リグニンの利用に関する研究(第2報)*

リグニン・フェノール・ホルムアルデヒド反応物の 赤外線吸収スペクトル

南 正 院**· 満 久 崇 麿**

Chonwon NAM** and Takamaro MAKU** : Studies on the Utilization of Lignin (2)*

Infrared Spectra of Resin made from Lignin, Phenol and Formaldehyde

緒言

前報¹ では,紙,パルプ工業において大量に副生するチオリグニンの利用法の一つとして, その樹脂化を行ない,とくに,フェノールホルムアルデヒド樹脂の硬化が,チオリグニンの共 存のもとでも充分に進行し,リグニンのかなりの部分が,フセトン,メタノールなどに不溶化 することを知つた。

本報では、同じチオリグニンを用いて調製した樹脂中において、リグニンが、どのような形 で存在あるいは結合しているのか、フェノールホルムアルデヒド樹脂の硬化にどのような影響 を与えるのかを赤外線吸収スペクトルにより検討した。従来、フェノール、リグニン、ホルム アルデヒドの3成分のうち、2成分間の反応については、いろいろと検討されており^{2,3,4)}、あ る程度わかつてきている。しかし、これら3成分が共存しているときには、反応がどのような 形で進行するのか、いまだ充分に解明されていない。

たとえば、フェノールホルムアルデヒド反応物とリグニンとの反応、リグニン・ホルムアル デヒド反応物とフェノールとの反応、フェノール・リグニン反応物とホルムアルデヒドとの反 応⁵⁾、あるいは、フェノールホルムアルデヒド反応物とリグニン・ホルムアルデヒド反応物と の反応などに関する知見はきわめて少ない。これは、リグニンそのものが複雑な構造をもつた め、解決に近づきつつあるとはいえ、いまだ完全には明らかでないことと、 リグニン反応物 と、反応していないものとの分離が困難であることにも起因すると考えられる。とはいえ、リ グニンの成形材料や接着剤としての利用には、この方面の研究の充実が不可欠である。本報で は、その過渡的な段階として、リグニンがフェノールホルムアデヒデ樹脂の硬化に与える影響 を中心に検討した。

なお,分子量測定にあたつて,蒸気圧式測定器の操作法を御教示いただいた当研究所北尾弘 一郎教授,佐藤惺助教授に感謝の意を表する。

^{*} 日本木材学会第17回大会(昭和42年4月)にて発表

^{**} 木質材料部門, Division of Composite Wood

実 験

材 料

材料として、フェノール、ホルムアルデヒド(37%水溶液)は市販特級品を、リグニンはア カマツ材を原料としたトーパリンP(東洋パルプ株式会社商品,硫酸塩法パルプ製造廃液より 回収したもの)の寄贈をうけ、後に記すようにして精製したものを用いた。

装置

分子量測定は Hewlett Packard 社製 302型 蒸気圧装置を用い, テトラヒドロフランを溶媒 に, 4 点測定法で 零外挿値を求めて計算した。 メトキシル基は試料 30mg を用いピリジン法 で測定し,元素分析は京都大学化学研究所に依頼した。赤外線吸収スペクトル (IR スペクトル) の測定は日本分光株式会社製402G型 (回折格子型)を用い KBr 錠剤 (KBr 500mg/試料 3mg) で行なつた。

試料の調製

1. チオリグニン

トーパリンPを前報"と同じく,5%硫酸中で攪拌,沪別した後,純水で洗浄して,収量が 一定となるまでこれをくり返した。このものは無定形,褐色の粉末で,ピリジンに完全に溶解 した。このものの元素分析値は,

С:66.20% Н:5.85% で

OCH₃: 13.4%, 分子量 1,360±60

である。このチオリグニンについて次のような処理を行なつた。

1・1 アルカリ溶液の熱処理

チオリグニンを2%水酸化ナトリウム水溶液で15%濃度となるように調製し、この溶液2ml を 20ml 容ビーカーにとり、140℃ 恒温器中に3時間静置して、残留する固形分を得た。

1・2 アセチル化

チオリグニン 0.50 g にピリジン 10ml, 無水酢酸 5ml を加え,ときどき振とうして,室温 (15~20°C) で1週間放置したのち,400ml の水に注入して,生じた沈殿を沪別し,水で充分 洗浄した後,真空乾燥器で常温減圧乾燥した。収量 0.60 g。

2. フェノールホルムアルデヒド樹脂 (PF)

