵抗の比較的大なるパルプでは、強度低下の傾向は、比較的表わされ難く、又表われとしても、長時間叩解の後に現われると考えられる。

其の結果が、S.P.の場合とK.P.の場合の差異となって現われていると考えられる。

Fig.5. Bursting strength~SR Curve (for K.P.)

Fig.6. Tearing strength~SR Curve (for K.P.)

第5図の説明
叩解度（"SR"）に対する破壊強度の関係曲線である。
其の形は第四図の場合と全く同様の形を示している事が判る。

第6図の説明
叩解度（"SR"）に対する引裂強度の関係曲線である。実験Iの場合と大体同様の傾向を示している事が判る。

実験I 沈降容積法に依る叩解度と"SR"法との比較試験。
叩解状態を定量的に測定する方法として、一般に底水性を計る方法、即ち"SR"又はこれに類する方法が採用されているが、"SR"度の測定だけでは叩解状態の特性の一面を知る得るもので、叩解状態を更に詳細に知り得る、簡易な方法が要望されているが、適当な方法は容易に見出し得ない。叩解に際し、"SR"が等しくとも、フィブリレーションの度合が必ずしも同一でない場合がある。斯る相違を定量的に知る方法として、沈降容積を測定する事が比較的実用的の方法であると考えられるので、筆者等は手近なI立のメスリング器を用いて簡単に沈降容積を測定し、"SR"との
関係を比較検討しようとしてこの実験を行った。

従来, 沈降容積, (沈降速度）測定法としては KLemm の方法, Schwalbe の方法の等がある。

筆者等が行った方法は, 1 立メスリングダ中に一定量のパルプを挿入し, 一定時間後に沈降した容積を目盛で読むという簡単な方法である。

(1) 実験操作の概要

叩解したパルプを状態で絶乾 1g. を取り 1L のメスリングダ中に無煮し, 水を加えて 1L. とし, 三回上下に傾斜して, 均一にした後, 静置し, 三分後, 四分後, 五分後のパルプの水中に於ける沈降容積を c.c. 目盛にて読んだ。

(2) 実験結果

市販の SP 並に KP に就いて, 試験ビーター中で叩解し, 一定時間後の SR 度と沈降容積を測定した。結果は第 4 表の如くである。著の結果を図示すると第 7 図の如くである。

<table>
<thead>
<tr>
<th>Beating times (hrs)</th>
<th>3SR</th>
<th>Sedimentation Volume (c.c.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>13.9</td>
<td>11.0</td>
</tr>
<tr>
<td>0.5</td>
<td>16.4</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>19.1</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>24.0</td>
<td>27.1</td>
</tr>
<tr>
<td>2.0</td>
<td>34.7</td>
<td>38.0</td>
</tr>
<tr>
<td>2.5</td>
<td>40.3</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>45.4</td>
<td>49.5</td>
</tr>
<tr>
<td>4.0</td>
<td>60.0</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>70.4</td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td>62.2</td>
<td>73.4</td>
</tr>
<tr>
<td>7.0</td>
<td>65.1</td>
<td>74.9</td>
</tr>
<tr>
<td>8.0</td>
<td>70.9</td>
<td>75.9</td>
</tr>
<tr>
<td>9.0</td>
<td>69.1</td>
<td>79.6</td>
</tr>
<tr>
<td>11.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.0</td>
<td>72.5</td>
<td>83.9</td>
</tr>
<tr>
<td>22.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table: 4 Relation of SR or Sedimentation Volume to Beating times.
K.P. と S.P. の曲線が相引の状態であるが相遠点があり、共等の関係が、"SR 曲線よりも明瞭に表われると云う点である。

第7図に就て
S.P. 共に K.P. に就いて、四分後、五分後の沈降容積を叩解時間に就いてプロットした。又同時に "SR をも比較のために同図上にプロットした。

