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Introduction

Lectins are defined as non-immune (glyco)proteins which bind carbohydrate(s)

to agglutinate cells and/or to precipitate glyco-conjugatesD . This definition implies

that lectins are multivalent, that is, they possess at least two sugar binding sites.

Because of their hemagglutinating activities and sugar binding properties, lectins are

one of the very useful tools to determine the blood group, to detect sugar residue, to

identify the kind of carbohydrate, and to isolate glyco-conjugates. Hence many lectins

have been purified and characterized2
\ and some of them are now utilized as such

reagents. Lectins have been found in various tissues and organs of higher plants3,4).

Despite much information on purified plant lectins, their physiological roles in

the plant body are still unclear. Within last 40 years, a number of hypotheses for the

*1 This review article is the abstract of the Ph. D. thesis by the author (Kyoto University, 1990)
entitled 'Lectin and related proteins in the bark Sodhora japonica L.'

*2 Laboratory of Cell Structure and Function
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physiological roles of lectins were proposed·); such as the involvements in defense

mechanism of the plant, cell recognition, specific attractants for rhizobial symbiosis,

cell wall elongation, carbohydrate catcher, and storage protein itself. Defense mech

anism is mainly based on the interactions between several lectins and pathogens.

For example, wheatgerm agglutinin, which has a specificity for chitin 0Iigomers5,6>,

binds to chitin-containing cell walls of hyphal tips, septa and young spore of the

fungi 7,8), and inhibits the growth and spore germination7). Similar effects were also

found in the lectins of potat09), peanut and soybean10 ,lD. The symbiosis hypothesis

is based upon the interaction between bacteria of the genus Rhizobium and leguiminous

plants. Importance of this idea was revived by Hamblin and Kent12), who reported

the agglutination of Rhizobium phaseoli by seed extracts of Phaseolus vulgaris, a plant

nodulated by this bacterium. They found that erythrocytes bound to the roots of

this plant and could be agglutinated by the root extracts. Evidence on the possible

involvement of lectins in cell wall elongation was reported by Roberts and Etzler13 ).

They showed an association of the highest levels of the lectin (CRM) with the most

rapidly growing internodes within 19-day-old plants of Dolichos biflorus. A significant

level of this lectin appears to be associated with the cell wallW . "Carbohydrate

catcher" means the aid of lectins in the transport of carbohydrates and their immo

bilization in the seeds. These hypotheses are based on the results with materials dif

ferent from each other. Lectins have been found in the whole biological world, and

even in a plant body, found in several tissues. Because the biochemical and physico

chemical properties oflectins are different among the sources, the physiological role(s)

should be elucidated distinctly in each source material.

Lectin in tree stems was first reported by Krlipe and Ensgraber15) as having

hemagglutinating activity in crude extracts from Laburnum alpinum J Cytisus praecoxJ

Sophora japonicaJ Robinia pseudoacacia and Evonymus europaeaJ and has since been confirmed

in many other tree species. Gietl et al.I 6) surveyed hemagglutinating activity in 53

dicotyledonous tree species. Some of these tree-stem lectins have been purified and

characterized16-23). In Sambucus nigra and Robinia pseudoacacia, the bark lectins were

reported to fluctuate annually, their amounts increasing in autumn and decreasing

in spring24).

The bark lectin of Sophora japonica accounts for about 30% of the total soluble

protein22 ,23) and is the most abundant bark lectin thus far characterized. It is a

tetramer constructed of about 30-35 kDa subunits, and has binding specificity for

galactose derivatives22 ). The bark lectin differs from the lectins of seeds25 ) and leaves

in Sophorajaponica26}, with regard to molecular size and subunit composition, indicating

that the lectins are coded by distinct genes22 , 26). This bark lectin was demonstrated

to be localized in the vacuole27), but it is unknown which cells contain 'the lectin,
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whether the amounts fluctuate annually, and how they relate to the annual increments

of the phloem tissues. It will be important to discuss the physiological role(s) of the

lectins in the bark of tree stem. In Chapter 1, the studies were designed to resolve

these problems.

The bark lectins are not only scientifically interesting, but also commercially

valuable. As described in the first paragraph, some of the lectins are already utilized

as reagents. If the bark lectin is capable of being used as those reagents, the bark

which is regarded as wasted parts in ·wood industry will have a commercial value. In

Chapter 2, the lectin was purified from the trunk bark, which is more abundant than

that of branch in a tree, and characterized. It was examined whether lectin is abun

dant also in the trunk bark as well as in the branch bark. All of the information on

the bark lectin of Sophora japonica has so far been obtained from the branch bark15 22).

1. Localization and develop:mental changes in the bark lectin of Sophora

japonica

There are few studies on the localization of bark lectin. Greenwood et al. 28)

demonstrated that the bark lectin of Sambucus nigra was stored in protein bodies, as

observed with seed lectins of other species. Herman et al. 27) demonstrated that lectin

in bark cells ofSophorajaponica was localized in vacuoles. However, the exact deposition

of bark lectins in different cell types has yet to be determined. In the tree stem, cells

which are living and may contain lectin are cells in cambial zone, sieve tubes, com

panion cells, and ray and axial pearnchyma cells of xylem and phloem. Clarification

of the exact localization of lectin in the bark is important for understanding its function

III the tree.