Table 1 に示す量比で,フェノール,ホルマリン,水酸化ナトリウムを 500ml 容三口セパ ラブルフラスコにとり,冷却管を付して,磁石式攪拌器で攪拌しながら,80℃ で2時間反応 させ,次の2種の試料を得た。

2・1 水に不溶の部分

Table 1 の PF_{2.0} について上記反応終了後反応液 10ml をとり,50倍量の水で希釈して,白 色の不溶物を遠心分離し,全量約1 l の水でくり返し洗浄した。この水に不溶の淡黄色の粘稠 物を減圧乾燥した。

2·2 加熱硬化物

Table 1 の組成で調製した各樹脂 2ml を 20ml 容ビーカーにとり, 140℃ 恒温器中に 3 時 間静置し, 硬化させた。

PF resin	phenol (g)	37% formalin (g)	20% NaOH (g)	H(%)***
PF1.0**	94.1	81.1	5.0	58.2
$PF_{2\cdot 0}$	94.1	162.2	10.0	48.9
PF3.0	94.1	243.3	15.0	40.7

Table 1. Chemicals used in synthesis of phenol formaldehyde resin (PF)*.

* : Reacted at 80°C for 2 hrs.

** : Subscript denotes mol ratio of formaldehyde to phenol.

*** : Yields of PF resin cured by heating at 140°C for 3 hrs.

3. リグニン・ホルムアルデヒド反応物 (LF)

Table 2 に示す量比で,リグニン溶液とホルマリンを混合し,80°C で 2 時間反応させた。この反応液を,ただちに,氷浴で冷却し,冷蔵庫中に保存した。この反応液の一部から,加熱により残留する固形分,酸による沈殿分を得,さらに後者を1・2 に準じてアセチル化した。

3・1 加熱による残留固形分

2・2 と同様にして各樹脂 2ml から固形分を得た。

3・2 酸による沈殿分

反応液 5ml をとり, 300ml の水 に希釈し, 5%硫酸で pH 2 に調 整して 褐色粘稠物を 遠心分離し, 水洗を くり返して 減圧乾燥した。 Table 2. Chemicals used in reaction of thiolignin and formaldehyde (LF)*.

	37% formalin (g)	15% thiolignin** (g)
LF	162.2	627.3
L	0.0	627.3

* : Reacted at 80°C for 2 hrs.

** : Dissolved in 2% sodium hydroxide

収量は反応液に対し12.3%。このものの元素分析値は,

C:63.73%, H:5.77% で分子量は1,430±50である。

3・3 アセチル化

上述 3・2 の沈殿物 0.50g を前述の 1・2 と同じ方法でアセチル化した。収量 0.62g。

4. チオリグニン溶液とフェノールの混合液の加熱(PL)

Table 3. Mixture of phenol and thiolignin solution (PL)*.

	phenol (g)	15% thiolignin (g)
ΡL	9.41	62.7
L	0.0	62.7

Table 3 に示す量比で チオリグ ニンと フェノールを 三口フラスコ にとり,磁石式攪拌器で 攪拌しな がら,80°C で 2 時間保持した。こ の加熱液 5ml を 300ml の水で希 釈, 5%硫酸で pH 2 に調整し, 生成する沈殿物を沪別して,水洗,

* : The mixture was kept at 80°C for 2 hrs.

減圧乾燥した。収量は混合液に対し12.9%。

5. フェノール・リグニン・ホルムアルデヒド反応物

5・1 フェノールホルムアルデヒド樹脂にチオリグニン溶液を混合したもの (PF:L)

5・1・1) Table 1 に示した $PF_{2.0}$ に 15% チオリグニン溶液を Table 4 に示す各段階に混合 し、これらの各混合液を 2・2 と同様にして硬化させた。

5・1・2) Table 4 に示した $PF_{2\cdot0}$: L_{1・0} の硬化過程について 検討する ため, 混合液 2ml を 20ml 容ビー カーにとり, 140°C 恒温器中で, 加 熱時間を変えて 硬化させ, 残留す る固形分の 収量を 求めた (Table 7)。

5·1·3) Table 4 に示した PF_{2·0}: L_{1·0} について 硬化温度の影響を見 るため, 硬化温度を 110, 120, 130, 140, 150℃ の 5 段階に変えて, 2

PF:L	PF _{2.0} (g)**	15% thiolignin (g)
PF _{2.0} : L ₀ ***	13.3	0.0
$PF_{2.0}: L_{0.5}$	"	15.5
$PF_{2 \cdot 0} : L_{1 \cdot 0}$	"	31.0
$PF_{2 \cdot 0}: L_{1 \cdot 5}$	"	46.6
$PF_{2 \cdot 0}: L_{2 \cdot 0}$	"	62.1

Table 4. Composition of PF:L resin*.