注目すべき点は、強度曲線と同様な二段上昇曲線が明瞭に表われる点である。
"SR 曲線では斯る二段上昇曲線が明瞭でない。今一つ注目すべき点は、

実験結果の考察

本実験は試験用ピーターを用いて行った関係上、フリービーチングの条件に近い状態であった。従って一般の場合に共の結果を押み進める事が妥当であるが、どうかは検討の余地がある。

又実験回数も比較的少く、試料の採取も程度間でなかった。従ってこの実験結果から一般論を導く事は妥当でないかも知れない。併しその、得られた結果の特異性は、必ずしも本実験のみにてはまる特異現象であるとは思われない。

即ち二段上昇曲線は、一般的には認められていが一般形と云われている従来の漸増曲線は共の他曲線も、内容的には二つの上昇曲線を内推していると考えられない事はなない。

Roberson and Masson(3) 或は Heinz Cortef(4) 等の叩解度はバルブの比表面積 (Specific surface) に比例し、強度 (抗張力) はバルブの比容積 (Specific Volume) に比例すると云われている。而して叩解度と抗張力との関係は或数式に依って表わし得る様な比較的簡単な関係にあると考えられている。併しこれは特種の場合であって、一般的にはより複雑な関係にあると考えられる。
のまねらず、本質的には二つの曲線（場合によればもっと多くの曲線）の交差として表わされる曲線であると考えられる。

本実験は偶然的に二つの曲線が明確に表わされた一例であったに過ぎないとも知れない。

然し、二つの著者論の重要な意味と内容を持っているか、共の原因は何であるかに就て、
少しく考察を進めて見よう。

紙の抗張力の構成因子は紙軸又はフィブリアルの切断強度と繊維間の接着力である。

著者に於て箇の内より弱い方が支配的に入っている。従って紙の種類、性質に依って共
の関係は変わる。

接着力の大であることも関らず、繊維又はフィブリアルの切断強度が夫々のものである後者が支配的
意味を持つに到る場合がある事は、M.STEINSCHNEIDER und G.GRänd の詳細なる実験結果より
見るも明らかである。

即ち同氏の実験に於って、断裂長（抗張力）の値は所調前方断裂長の値に合致する程度で Bonding
power が増大した部分では、繊維長はフィブリアル自身の切断強度が支配的意味を有するに到る事を示
している。

著者の一般に紙の強度は繊維間の接着力、即ち Bonding power に支配されていると
考えて良い。

然らば Bonding power とは何かと言うに、紙を構成する繊維又はフィブリアル間に働く、接着力
並に摩擦力であると考える事が出来る。

然るに抗張力は、所謂静的抗張力であり，且つ最大荷重を測定しているものであるから、繊維間
に働く荷重の摩擦力は無視し得ると考えられる。従って紙の抗張力に対して支配的なる意味を持つも
のは繊維間又はフィブリアル間の接着力であると考えられる。

接着力は、主として接着面上に働く Van der Waals 力と部分的に働くと考えられる水素結合であ
る。繊維又はフィブリアルの表面の化学的成分が、セロールスであるか，クレンツであるか，ヘミセ
ルーズであるか，或は樹脂様物質であるかに依って，異なる事は勿論であるが，同一物質，即ち
同一試料に就て考察する時は，共等の影響は無視し得る故，結局単位面積当たりの接着力は一定である
と考えられる故，強度は接着面積に比例すると考えられる。

著者が指摘上の接着面積は同一であっても，実際に上記の水素結合は Van der Waals 力の働く
点の合計としての面積の大小に依って接着力は異なって来る。

即ち後の考えを入れる此の接着面積は有効接着面積として前者と区別すべきである。

従って有効接着面積を決定する因子は，繊維の光表面積のみではない，繊維の持つ他の性質，即ち
可塑性，機械性その他の物理化学的，繊維学的性質も関係をする。

のまねらず，切断に際しての外力に対して同時に行く部分の大小が，又抗張力の量として表われる
強さに於て，既に繊維の長さ，フィブリアルの長さ等の形態の要素も共の一つである。