Nsimba-Lubaki and Peumans24) reported that the bark lectins of Sambucus nigra

and Robinia pseudoacacia have an annual rhythm, their amounts increasing in autumn

and decreasing in spring. However, there is no information on other tree species and

on the relation of this phenomenon to the development of phloem tissue or to lectin

localization. In temp"erate regions, the cambium of the stem, generally, produces

phloem tissue from the beginning of spring to the middle of summer and adds it to

the bark from the inside, the new tissue pushing the older outwards. This process

is repeated year after year with the result that the older tissues are orderly arranged

in annual rings from cambium to outer bark. There are many different patterns of

the annual increment of phloem tissue and the formation of annual rings of inner

bark29 ). In addition, because of the tensile stress induced by the enlargement of the

stem in circumference, the parenchyma cells in the outer region of the inner bark

enlarge their tangential diameter, and divide radially, thus increasing their number;

the process is called "dilatation"29). To understand the function of lectin in the

phloem tissue, it is important to clarify how biochemical changes are correlated with
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these histological changes.

The present study was desgined to determine the exact lectin localization in dif

ferent bark cell types of Sophorajaponica, and to demonstrate how the lectin distribution

and localization is correlated with the development of the phloem tissue. The pattern

of annual growth and tissue accumulation of the bark were characterized histologically,

and determined the changes in the bark lectin during the life of phloem parenchyma.

1.1 Lectin localization in the ste:m

As illustrated in Figure 1.1, the stem of Sophora japonica consists of wood (xylem),

cambial zone and bark. The bark consists of an inner bark (phloem), a living tissue,

and an outer bark, a dead tissue. A cross section of the stem, corresponding to the

rectangular area in the diagrammatic illustration, shows that ray parenchyma (rp)

aligned radially from cambium (C) to xylem (X) and phloem (P). In the phloem,

axial elements are aligned as follows. Bands of axial parenchyma (ap) , bast fibers

(bf), axial parenchyma (ap) and sieve tubes (5) are repeated from the cambium to the

outer bark. In the xylem of this field of view, most of the axial elements consists of

fibers, with some axial parenchyma (ap) and vessels (v) were also present. Completely

differentiated bast fibers, xylem fibers and vessels consist only of cell walls.

Lectin was localized by immunofluorescence microscopylO). A cross section near

the cambium is shown in Figure 1.2 at somewhat greater magnification than the field

Fig. 1.1 Light microscope image of a cross section of the cambium from a stem of Sophora japonica.
The section was prepared from a sample harvested from the portion illustrated as a
rectangle in the diagram on the left, embedded in Spurr's resin and stained with toluidine
blue O. CZ, cambial zone; X, xylem; P, phloem; rp, ray parenchyma; ap, axial
parenchyma; bI, best fibers; s, sieve tubes. Bar= 100 pm.
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Fig. 1.2 Immunofluorescence localization of lectin in the stem of Sophorajaponica.
Lectin can be detected in ray parenchyma (rp) and axial parenchyma
(ap) of both the phloem and the xylem. CZ, cambial zone; X, xylem;
P, phloem; hi, bast fibers; s, sieve tubes. The sample was harvested
in December. Bars = 100 pm.

shown in Figure 1.1. Lectin was detected as green fluorescence. The cell walls of

bast fibers and xylem cells appeared yellow because of autofluorescence of lignin.

Lectin was located mainly in both axial and ray phloem parenchyma. No greenflu

orescence was observed in the cells of cambial zone, the bast fibers, vessels and xylem

fibers. The parenchyma cells in the xylem also appeared to contain lectin, but in

low intensity of the fluorescence. Even when the area between bast-fiber bands was

observed under higher magnification (Fig. 1.3), sieve tubes (s) and companion cells

(arrowheads) were found to contain no lectin (Fig. 1.3A) although protein was ob

served by staining with Coomassie brilliant blue and KIjI 2 (Fig. 1.3B). These

localization patterns were not changed in any other season (data not shown).