* : PF : L resin is mixture of PF resin and thiolignin solution.

** : See Table 1.

******* : Subscript denotes weight ratio of thiolignin to phenol.

時間加熱して硬化させた。そして、残留する固形分の収量を求めた(Table 8)。

5・2 フェノールホルムアルデヒド樹脂の加熱硬化物の粉末に,チオリグニン溶液の加熱残 留固形分の粉末を混合したもの(PF+L)

Table 5. Mixture of PF resin and lignin powder.

$(PF_{1.0}* 2mg)$	(PF _{2.0} * 2mg	(PF _{3.0} * 2mg
L** 1mg	L 1mg	L 1mg

* : Powder of the products obtained by heating PF resin in Table 1.

** : Powder of solid prepared by heating 15% thiolignin solution at 140°C for 3 hrs. 上述の 5・1 との比較のため, 2・2 の フェノール ホルムアルデヒド樹 脂を 140°C で 3 時間加熱して硬化 させた ものを 粉砕し, これと 1・1 に述べた チオリグニンの 粉末とを Table 5 に示す 比で 混合したもの を調製した。

5・3 フェノールホルムアルデ

ヒド反応液にチオリグニン溶液を加えて、さらに反応させたもの (PF-L)

Table 6・1 に示す量比で、まずフェノールとホルムアルデヒドを水酸化ナトリウム触媒を用いて、 80° C で1時間反応させ、チオリグニン溶液を加えて、ひきつづき1時間反応させた。 これらの反応液 5ml を、500ml の水に希釈し、5%硫酸で pH 1.5 に調整し、生成する沈殿 を沪別して、水洗、減圧乾燥した。また、これらの反応液を2・2 と同じ方法で硬化させた。

5・4 フェノール・リグニン反応液にホルマリンを加え,さらに反応させたもの (PL-F)

Table 6・2 に示す量比で、フェノールとチオリグニン溶液を攪拌しながら 80°C に1時間保持し、ホルマリンを加えて、ひきつづき1時間保持した。以下、5・3 と同じ方法で、沈殿物と硬化物を得た。

5・5 リグニン・ホルムアルデヒド 反応液に フェノールを加えて, さらに 反応させたもの (LF-P)

Table 6・2 に示す量比で,チオリグニン溶液,ホルマリン,水酸化ナトリウムを攪拌しなが ら 80℃ で1時間反応させ,フェノールを加えて,ひきつづき1時間反応させた。そして,5・3 と同じ方法で,沈殿物と硬化物を得た。

5・6 フェノール・リグニン・ホルムアルデヒド反応液 (PLF)

Table 6.2 に示す量比で、フェノール、チオリグニン、ホルマリン、水酸化ナトリウムを攪

	resin	phenol (g)	37 <i>%</i> formalin (g)	20% NaOH (g)	15% thiolignin (g)	F/P*3	L/P*3	cured resin*4 (%)
	(A_1)	94.1	81.1	5.0	0.0	4/4	0/4	58.2
	Bı	70.6	"	"	156.7	4/3	1/3	36.6
	C 1	47.0	"	"	313.4	4/2	2/2	27.8
	Di	23.5	"	"	470.7	4/1	3/1	26.2
	(A2	94.1	162.2	10.0	0.0	8/4	0/4	48.9
PF_I *i]	B 2	70.6	"	"	156.7	8/3	1/3	38.8
11 L	C 2	47.0	"	"	313.4	8/2	2/2	29.1
	D ₂	23.5	"	"	470.7	8/1	3/1	20.5
	(A3	94.1	243.3	15.0	0.0	12/4	0/4	40.7
	B₃	70.6	"	"	156.7	12/3	1/3	32.7
	C ₃	47.0	"	"	313.4	12/2	2/2	23.4
	U3	23.5	"	"	470.7	12/1	3/1	17.4

Table 6-1. Chemicals used in synthesis of resin.

*1 : After keeping at 80°C for 1 hr for the reaction of phenol and formaldehyde (PF), the reaction mixtures were further kept at 80°C for 1 hr for the reaction of PF and L.