要の如く，紙の抗張力に影響を与える因子は多々存在すると考えられる。
以上の諸因子の影響が合成されたものとして両限力一叩解度曲線が出来上っていると考えるべきである。

従って、バルブの性質、叩解の条件等に依って上記曲線は種々の形を採るべきである。

併し乍ら本実験に於て認められた第一の上昇曲線は、繊維の柔軟化、膨潤、偏平化、並にフィブリル化等に原因する有効接触面積の增大に依する強度上昇であり、次に繊維の切断、フィブリルの切断、硫黄塩（硫酸塩等）の溶出等に依する強度減少の影響が現われ、更に次の段階では著の減少傾向が減じて、略一定値を取るに反し、強度増大傾向は除々ではあるが、叩解と共に増大して行くために第二の上昇部分を現出するものと解釈する事が出来る。

即ち叩解度—強度曲線は基本的には二つの部分より成り立っていると考えるべきである。尚してバルブの性質、叩解の条件の如何に依り、共の合成曲線は種々の形をとり得ると考えるべきである。

総括

(1) 前報の実験結果を確めるため、本報は市販のS.P.を用い同様の実験を行った。

共の結果より、二段上昇曲線は試料、叩解の条件如何に依り現著に変わらざる場合と、しかざる場合がある事が認められた。

併し乍ら、基本的に二つの部分より成立していると思われる事を再認した。

(2) 向以上の結果より、叩解に依るバルブの受ける主なる変化は種々考えられるが、(1)繊維の柔軟化、(2)粘性の增大、(3)膨潤、(4)分枝、(5)切断等を挙げる事が出来る。向これ等の因子の影響が合成されて叩解—強度曲線が成立するものである以上、バルブの性質、叩解の条件に依って、共の形は種々の変形を表すべきであるが、基本的には繊維、並にフィブリルの切断等の様なnegativeの影響のため叩解中の成時期に強度上昇の傾向が停止する部分が出来、共のため、二段上昇曲線を表すものと考えられる事を推論した。

(3) 叩解状態の特性を測定する方法として、沈降容積測定法が、“SR度測定よりも優れた点がある事を認めた。向此の方法に依ると二段上昇曲線が又明瞭に認められる事を報告した。

Résumé

Continued from the last report, we investigated the relations of between the strength of paper and the beating degree for the commercial sulphite and kraft pulps.

Also in this experiment, it was found that the curves of the strength showed the complex shapes possessed two increased sections, like the case of previous information. However, when the pulp was beated under the condition of wet beating and the strength of fiber itself was fallen artificially, the curves approached to the ordinary shapes.
We noticed, furthermore, that the measurement of a precipitation velocity is more superior in recognizing a character of a beating condition.

From these results, The figural, chemophysical and colloidal changes of fiber in beating related to the strength are concluded as follows = (1) softening, (2) flattening, (3) swelling, (4) fibrillation and (5) cutting. In these factors, (1), (2), (3) and (4) have the properties of increasing the effective adhesive area of fibers.

It believed that the tensile, bursting and tearing strengths of paper are constituted by the complicated reciprocal functions of these five factors, and also consequently, the strength curve versus the beating time or degree don’t show a monotonous shape.

参考文献

(1) C.G.Schwalbe and R.Cebear, ; Chem. Betriebskontrolle Zei lstoffu. Papier Ind., 3 Aufl., 328 (1931)
(2) C.G.Schwalbe and G.A.Feldtmann, ; Wochenbl.f. Papierfabrikation., 56, 251 (1925)
(3) A.A.Robertson and S.G.Mason, ; Pulp Paper Mag. Canada, 50 103 (1949)
(4) Heinz Corte, ; Das Papier 6, 1 (1952) Heft2/1
(5) M.S teinschneider und E.Grun, ; Papierfabrikant, 36, 1-21 (1938)