Lectin was found not only in the phloem but also in the xylem48). Xylem lectin

of Sophora Japonica has not been reported so far. In order to determine whether the

lectin in the phloem and in the xylem are identical, they were analyzed by immuno-
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Fi.g 1.3 A, B Immunofluorescence and Coomassie-blue-staining images of sieve

tubes and companion cells in the bark of Sophora japonica.
A: Immunofluorescence localization of lectin; it can not be detected in
the sieve tubes (s) and companion cells (arrowheads).
B: Protein and starch stained with CBB and KIJIz respectively. The

sample was harvested in December. Bars=lOO pm.

blotting (Fig. 1.4). While the phloem lectin showed apparent molecular siezs of 32,

33.5 and 35 kDa, which were consistent with findings in the other report23), the xylem

lectin showed a different molecular size of 40 kDa. Comparing the phloem lectin

with the xylem lectin on SDS-PAGE, the former was dominant, but the latter was

minor in the proteins. These results suggest that the xylem lectin might be a different

species from the phloem lectin. Further it have been demonstrated that their intra

cellular localization. Figures 1.5 and 1.6 represent respectively electron micrographs

of the phloem and the xylem ray parenchyma cells. They were quite different from

each other with regard to cell content (Figs. 1.5A and 1.6A). The phloem cell had

many vacuoles of various sizes of 1-8 pm in diameter, containing many electron-dense

clumps. Furthermore, the phloem cell was characterized by the presence of many
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Fig. 1.4 SDS-polyacrylamide gel electrophoresis and immunoblotting of the
proteins extracted from the phloem and xylem of Sophora japonica.

Lanes 1 and 2 are proteins from crude extracts of the phloem. Lanes

3 and 4 are proteins from crude extracts of the xylem. Lanes 1 and 3,
CBB staining. Lanes 2 and 4, immunoblotting detected with anti-SJA
antibodies. Numbers on the left represent apparent molecular sizes.

oil droplets and a few small starch grains, approx. 1.5 /-lm in diameter. On the other

hand, the xylem cell was distinguished by vacuoles of similar size, approx. 3 /-lm in

diameter, containing no electron-dense clumps and many large starch grains, approx.

3 /-lm in diameter. Lectin localization in these two different types of ray parenchyma

cells was demonstrated by using immuno-gold staining method. In the phloem cell,

gold particles were found only in the electron-dense protein clumps in the vacuole

(Fig. l.5B), while in the xylem cell, the gold particles were also distributed within

the vacuoles, except for many gold particles observed on the endoplasmic reticulum

in the cytoplasm (Fig. 1.6B).

1.2 Histological characterization of the annual growth of the bark tissue

of Sophora japonica

Annual growth of the bark (the secondary phloem) of Sophora Japonica was studied

histologically. Transverse sections near the cambium of the trunk, collected from

March to July, are shown in Figure 1. 7. In March, the cambium was still dormant.
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Fig. 1.5 A, B Immuno-gold electron micrographs of a phloem ray parenchyma
cell of Sophora japonica.
A: An electron micrograph by conventional method.
B: Immuno-gold staining of lectin. Gold particles were observed on
electron-dense cluster in vacuole.
cw, cell wall; cr, endoplasmic reticulum; g, Golgi apparatus; I, lipid
or oil droplet; m, mitochondrion; pI, plastid; st, starch; v, vacuole.

The asmple was harvested in December. Bars = I p.m.

In April, the cell number and radial diameter of the cells in the cambium increased,

indicating that the latter had begun to divide. From May onwards the new tissue,

derived from the cambium, began to differentiate, and sieve tubes in the tissue of the

previous year began to undergo destruction. By June the first bast fiber and of the

year was differentiated, and sieve tubes in the old tissue were now completely destroyed.

Afterwards, bands of axial parenchyma, sieve tubes, axial parenchyma and bast fibers

were repeated, and three or four fiber bands were produced until the end of summer.
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Fig. 1.6 A, B Immuno-gold electron micrographs of a xylem ray parenchyma
cell.

A: An electron micrography by conventional method.
B: Immuno-gold staining oflectin. Gold particles are observed mainly
within vacuole.

cw, cell wall; er, endoplasmic reticulum; I, lipid or oil droplet; m,
mitochondrion; pI, plastid; st, starch; v, vacuole. The sample was
harvested in December. Bars = 1 pm.

Ray parenchyma cells were produced continuously.

The view of a whole bark sample is shown in Figure 1.8. Distortions of the

alignment (arrowheads) occurred on each ray parenchyma at almost euqal spaces

(small arrows). Obviously in the]uly panel of Figure 1. 7, the earliest interval be

tween fiber bands of the year was wider and there were more sieve tubes present in

it than in the other later intervals. Hence these distortions, arising because of the
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Fig. 1.7 Annual growth of secondary phloem of Sophora japonica. These trans
verse sections were prepared from the samples embedded in Spurr's
epoxy resin and stained with toluidine blue O.
CZ, cambial zone; P, phloem; X, xylem; NT, new tissue of the
current year; QT, old tisme; b.J, bast fibers; s, sieve tubes; ap, axial
parenchyma; rp, ray parenchyma. Bars= 100 pm.

destruction of sieve tubes, indicate the early tissue of each year, and the tissue between

one distortion and the next indicates that produced in a year. Therefore, this bark

(Fig. 1.8) was determined to contain the living tissues formed in the past seven years

at least. The tangential diameter of the cells was enlarged at the border offive-year-old

and six-year-old tissue (large arrow in Fig. 1.8), indicating that dilatation had been

initiated, and the cells positioned exterior to that point were more randomly arranged

than those which were interior.