*2 : Mol ratio of formaldehyde to phenol

*3 : Weight ratio of thiolignin to phenol

*4 : Resin solid prepared by heating at 140°C for 3 hrs.

resin	phenol (g)	37% formalin	20% NaOH	15% thiolignin	F/P*2	L/P*3	cured* resin

Table 6-2. Chemical used in preparation of resin.

	resin	phenol (g)	37 <i>%</i> formalin (g)	20% NaOH (g)	15% thiolignin (g)	F/P*2	L/P*3	cured*4 resin (%)	precipitate*5 (%)
PF-L*1	PF2.0-L1.0							25.3	20.0
PL-F*6	PL1.0-F2.0	04.1	160 0	10.0	607 9	0 /1	1 /1	24.9	13.9
LF-P*7	$L_{1.0}F_{2.0}-P$	94.1	102.2	10.0	027.3	2/1	1/1	24.2	13 _. 5
PLF*8	$PL_{1.0}F_{2.0}$							25.5	13.5

*1, *2, *3, *4 : Ref. Table 6-1

*5 : Yields of precipitate prepared at pH 1.5

*6 : After keeping at 80°C for 1 hr for the reaction of phenol and lignin (PL), the reaction mixtures were further kept at 80°C for 1 hr for the reaction of PL and F.

*7: After keeping at 80°C for 1 hr for the reaction of thiolignin and formaldehyde (LF), the reaction mixtures were further kept at 80°C for 1 hr for the reaction of LF and P. *8 : Kept at 80°C for 2 hrs.

拌混合しながら 80℃ で2時間反応させた。次に、5・3と同じ方法で沈殿物および硬化物を得 た。

結果および考察

チオリグニン、フェノール、、ホルムアルデヒドの3成分からなる樹脂の赤外線吸収特性を 論ずるに際し,まず,リグニンや2成分反応による生成物の特性を検討した。

1. チオリグニン

IR スペクトルは, リグニンの研究上, かなり多く用いられているが^{6,7,8,9,10,11,12}, チオリグニンに関するものは, さほど多くない^{13,14)}。Fig. 1 のaは, 本実験で用いられたチオリグニンの IR スペクトルで, 和田によるもの¹⁴⁾とよく一致しており, 吸収強度が 1270cm⁻¹>1220cm⁻¹ であつて, 針葉樹の特徴を示している¹⁰⁾。

1・1 アルカリ溶液の熱処理

Fig. 1 の b に 見るごとく, アルカリ溶液を熱処理した後でも, 吸収スペクトルには大きな差 は 現われないが, 1715cm⁻¹ あたりの >C==O にもとづく吸収が消える。

1・2 アセチル化チオリグニン

収量や IR スペクトルにまだかなり強い水酸基の吸収が残つていることなどから考えて,完 全にはアセチル化されていない。Fig. 1 の c に示すように,このものの吸収スペクトルは,一 般のアセチル化物の特徴の他に,吸収強度が 1270cm⁻¹ <1220cm⁻¹ と,もとのチオリグニン と逆になつている。

また,アルコール性水酸基によるとされる¹⁴⁾ 1000~1100cm⁻¹ の 2 つの吸収のうち 1090cm⁻¹ の吸収が高波数側に移動している。メチル化により,これらの吸収が消失していること¹⁴⁾と合わせて,おもにリグニンの水酸基に関連する波数域と考えられる。

Fig. 1. Infrared spectra of thiolignin from AKAMATSU (*Pinus densi flora*). a. Thiolignin.

- b. Solid prepared by heating alkali solution of thiolignin at 140°C for 3 hrs.
- c. Partially acetylated thiolignin.

2. フェノールホルムアルデヒド樹脂 (PF)

2・1 Table 1 に示した $PF_{2.0}$ の水に 不溶の 部分の IR スペクトルを Fig. 2・1 に示す。 1000cm⁻¹ 近くのメチロール基に起因する吸収の大きさから、 生成物がレゾールタイプの樹脂 であることが認められる。

2・2 Table 1 に示した各樹脂の加熱硬化物の吸収スペクトルを Fig. 2.2 に示す。 フェノールホルムアルデヒド樹脂の IR スペクトルは、 Richard ら^{15,16,17,18,19)} によつて研究されて

Fig. 2.1. Infrared spectrum of phenol formaldehyde resin prepared by precipitation into water.

a $PF_{1\cdot 0}$ b : $PF_{2\cdot 0}$ c : $PF_{3\cdot 0}$ (Ref. Table 1)

いるが、この方面の研究の大部分は、初期ないし中間生成物に関するものであつた。Fig. 2・2 に見るように、PF_{1・0} は PF_{2・0} や PF_{3・0} と異なり、1400~1500cm⁻¹ あたりに 3 本の分離した 吸収を示し、1090cm⁻¹ と 820cm⁻¹ にも吸収を示す。 フェノールホルムアルデヒド反応物の 硬化度の程度については、12.2 μ (波数 820cm⁻¹) および 13.25 μ (波数 755cm⁻¹) の吸光度の 差で示す方法¹⁸⁾が報告されているが、Fig. 2.2 に示す b (PF_{2・0})、c (PF_{3・0}) については、すで に充分に硬化が進んでいることがわかる。

