

Г

Title	<preliminary>Studies on the Production of Manganese Peroxidase by a White-rot Fungus Pleurotus ostreatus</preliminary>
Author(s)	KAMITSUJI, Hisatoshi; HONDA, Yoichi; WATANABE, Takashi; KUWAHARA, Masaaki
Citation	Wood research : bulletin of the Wood Research Institute Kyoto University (1999), 86: 41-42
Issue Date	1999-09-30
URL	http://hdl.handle.net/2433/53161
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

Studies on the Production of Manganese Peroxidase by a White-rot Fungus *Pleurotus ostreatus*

Hisatoshi Kamitsuji^{*1}, Yoichi Honda^{*1}, Takashi Watanabe^{*1} and Masaaki Kuwahara^{*1} (Received May 31, 1999)

Keywords : Manganese peroxidase, isoenzyme, white-rot fungi, Pleurotus ostreatus

Manganese peroxidase (MnP) was secreted by *P.* ostreatus in liquid stationary culture. Two different MnP isozymes were secreted in glucose/yeast-extract medium (GY) and peptone/glucose/yeast-extract medium (PGY). The isoelectric points of MnP produced in GY medium (MnP-GY) and PGY medium (MnP-PGY) were found to be 3.70 and 3.95, respectively. The molecular masses of both isozymes were the same 42 kDa. MnP-PGY found to be the same N-terminal sequences of MnP 3 (data not shown). On the other hand MnP-GY was detected only in the solid culture².

1. Production of manganese peroxidase by *P. ostreatus*

P. ostreatus (ATCC 66376) was cultivated in a glucosepeptone-yeast-extract medium (PGY) and glucose-yeastextract medium (GY) stationarily at 28°C under darkness. A time course study was performed to compare the production of MnP by *P. ostreatus* in GY and PGY medium. As shown Fig. 1, maximum MnP activities were detected in 13 day-old PGY culture and 30 day-old GY culture. The activities of MnP produced in PGY (MnP-PGY) and that in GY (MnP-GY) were 0.5 and 1.6 U/ml, respectively and the specific activities were 6 and 128 U/mg, respectively. MnP-GY was produced from 10 and 30 days as mycelium grew, suggesting MnP-GY production is likely primary metabolite. On the contrary, however, in PGY the maximal activity was found after the maximal growth was achieved.

2. Purification of MnP from P. ostreatus

The culture filtrate was dialyzed against 20mM Nasuccinate buffer (pH 4.5). The dialyzate was concentrated by ultrafiltration (Amicon PM-10) and then applied to a Sepharose CL-6B column as shown in Fig. 2. Fractions which showed MnP activity were pooled and concentrated by ultrafiltration. The concentrate was subjected to ion-exchange chromatography on a Pharmacia Mono-Q column (10/10). The elution was carried out with Na-succinate buffer (pH 4.5) using NaCl gradient of 0 to 100 mM at a flow rate of 1.0 ml/min. The fractions showing MnP activity were pooled and concentrated to 1 ml through a Centriprep-30 microconcentrater (Amicon). Specific activities were 269 and 324 U/mg for MnP-GY and MnP-PGY, respectively. Enzyme purity was confirmed by SDS-PAGE using a FastGel gradient 10–15

^{*1} Laboratory of Biomass Conversion, Wood Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan.

Fig. 2. Separetion of MnP from P. ostreatus by DEAE. Sepharose chromatography. (A), GY medium.
(B), PGY medium. MnP activity was determined using guaiacol as a substrate. Profiles corresponding to MnP (···■···) activities, absorbances at 280 nm (···△···) and 407 nm (···○···) are shown.

(Pharmacia) and isoelectroforcusing (IEF) analysis using a Servalyt 2-4 (Pharmacia). N-terminal sequences of *P. ostreatus* MnP-GY and MnP-PGY were determined, as follows,

MnP-GY: VTCATGQTTANE

MnP-PGY: ATCADGRTTANA

The N-terminal sequences of MnPs showed high similarity with that of other strains of *P. ostreatus*^{1,2)} as well as that MnP isolated from *P. eryngii* and *P. pulmonarius* However, the sequences were found to be different from those of MnPs from *Phanerochaete chrysosporium* and *Lentinus edodes*. The N-terminal sequence of MnP-GY was also found in the MnP produced in the sawdust/ H_2O medium but not in liquid culture.

References

- 1) S. SARKAR, A.T. MARTÍNEZ and M.J. MARTÍNEZ: Biochem. Biophys. Acta, 1339, 23-30 (1997).
- 2) G. PALMIERI, P. GIARDINA, I. ZOCCHI, and G. SANNIA: In Proceedings of the 7th International Conference on Biotechnology in the Pulp and Paper Industry. Canadian Pulp and Paper Association, Montreal, Canada. B253–B256 (1998).