1.3 Annual changes in the amount of the bark lectin

The amount of lectin was measured throughout a year on a monthly basis by

ELISA (Fig. 1.9). Lectin levels were at a peak in December, and a high level, about

80% of the peak, was maintained until March. The amount of lectin rapidly de

creased to about 35% from March to May. It appeared to increase slightly from

May to August, with some fluctuation, and then increased rapidly from September

to November. The average amount of lectin in spring and summer, from May to

August, amounted to about 50% of that in winter, from November to March.
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Fig. 1.8 A transverse section through a bark sample from a main stem of Sophora
japonica.
This bark sample was harvested in June. The bottom end is cambium
and the top end is the outer bark. Distortions occurred on the align
of the ray parenchyma (arrowheads). The small arrows on the left indicate
the position of the distortions which are the borders of the tissue age.
The cells positioned by a large arrow increased their radial diameter,
indicating the initiation of dilatation. The numbers of SOD-pm sec
tions on the right correspond to the sample numbers on immunoblots
and ELISA data of Fig. 1.10 Bar= 1 mm.

In order to determine whether the changes described above occurred uniformly

within the inner bark, bark samples were stripped off in June and February, dissected

from the inside to the outisde into 500 pm sections, and the proteins in each section

were immunoblotted (Fig. 1.10A). The section numbers in Figure 1.10 correspond

to those in Figure 1.8. While the amounts did not differ greatly among the February

sections (Fig. 1.l0A, "F"), the amount of lectin in section I of June was markedly

less than that in the other sections (Fig. 1.10A, "J").
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Fig. 1.9 Annual changes in the amount of bark lectin in Sophora japonica.

The amounts were determined by ELISA, and are shown as percentages
of the value in December, at which time lectin is most abundant.

The lectin content, on a fresh-weight basis, of each section was measured by

ELISA (Fig. I.lOB), and the relative amounts are shown as the heights of the columns.

A notable finding in the June sample, which had never been observed by immuno

blotting, was that the lectin level of the outermost section (Fig. I.lOB, "J", No.6)

was markedly lower than that of the middle sections. This difference among sections

was not seen in the February sample. As shown by immunoblotting (Fig. 1.10A),

section 1 ofJune had a very low lectin level of only about 1/40-1/60 of that in the other

sections. The lectin in the other sections appeared to increase slightly from the inside

to the outside, both in June and February. The levels in the middle-aged tissues of

June (Figs. 1.8, 1.10 No. 2-5) increased less than those of February, but the difference

was only 20-25%. The total amount in June was 50% of that in February, which

is in accord with the ELISA results in Figure 1.9.

1.4 Annual changes of lectin localization in phloelll ray parenchYllla

Lectin was made visible on the radial sections of phloem ray parenchyma by im

munofluorescence microscopylO). Lectin was recognized as green fluorescence. The

newly formed parenchyma cells in June contained no lectin (Fig. LIlA), but in

September lectin was located mainly in the cytoplasmic layer (Fig. 1.11 C), and only
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B

J1 23456 F1 23456

Fig. 1.10 A, B Immunoblotting and ELISA of sectioned bark of Sophora Japonica
in June and February.
in June and February.
The sample numbers correspond to the tissues of the same numbers in
Fig.l.8.
A: Immunoblotting of sectioned bark.
B: Relative lectin amount of each section determined by ELISA.
j=June; F=February.

in the vacuole as clumps in February (Fig. 1.llE). On the other hand, lectin was

located in the vacuoles as clumps throughout all seasons in one-year-old tissue (Fig.

1.11 B, D, F). The cytoplasmic layer of some cells in one-year-old tissue contained

lectin in September (arrowheads in Fig. 1.11 D), although the intensity was much less

than in new tissue (Fig. 1.11 C). The tissues older than those in September also con

tained lectin in the cytoplasmic layer (data not shown), but at even lower levels.

As shown in Figure 1.1GB, the amount of lectin in the outermost section (No.6)

in June was less than that in the middle sections. In order to investigate the changes

in localization patterns, the outermost region (Fig. 1.8, No.6) was also observed by
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Fig. 1.11 A-F Immunofluorescence micrographs of radial sections of the phloem
ray parenchyma of Sophora japonica.

Lectin is detected as the fluorescence. A, B, harvested inJune; C, D,
harvested in September; E, F, harvested in February. A, C, E, tissue
formed in the current year; B, D, F, tissue formed in previous year.
Arrowheads=cells containing lectin in both vacuolar clump and cyto
plasmic layer. Bars= 100 pm.

immunofluorescence microscopy (Fig. 1.12). Although some cells gave a reaction,

most contained no lectin (arrowheads in Fig. 12). Especially important is the fact

that the cells which bordered the outer bark did not contain any lectin (arrow in Fig.

1.12). These cells can be regarded as cork cambium or phellodermal cells.