3. リグニン・ホルムアルデヒド反応物 (LF)

前報¹⁾ で,われわれは,リグニンとホルマリンの混合液を80℃ で熱すると,粘度が上昇し, ある時間以上では,細管法では粘度が測定できなくなることを報告した。

3・1 反応液の加熱による残留固形分

Fig. 3 の a に示すように, 1200~1300cm⁻¹の間の2本の吸収の強さが接近し, 第1級および第2 級アルコール性水酸基によるといわれる¹⁴⁾1000~1100cm⁻¹ の 2 本の吸収強度も接近してくる。

3・2 酸による沈殿物

リグニンとホルムアルデヒドとの反応については、今までに、リグニンの基本構成単位と考 えられるモデル化合物を用いて種々の検討が加えられている²⁰⁾。チオリグニンとホルムアルデ ヒドとの反応生成物については、三川らが水酸基および分子量の増加を報告している²¹⁾。しか

- a : Solid prepared by heating at 140°C for 3 hrs.
- b : Precipitate prepared with 5% H₂SO₄.

c : Partially acetylated product of above mentioned precipitate b.

し、本実験における試料では、分子量増加はわずかである。Fig. 3 のbに示すように、リグニ ン・ホルムアルデヒド反応物の吸収スペクトルでは、1270cm⁻¹ 付近の吸収と 1200cm⁻¹ 付近 の吸収強度が、もとのチオリグニンの吸収強度 (1270cm⁻¹>1220cm⁻¹) と逆になる。このあた りの吸収強度の変化は、この領域が各種の振動の吸収が集まつているところであり、しかも、 それが重なり合うので、モデル化合物の IR スペクトルの検索によつても、判断が困難であり、 その起因が判然としない。既往の研究^{14,22)}によつて推論すれば、グアヤシル核の変化によるも のと考えられる。また、メチル化によつて消失する第2級アルコール性水酸基によるとされて いる 1090cm⁻¹ の吸収¹⁴⁾ が増加する。

3・3 アセチル化物

Fig. 3 の c に 見るように, チオリグニンに 見られた $1200 \sim 1300 \text{cm}^{-1}$ の 2 つの吸収が, 深 いひと 続きの吸収に変わり, 1200cm^{-1} 付近で 2 つのピークを示す。 また, チオリグニンのア セチル化物と同じように, $1000 \sim 1100 \text{cm}^{-1}$ の 2 つの吸収が高波数側に移動して現われる。

-4. チオリグニン溶液とフェノールの混合液の加熱 (PL)

混合液から、硫酸によつて沈殿物として得たものの収量12.9%は、混合液の調製に用いたチ オリグニンの組成13.0%にほぼ一致する。Fig. 4 に示すように、このものの赤外線吸収スペク トルはチオリグニンのそれに一致する。チオリグニンの塩酸触媒下におけるフェノール化は古 くから行なわれているが、本実験におけるような条件下では、チオリグニンとフェノールの間 には、反応はほとんど生じないと考えられる。

5. フェノール・リグニン・ホルムアルデヒド反応物

5・1 フェノーホルムアルデヒド樹脂にチオリグニン溶液を混合したもの (PF:L)

5・1・1) PF2.0: L におけるチオリグニンの増量率の影響

Tale 4 に示すものの硬化物の IR スペクトルを Fig. 5・1・1 に示す。これは, チオリグニン

Fig. 4. Infrared spectra of thiolignin prepared by precipitation into water, after heating mixture of phenol and thiolignin solution at 80°C for 2 hrs.

 \boldsymbol{a} : Precipitate from only thiolignin solution

b : Precipitate from the mixture of phenol and thiolignin solution

Fig. 5.1.1. Infrared spectra or PF:L resin (table 4) cured by heating at 140°C for 3 hrs.

