Preliminary Biomimetic Oxidation of β-O-4 Lignin Model Compound with tert-Butylhydroperoxide and Fe(III)-Octacarboxyphthalocyanine

Author(s): TANIHARA, Yoshifumi; HATTORI, Takefumi; SHIRAI, Hirofusa; SHIMADA, Mikio

Citation: Wood research: bulletin of the Wood Research Institute Kyoto University (1994), 81: 11-13

Issue Date: 1994-09-30

URL: http://hdl.handle.net/2433/53253

Type: Departmental Bulletin Paper

Text version: publisher

Kyoto University
Biomimetic Oxidation of β-O-4 Lignin Model Compound with tert-Butylhydroperoxide and Fe(III)-Octacarboxyphthalocyanine*1

Yoshifumi Tanihara*2, Takefumi Hattori*2, Hirofusa Shirai*3 and Mikio Shimada*2

(Received June 1, 1994)

Keywords: Biomimetic oxidation, phthalocyanine, catalyst, ligninase model, cleavage reaction.

Lignin-peroxidase mimetic oxidation of a lignin model compound was first reported by Shimada et al.1) with synthetic and natural porphyrin iron-complexes; the one-electron oxidation mechanism for the enzymatic reaction has been proposed2). A hemin catalyst mimicked the lignin peroxidase (Lip) which catalyzes the Ca-Cβ bond cleavage of β-1 model substrate (accompanied by oxygenation and deuterium retention)2,3), and the aromatic ring cleavage of veratryl (3, 4-dimethoxybenzyl) alcohol, yielding γ- and δ-lactone products4,5). Recently, several laboratories have been investigating similar biomimetic oxidations of lignin models with more sophisticated water-soluble synthetic porphyrins6-11). It is particularly interesting to note that the selective oxidative cleavage of 1, 2-dimethoxyarenes to muconic diesters with relatively high yield was catalyzed by Fe(III)-sulfonated-tetrakis(pentafluorophenyl) porphyrin11).

We report here the first example of Ca-Cβ bond cleavage and ring cleavage of β-O-4 model lignin model compound catalyzed by a water soluble Fe(III)-octacarboxyphthalocyanine (OcPc) complex12), although the oxidation of monomeric lignin model compounds with various water-soluble metallophthalocyanines has been previously reported13).

The reaction mixture (2 ml of water adjusted to pH 3) containing the β-O-4 model substrate (1, 10 μmol), Fe-OcPc (1 μmol), and tert-butylhydroperoxide (t-BuOOH), was incubated at room temperature for 30 min. The control system, lacking the Fe-OcPc catalyst, was incubated in the same way. After the incubation oxidation products were extracted with ethyl acetate and analyzed with GC-MS after acetylation of the dried...
extracts; the products (II–VII) were identified by comparison of their spectra with those of the corresponding authentic compounds.

Fig. 1. LiP-mimetic Fe-octacarboxyphthalocyanine catalyzes oxidation of \(\beta \)-O-4 lignin model compound (I).

Fig. 1 shows that Fe-OcPc catalyzes the \(\text{Ca-C} \beta \) cleavage of I (yielding the products III and IV), the \(\beta \)-O-4 ether cleavage, (yielding the product V), and the cleavage of B-ring of I (yielding products VI and VII). The control reaction system did not yield these products under the reaction conditions used, which indicates that t-BuOOH did not cause such cleavage reactions. It is noteworthy that VII was identified for the first time from the products formed from the \(\beta \)-O-4 lignin substructure model. Therefore, this finding prompted us to examine a possible formation of VII even in the Lip system. Eventually, we confirmed that VII was also produced from the Lip-catalyzed oxidation of I. The alternative experiment also demonstrated that the Fe-OcPc system is capable of catalyzing the ring cleavage of veratryl alcohol, yielding \(\gamma \)- and \(\delta \)-lactones as the ring-opened products that were also produced from the Lip system\(^1\). These results clearly indicate that Fe-OcPc system like the metalloporphyrin systems simulates the activity of Lip in the cleavage patterns of both dimeric \(\beta \)-O-4\(^4\), and monomeric lignin model substrates\(^1\). Furthermore, it is noteworthy that Fe-OcPc also catalyzed the \(\text{Ca-C} \beta \) bond cleavage of \(\beta \)-O-4 substrate (II), yielding IV and 4-O-ethylvanillic acid\(^6\) because II is not utilized as substrate by the LiP system\(^7\). Since the control reaction system did not produce these cleaved products, the possibility of participation of Vayer-Villiger type reaction was eliminated.
References