In order to localize lectin within the cytoplasmic layer in September, ray par··

enchyma cells in the new tissue were observed by immuno-gold electron microscopy

(Fig. 1.13). Gold particles were seen in the ER lumen (arrows in Fig. 1.13), the

vesicles (arrowheads in Fig. 1.13), and the vacuoles, but hardly observed in the cyto

plasmic matrix. The particle density in the cytoplasmic layer was significantly

higher than in the two negative controls, although the value was about one-third

of that in the electron-dense clumps in the vacuoles (Table 1.1). Hence the gold

particles in the cytoplasmic layer indicate lectin localization, and that the amount
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Fig. 1.12 Immunofluorescence micrograph of the radial section of the outer
most region of living bark of Sophora japonica.
I, inner bark (living bark); 0, outer bark; arrowheads, cells containing
no lectin; arrow, cells bordering on outer bark. Bar= 100 pm.

Table 1.1 Densities of gold particles on the phloem ray parenchyma
cells in new bark tissue of Sophora japonica embedded in hy
drophilic methacrylate.

No. gold particles cm-2 (mean±S)

Control 1

Control 2

Immuno-gold

V

C

0.21 ±0.06

0.046±0.018

7.2 ±2.2

2.5 ±0.5

Control I = treatment with only gold-labeled protein A, no antibody
treatment. Control2=Treatment with preimmne rabbit serum in
stead of the antibody. Immuno-gold=immunogold electron micro
scopy; V=the electron-dense clumps in the vacuole; C=cytoplasmic
layer. Each value was calculated by using ten micrographs of approx.

50 cm2 •

III cytoplasmic layer is lower than that in the vacuoles. These results indicate that

the lectin is located in the endomembrane system such as ER and vesicles in autumn

and is evidently transported into the vacuole before winter.

1.5 The deposition route of the bark lectin

Lectin was localized in the ER lumen in autumn, and in the vacuole in winter.

The route from the ER to the vacuole was studied by using immuno- and conventional

electron microscopy. On the sections prepared from H 20 2-etched-sample harvested

in September, gold particles, indicating lectin localization, were observed only in the

electron-dense clumps of the vacuole (Fig. 1.14). The gold particles were not ob-
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Fig. 1.13 Immuno-gold electron micrograph of the section of phloem ray paren
chyma of Sophora japonica in September.
Gold particles are seen on materials in vacuole, ER (arrows), and
vesicles (arrowheads). v, vacuole; m, mitochondrion; 0, probably
trace of oil droplet extracted because it is not fixed by osmium.
Bar= 1 pm.

served on any other organelle. However, Golgi apparatus was often seen at just back

of the electron-dense clumps (Fig. 1.14). Moreover, the tonoplast between the Golgi

cisternae and the clump formed several small invagination (arrows in Fig. 1.14B),

and the electron-dense material was observed between the invagination and the clumps

(arrowhead in Fig. 1.l4B). On the sections prepared from methacrylate sample gold

particles were observed in the lumen of the Golgi apparatus (arrows in Fig. 1.15) and

its vesicles (arrowheads in Fig. 1.15), and of course in the vacuoleL On the other

hand, in the observation by the conventional electron microscopy, electron-dense

materials were observed in the lumen of the ER-like endomembrane system (Fig.

1.l6A), and moreover, it was sometimes observed that the ER-like endomembrane

containing the electron-dense materials appeared to fuse to the tonoplast directly
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Fig. 1.14 A, B Immuno-gold electron micrographs of the sections of the phloem

parenchyma cell of Sophora japonica etched by H 20 2 after embedding
into Spurr's epoxy resin.
A: Gold particles are observed on the electron-dense materials in
the vacuole, and the Golgi apparatus was observed at just back of the
electron-dense clump.
B: The tonoplast between the electron-dense clumps and the GOlgi
apparatus forms invagination (arrows), and electron-dense materials
were observed between the invagination and the clumps (arrowheads),

g, Golgi apparatus; m, mitochondrion; t, tonoplast; v, vacuole.
The sample was harvested in September. Bars = 1 pm.
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V1'~:~~';!~~
Fig. 1.15 Immuno-gold electron micrographs of the sections of the phloem

parenchyma cell of Sophora japonica embedded in hydrophilic meth
acrylate resin. The sample was harvested in September.
Gold particles are seen on the materials in vacuole, Golgi apparatus
(arrows) and vesicles (arrowhead). v, vacuole. Bars = 1 pm.

(Fig. 1.l6B).