・ホルムアルデヒド反応物,フェノールホルムアルデヒド反応物の総和であると予想された。 しかしながら,チオリグニンの混合量から予想されたほどには,チオリグニンの吸収スペクト ルの特徴は強く現われない。たとえば,1400cm⁻¹~1500cm⁻¹ あたりにあるチオリグニンの3 本の吸収が,明確に分離しなくなる。このことは,前報¹¹ でも言及したように,チオリグニン が単なる増量剤や充填剤でなく,反応性増量剤といわれていることを証明するものと考えられ る。また,1045,1090cm⁻¹ のアルコール性水酸基によるとされている吸収¹⁴⁾ が減少し,グア ヤシル核の変化によると考えられる²²⁾ 1200~1300cm⁻¹ の2本の吸収の大小関係が,フェノー ル・ホルムアルデヒド反応物やチオリグニン・ホルムアルデヒド反応物と同じ傾向を示す。

5・1・2) PF2・0: L1・0 の硬化処理時間の差による影響

Fig. 5・1・2 に見られるように, 5・1・1 で述べたと同じく, 1400~1500cm⁻¹ 近くのチオリグ ニンの3本の明確な吸収ピークが現われない。加熱時間が0.5時間では, 1040cm⁻¹ と820cm⁻¹ 付近に強い吸収を残していることが特徴的で, フェノールホルムアルデヒド樹脂の硬化が進む とともに, この部分の吸収が減少することと一致した傾向を示す。比較対照のため, 硬化物収 量を Table 7 に示す。IR スペクトルの変化に見られたごとく0.5時間加熱したものを除き,

Fig. 5.1.2. Infrared spectra of $PF_{2\cdot 0}: L_{1\cdot 0}$ resin cured at certain times, heated at 140°C.

Table 7.	Relation	between	yield	of	resin	solids	and
curing	time.						

	curing time* (hr)	cured resin (%)
	0.0	100.0
$P_{1.0}F_{2.0}:L_{1.0}**$	0.5	35.6
	1.0	26.5
	1.5	25.8
	2.0	25.6
	2.5	25.7
	3.0	25.7

* : Heating at 140°C ** : Ref. Table 4 他のものの収量はほぼ等しい。

5·1·3) PF_{2·0}: L_{1·0} における硬化 温度の影響

Fig. 5.1.3 に見られるように, 硬化温度の差による吸収スペクト ルの差は,ほとんど認められない。 2時間という比較的長い加熱時間 により,生成する樹脂の硬化度は, 近似しているものと考えられる。 比較対照のため,硬化物の収量を Table 8 に示す。

Fig. 5.1.3. Infrared spectra of $PF_{2\cdot 0}$: $L_{1\cdot 0}$ resin cured at various temperature, heated for 2 hrs.

5・2 フェノールホルムアルデヒド樹脂硬化物の粉末とチオリグニン溶液の加熱残留固形分の粉末を混合したもの (PF+L)

Fig. 5・2 に示すように, このものの IR スペクトルは, PF 樹脂硬化物とチオリグニンのそれ ぞれの吸収の和である。前述の PF:L に比べて, チオリグニンの混合比が小さいにもかかわ

らず 1400~1500cm⁻¹ あたりの 3 本の吸収ピークが 明確に 分離して 現われ, また, 吸収強度が 1270cm⁻¹ >1220cm⁻¹ で, チオリグニンの 特性を示している。 つまり, 前 述の PF:L では, フェノール 樹 脂とリグニンとの間に 化学的な 反 応が 生じていることを 示唆してい る。 Table 8. Yield of resin cured* at various setting temperature.

	setting temperature (°C)	cured resin (%)
	110	28.4
PF _{2.0} : L _{1.0} **	120	28.2
	130	26.3
	140	25.6
	150	24.3

* : Heated for 2 hrs

** : Ref. Table 4

WAVE NUMBER (cm⁻¹)

Fig. 5.2. Infrared spectra of the mixture of cured PF resin powder and thiolignin powder (Ref. Table 5).

5・3 フェノールホルムアルデヒド樹脂にチオリグニンを加え反応させたもの (PF-L)

Table 6-1 に示した, PF-L の加熱硬化物の吸収スペクトルを Fig. 5・3 に示す。一般に, 先 に述べた PF:L に類似のスペクトルを示している。前報¹¹において, 接着剤の性質として, わざわざ PF-L を調製する必要はなく, PF:L として使用する方が 有利であつたことを想起 させる。

Fig. 5・3 に見られるように、 B_1 では、すでに述べた $PF_{1\cdot0}$ の硬化物と同様、1400~1500cm⁻¹ に 3本のピークを示す吸収が現われ、820cm⁻¹ に B_2 、 B_3 には見られない吸収を示す。これは、 ホルムアルデヒド / フェノールのモル比が、4/3 であり、そこへさらにチオリグニンが加わる ため、硬化に必要なホルムアルデヒドの量が不足することによると考えられ、このことは C_1 および D_1 では、820cm⁻¹ の吸収が消失していることからも推論される。