1.6 Discussion

The bark lectin of Sophora japonica changed in the course of the year relative to

the season, with the amount in spring and summer, from May to August, being about

50% of that in winter from November to March (Fig. 1.9). However, this annual

change of lectin content did not occur uniformly throughout the bark. Whereas the

amount in winter was similar from the inside to the outside of the bark, the inner- and

outermost regions contained less lectin than the middle region of the bark in summer

(Fig.l.lOB). These changes are mainly explained by proposing that, in spring and

summer, new tissue, which contains no lectin, is -added to the bark from the inside while

the cells in the outermost part degrade leetin, so that the total amount of lectin de

creases; in autumn the new tissue synthesizes lectin while the outermost tissue, in which

lectin has been exhausted, dies and becomes outer bark, so that the total lectin amount

in the inner bark increases. The present immunocytochemical data support this in

terpretation. In spring and summer, the new tissue contained no lectin (Fig. 1.11 C),

and lectin completely disappeared in some cells of the outermost region and in all the

cells bordering on the outer bark (Fig. 1.12). In autumn lectin was located in the

lumen of the ER and vesicles in the cells of the new tissue (Fig. 1.13). The latter ob-
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Fig. 1.16 A, B Coventional electron micrographs of the phloem ray paren

chyma cells of Sophora japonica.
A: The ER-like endomembrane was filled with the electron-dense
rnaterials (arrowheads).
B: The ER-like endomembrane containing the electron-dense mate
rials appeared to fuse to tonoplast (arrow). t, tonoplast; v, vacuole.
Bars = 1 pm.

servation is consistent with the findings for several seed storage proteins in developing

cotyledons30- 33). Biochemical studies have demonstrated that these proteins are

synthesized on ER-attached ribosomes and sorted into the ER lumen34- 39 ), and it may

- 92-



BABA: The bark lectin of S. japonica

be assumed that the bark lectin is also synthezised on ER-attached ribosomes. Be

cause in the middle-aged tissue the cytoplasmic layer of the cells also contained lectin

in autumn (Fig. 1.11 D), these tissues appear to retain the potential for lectin synthesis,

although it is not as high as in the new tissue. This may explain why the amount of

lectin increases slightly from the inside to the outside of the bark. The lectin in the

middle part in June comprises only 75% of that in February. This may be because

tissues of every age mobilize small amounts of lectin, or that samples could not be

harvested from exactly the same position.

Concerning with the deposition route of the lectin, the results suggest two route

models. The results on the immuno-gold electron microscopy (Figs. 1.14, 15) suggest

that the bark lectin may pass through Golgi apparatus. This deposition route is

also demonstrated in the other storage proteins in seeds ofdicotyledons37,40,4D. In

contrast, the results on the conventional electron microscopy (Fig. 1.16) suggest that

ER may be directly involved in the secretion of electron-dense materials to vacuole.

It is possible that only some type(s) oflectin molecules or some subunit(s) may be trans

ported through the Golgi and the others directly from the ER to the vacuole. The

bark lectin of Sophora Japonica is tetrameric molecules constructed with three or more

types of subunits22 23), and is mixture of the five molecular species which are able to

be separated with ion-exchange chromatography22). The two-route models, that

some type is transported via Golgi apparatus and the other type bypassing the Golgi

within the certain protein species, was also proposed on the secretion of a-amylase

in the barley germination42
).

Lectin was located in both axial and ray parenchyma cells of the phloem of

Sophora Japonica. The other living cells, i.e., cambium, sieve tubes and companion

cells, hardly contained any lectin. Therefore, like the annual changes this lectin lo

calization indicates that bark lectin has no direct relation to secondary growth in

thickness or to nutrient transport, but is a storage or storage-related protein, as was

proposed by Greenwood et a1. 28 ) and Nshimba-Lubaki et al.2D •

It was further proposed that the lectin is utilized primarily by the phloem-par

enchyma cells themselves rather than being transported to the leaves in the next year.

The nutrients required by leaves are supplied through the tracheids and/or vessels

of the xylem. Of the carbohydrates stored in the stem, starch in the contact cells (the

members of ray parenchyma in the xylem which provide the connection between the

the living ray system and the vessels) is mobilized prior to that in the other ray cells43}.

In contrast, the bark lectin decreased mostly in the outermost region of the bark, and

it appear unlikely that the resulting degradation products can be transported to the

xylem, across the cambium. On the other hand, dilatation (see above) in the outer

part of the inner bark occurs during the active period of secondary growth29), and cork-
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as S]A (Sophora japonica agglu

reagent. Recently, lectin was

But to some extent, the branch

The trunk bark looks promising

cambium differentiates and is active in the same regionw . The bark lectin may be

assumed to be consumed in situ in these two processes. Because the amount of bark

lectin decreased rapidly from March to May, it may be further assumed that the lectin

is involved in these processes mainly at their beginning, when the supply of assimilates

from other parts of the tree is not yet sufficient. There rem2.ins a possibility that some

bark lectin is degraded from spring to summer and the resulting amino acids are

transported to the cambium through the ray parenchyma and utilized in cambial

growth. The observed loss oflectin in middle-aged tissues in summer, although small,

may be the consequence of such a utilization.

2. Purification and characterization of the bark lectin of Sophora japonica

Some ofwell-characterized lectins, mainly obtained from the seeds ofLeguminosae,

are now available as reagents to identify carbohydrates, isolate glycoconjugates and

so on. Lectins were also found in the barks of trunks or branches described as in

introduction. If such lectins are able to be isolated by simple and economical

procedures, inner barks and branches, which are the waste parts of trees, could

become more valuable for the wood industry.