5 · 4, 5, 6 PL-F, LF-P, PLF

Table 6・2 に示した $PL_{1\cdot0}$ - $F_{2\cdot0}$, $L_{1\cdot0}F_{2\cdot0}$ -P および $PL_{1\cdot0}F_{2\cdot0}$ の生成沈殿物および加熱硬化物 の IR スペクトルを Fig. 5・4・1 および Fig. 5・4・2 に示す。Fig. 5・4・1 に見られるように、 $PL_{1\cdot0}F_{2\cdot0}$ が最もチオリグニンの吸収スペクトルの特徴を残しており、1000~1100cm⁻¹ で顕著 である。すなわち、アルコール性水酸基¹⁴⁾が反応に関与せずそのまま残つている。つまり、チ オリグニンがもとのままの形で存在することを示し、前報¹⁾ の接着力試験の結果との対応が注

Fig. 5.3. Infrared spectra of PF-L resin cured by heating at 140°C for 3 hrs (Ref. Table 6-1).

Fig. 5.4.1. Infared spectra of precipitate of LF-P, PL-F and PLF (Ref. Table 6-2); the precipitate was prepared with 5% H₂SO₄ at pH 2.

目される。しかし, Fig. 5・4・2 に見られるように, これらの加熱硬化物では, ほとんど, その 差が認められなくなつている。すなわち, フェノール, リグニン, ホルムアルデヒドがこの割 合で用いられるとき, 硬化物は最終的には, 赤外線吸収の特性上, 類似の状態に達するものと 考えられる。

Fig. 5.4.2. Infrared spectra of resin cured by heating at 140°C for 3 hrs (Ref. Table 6-2).

要 約

フェノール(P), アカマツチオリグニン(L), ホルムアルデヒド(F)より,数種の方法で 樹脂を調製し,その IR スペクトルから,フェノールホルムアルデヒド樹脂とチオリグニンと の間に生ずる相互作用を検討した。また,チオリグニンとホルムアルデヒド樹脂とチオリグニンと いても検討を加えた。その結果,チオリグニン・フェノール・ホルムアルデヒド樹脂中におけ るフェノールホルムアルデヒド樹脂の硬化度やフェノールホルムアルデヒド樹脂,チオリグニ ンおよびホルムアルデヒドの相互作用の程度は,1400~1500cm⁻¹ あたりの3本の吸収の分離 の明確さ,1200~1300cm⁻¹ の2本の吸収の大小関係,1000~1100cm⁻¹ の2本の吸収の増減, 820cm⁻¹の吸収の増減の検討により知ることができると考えられた。さらに詳しく述べると次 のごとくである。

1. チオリグニンとホルムアルデヒドを 80°C で 2 時間反応させて得たチオリグニン・ホル ムアルデヒド反応物は,1220cm⁻¹ と 1270cm⁻¹ の吸収強度がアカマツチオリグニンと逆にな る。 (1270cm⁻¹>1220cm⁻¹→1270cm⁻¹<1220cm⁻¹)。既往の研究から考えて,グアヤシル核に 変化が生じているものと考えられる。

2. チオリグニンのアルカリ溶液とフェノールとを混合したものを 80℃ で2時間加熱した ものから,酸で沈殿を生成して回収したチオリグニンは,もとのチオリグニンと吸収に差が認 められない。アルカリ下における本実験の条件では,チオリグニンとフェノールは反応しない ものと考えられる。

3. フェノールホルムアルデヒド樹脂とチオリグニン溶液の混合物を,140°C で加熱してよ り得られた硬化物は,多量のチオリグニンの混入にもかかわらず,1400~1500cm⁻¹ あたりに あるチオリグニンの3本の明確な吸収が一続きの広い吸収となる。1200~1300cm⁻¹ の吸収の 大小の順が,フェノールホルムアルデヒド反応物やチオリグニン・ホルムアルデヒド反応物の それと一致しており,アカマツチオリグニンとは逆である。また,1045,1090cm⁻¹ の吸収が 減少する。

4. $PF_{2\cdot0}$: L_{1・0} (Table 4) について,加熱時間による硬化の過程を見ると,硬化の進行と ともに 1040,820cm⁻¹ の吸収が減少する。したがつて硬化の進行の度合は,この2本の吸収 が良い指標となると考えられる。