The seed lectin of Sophora japonica is well-known

tinin)254546), and have been already utilized as a

purified from the branch bark of Sophora japonica22 ) •

bark is anatomically different from the trunk bark.

Fresh trunl<

squeezed

centrifuged

EtOH addi tion

centrifuged

ppt.

t---dissolved into

r--centrifUged

sup.

PBS

affinity chromatographed
on acid-treated Sepharose 6B

dialyzed against PBS

lyophilized

Purified lectin

Fig. 2.1 Purification scheme of Sophora japonica bark lectin.
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as another important lectin and partially characterized and compared it with SJA

as a reference.

2.1 Purification of the lectin

The trunk bark lectin of S. japonica was purified by the following procedures:

extraction of crude juice, ethanol precipitation and affinity chromatography (Fig. 2.1).

Volume, protein amounts and agglutinating activity were measured at every stages

(Table 2.1). The yield was 27% of total protein in the extracts. Comparing with

the other tree species, in which lectin ranged from 5 to 10% of the total proteins16 20 2J),

the trunk bark of Sopohra japonica abounds in lectin. This result is accord with the

report on the branch bark of this species22 ). They reported that it contains 30 % of

lectin in its total protein.

Figure 2.2 shows the elution profiles of protein and agglutinating activity on the

affinity chromatogram (the final step of purification). Agglutinating activity was

Table 2.1 Purification of the trunk bark lectin of Sophora japonica

Total Specific
Fraction Vol. Act. Cone. Act. Protein Activity

(ml) (titer) (mg/ml) (titer X ml) (mg)

1 6.0 2560 3.45 15360 19.4 790

2 15.0 960 0.92 14400 13.8 1040

3 14.5 626 0.37 9090 5.3 1710

Fraction I, 2 and 3 are crude juice, solution obtained by ethanol precipitation and by af
finity chromatography, respectively. Volume (Vol.), hemagglutinating activity (Act.)
and protein concentration (Cone.) are experimental data. Total activity (Total Act.),
protein content (Total Protein) and Specific Activity are calculated data.

E 1.0
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II)
CO
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Fig. 2.2

50 60 70 80 90 140 150
ELUTION VOLUME (ml)

Elution profile of Sophora japonica bark lectin on acid-treated Sepharose 6B.
At the point indicated by an arrow, 0.2 M galactose was added to the
elution solvent (20 mM TBS; pH 8.7). Closed circles show absorbance
at 280 nm (A289). Open circles show hemagglutinating activity. No
activity and absorbance were found in 0-30 and 90-130 ml fractions,
so that they were omitted.
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detected only in the fraction of second peak of A28o : after galactose was added. This

figure indicates that the bark lectin was able to be purified by the method used for

the seed lectin of the same species, essentiallym. When the crude juice fraction was

directly applied to the affinity column, the agglutination activity was detected in both

peaks before and after galactose addition. In other words, the lectin in the crude

extracts did not fully adsorb to the bed. When the ethanol precipitated fraction was

added, the lectin was completely adsorbed to the bed. Instead ofethanol precipitation,

gel filtration (Sephadex G-25) led to the same result (the data are not shown). These

findings suggested that the crude juice of a Sophora japonica bark contains a factor which

partially impedes the adosrption of the lectin to the affinity bed. This factor is

probably a low molecular material, because it is removed by a gel filtration (data not

shown). The impeding factor is possibly related to the physiological roles in the bark.

.:(

0·2

0·1

o

O.!1XM <) X 10l:M
SEPtW:RYL s-3m
FL()r/ RllTE 9.CMJHR

10

a0 10'- 105 105
Molecular Weight

30

,

Elution Vol.
45 (mil

Fig. 2.3 Gel filtration chromatogram of the purified bark lectin of SopllOrajaponica

on Sepharcyl S-300.
Void volume of this column (0.95 em X 100 em) was found to be 32 ml

(arrowhead) by using blue-dextran solution. The calibration of this
column was shown. The arrow indicates the molecular weight of the

bark lectin.

2.2 Characterization of the lectin

The bark lectin was analyzed by gel filtration and polyacrylamide gel electro

phoresis (PAGE). The trunk bark lectin showed a single peak on a gel filtration

chromatogram, and its molecular weight was 135000±5000 (Fig. 2.3). This result,

which wasin accordance with ultracentrifugation data23), suggests that this lectin might

have a single molecular weight and be similar to that of the seed lectin reported as

132,80025 ). On the other hand, when analyzed by using native PAGE, the bark lectin

showed a different migration pattern from that of the seed lectin both under acidic
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Fig. 2.4 Analysis of bark and seed lectins of Sophora japonica by PAGE.
A: pH 4.0, native. B: pH 8.9, native. C: SDS-PAGE. Lane I is purified
seed lectin. Lane 2 is purified trunk bark lectin. Lane 3 is Mr marker.

and basic condition (Fig. 2.4A and B). The bark lectin showed multiple bands under

both of the conditions and their patterns were different from those of the seed lectin,

These findings suggest that the bark and seed lectins are different in their molecular

species. This suggestion was supported by the data of SDS-PAGE and observation

of hemagglutination specificity. Where the seed lectin showed a main band of 33

kDa and minor bands of 34.5 and 36 kDa, the bark lectin showed a main band of 32

kDa and minor bands of 33.5 and 35 kDa (Fig. 2.5C). The trunk bark lectin showed

a different specificity for blood types from the seed lectin. The seed lectin was specific

for types A and B25,47), whereas the trunk lectin equally agglutinated types A, Band

o (Table 2.2).