5. 加熱温度による差異を見ると、IR スペクトルには、本実験における条件 (110~150℃ で2時間加熱)では、差が現われない。

6. PF:L (Table 4) と PF-L (Table 6-1) の硬化物は, 類似の IR スペクトルを示す。

 PL_{1.0}-F_{2.0}, L_{1.0}F_{2.0}-P, PL_{1.0}F_{2.0} (Table 6-2) の沈殿物の IR スペクトルのうち, PL_{1.0}
F_{2.0} が最もチオリグニンの吸収スペクトルの特徴を留めているが, これらの加熱硬化物は, 3 者とも類似の吸収スペクトルを示す。

Summary

The infrared spectra of the products composed **from** phenol, thiolignin from AKA-MATSU (*Pinus densiflora*) and formaldehyde were recorded by using KBr method, and the relations among phenol formaldehyde resin (PF), thiolignin and others were investigated. The results were summarized as follows :

1. The products prepared from thiolignin and formaldehyde (Table 2) showed stronger absorption at near 1220 cm^{-1} than at 1270 cm^{-1} (absorption of AKAMATSU thiolignin is stronger at 1270 cm^{-1} than at 1220 cm^{-1}).

2. Thiolignin precipitated with acid from the reaction mixture of phenol and alkali solution of thiolignin (Table 3) showed no changes in infrared absorption spectra.

3. PF: L resin (Table 4) cured at 140°C did not show three distinct separated absorption bands which were clearly found in thiolignin but one broad absorption at $1500 \sim 1400 \text{ cm}^{-1}$, although it contained much thiolignin. Intensity of absorption at near 1220 cm^{-1} became stronger than that at near 1270 cm^{-1} (this tendency is found in the infrared spectra of phenol formaldehyde resin and the reaction product of lignin-formaldehyde).

4. In the duration of cure of PF : L (Table 4), the absorption at 820 and 1040 cm^{-1} became weaker.

5. In case of PF:L (Table 4), curing temperature (at $110 \sim 150^{\circ}$ C, heating for 2 hrs) gave no influence to the infrared spectra of the products.

6. PF:L (Table 4) and PF-L (Table 6-1) showed similar infrared absorption spectra.

7. Infrared spectra of the precipitates of PL-F, LF-P and PLF (Table 6-2) with 5% H₂SO₄ kept the characteristic absorption of thiolignin, and among them, the absorption of PLF was most similar to that of thiolignin, but cured products of these three showed very little differences in their infrared absorption spectra.

文 献

1) 南 正院, 满久崇麿, 木材研究, No. 40, 1 (1967).

- 2) 小林晃夫, 葉賀忠昭, 佐藤孝一郎, 木材誌, 12, 305 (1966).
- 3) 小林晃夫, 葉賀忠昭, 佐藤孝一郎, 木材誌, 13, 60 (1967).
- 4) 戴 清華, 中野順三, 右田伸彦, 木材誌, 14, 40 (1968).
- 5) 小林晃夫, 葉賀忠昭, 佐藤孝一郎, 木材誌, 13, 306 (1967).

- 6) JONES, E. J., Tappi, 32, 167 (1949).
- 7) HESS, C. L., Tappi, 35, 312 (1952).
- 8) BRAUNS, F. E. and H. SEILER, Tappi, 35, 67 (1952).
- 9) NORD, F. F. and W. J. SCHUBERT, Tappi, 40, 286 (1957).
- 10) 祖父江寛, 福原節雄, 工·化, 60, 1070 (1958).
- 11) FIELD, L., P. E. DRUMMOD and P. H. RIGGINS with F. A. JONES, Tappi, 41, 721 (1958).
- 12) Kolboe, S. and ϕ . Ellefsen, Tappi, 45, 163 (1962).
- 13) LINDBERG, J. J., Finska Kemistamfundets Medd., 64, 23 (1955). C. A. 50, 6040 (1956).
- 14)和田昭三,高分子化学,18,617 (1961).
- 15) RICHARD, R. E. and H. W. TOMPSON, J. Chem. Soc., 1260 (1947).
- 16) 中村儀郎, 工・化, **59**, 453 (1956).
- 17) 中村儀郎, 工・化, 60, 785 (1957).
- 18) REED, C. E. and G. D. FAVEROL, Modern Plastics, 40, 102 (1962).
- 19) HARMS, D. L., Anal. Chem., 35, 1140 (1953).
- 20) MARTON, J. et al. "Lignin Structure and Reactions", Ed. by J. Marton, Am. Chem. Soc., 129 (1966).
- 21) 三川 礼, 軒原栄三, 佐藤孝一郎, 工・化, 53, 94 (1950), 53, 134 (1950).
- 22) SARKANEN, K. V., H. M. CHANG and B. ERICSSON, Tappi, 50, 572 (1967).