Table 2.2 Hemagglutinating activities of the fractions during pur
fication of the trunk bark lectin of Sophora japonica

Fraction Blood Types
A B 0

1 5120 5120 5120

2 640 640 640

3 640 640 640

Comparing with the seed lectin, the bark lectin of S. Japonica had a similar mol

ecular weight, different charge variants, different molecular weights of subunits, a

broader specificity for the human blood types. These results demonstrate that the

bark lectin is different from the seed lectin. The bark lectin showed mutliple bands

on PAGE under both acidic and basic conditions, while the seed lectin showed three

under basic and a single under acidic condition. The peculiar band patterns of the
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seed lectin is ascribed to the conformational changes but not to the constructive

variation of the subunits46 ). On the other hand, the reason why the bark lectin shows

the multiple band patterns was unknown. Hankins et al. 22) have just reported five

lectins, which are different in their charge, from the lectin of branch bark in S. japonica.

In the present study, multiple PAGE pattern might becaused by such charge variant

show in their report.

2.3 Discussion

The trunk bark lectin has one dominant subunit of 32 kDa and two minor sub

units of 33.5 kDa and 35 kDa shown by using SDS-PAGE, whereas branch bark lectin

was reported to have two major subunits of 30 kDa and 33 kDa and a trace of 30.1

kDa22). Although trunk and branch are apparently similar, being different in their

age, they have some anatomical differences. One of the most different characters

between their barks is: Branch, or young, living bark consists of cortex, which orig

inates from ground meristem, and phloem, which originates from cambium, while

trunk living bark consists of only the latter. Especially, the stem of Sophora japonica

keeps cortex for a long time, approximately 20-30 mm in diameter. Such anatomical

difference between the branch and trunk may cause the difference of their subunits.

In this species, different tissues contain different lectins from one another22 ,26). On

the other hand, the trunk bark lectin may vary with geographical population still also

remains unsolved. Proetz et al,25) discussed that the seed lectin of Sophora japonica

may vary with geographical population.

I t was shown herein that the purification of the trunk bark lectin of Sophorajaponica

is possible by a simple method: ethanol precipitation and affinity chromatography.

The affinity bed is also prepared easily. Because the trunk bark and seed lectins are

different in their molecular species, the trunk bark lectin may become valuable as

another carbohydrate-binding regent.

Conclusion

Lectin is the dominant protein in the inner bark of S. japonica, and its content in

the bark changes during the year, the average amount in summer being about 50 %
of that in winter.

By immunohistochemistry the lectin was demonstrated to be localized in the ray

and axial parenchyma cells. Neither lectin nor other cross reactive materials were

observed in the cambium, sieve tubes and companion cells. In xylem another lectin

might be present48). The distribution and localization of the lectin changed in re

lation to the development of the bark tissue. The distribution of lectin in winter was

similar throughout the inner bark. In contrast, in summer the innermost region

hardly contained any lectin, and the outermost region contained less lectin than the
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middle. Lectin localization in tissues and cells differed also depending on tissue age.

In new tissue, produced in the current year, lectin was absent in summer, located in

the cytoplasmic layer between cell wall and vacuole in autumn, and sequestered in

the vacuoles in winter. On the other hand, lectin in old tissue (formed in the pre

vious year) was located mainly within the vacuoles throughout the year, with only

very small contents in the cytoplasmic layer in autumn. Within the outermost (oldest)

region, in which the lectin content was low in summer, the cells which bordered the

outer bark never contained any lectin in summer.

The intracellular localization of the lectin in new tissue in autumn, determined

by immuno-gold electron microscopy, was in the lumen of the endoplasmic reticulum

(ER) and vesicles and hardly observed in the cytoplasmic matrix. From these

findings it is concluded that lectin is synthesized on the ER most vigorously in the new

tissue in autumn, and that it is mainly consumed in the outermost bark regions, where

dilatation occurs and/or where cork cambium is differentiated.

Further electron microscopical observations indicates that the bark lectin of S.

japonica is localized in the Golgi apparatus. This result suggested that the lectin is

transported through the Golgi apparatus on the way from the ER to the vacuole. On

the other hand, it was sometimes observed that ER-like endomembrane contains

electron-dense materials by conventional electron microscopy. Moreover, such endo

membrane appeared to fuse to the tonoplast. Some of the lectin molecules or subunits

may be transported through the Golgi apparatus and the others of them may be

transported directly from ER to vacuole in the parenchyma cells of the bark of S.

japonica49
) •
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