Original

De Novo Synthesis of Veratryl Alcohol by Coriolus versicolor*

Shingo Kawai**, Toshiaki Umezawa**, and Takayoshi Higuchi**

(Received September 1, 1986)

Abstract—Veratryl alcohol was found in ligninolytic culture of *Coriolus versicolor*. The structure of veratryl alcohol synthesized *de novo* was comfirmed in comparison with ¹H-NMR spectra of the authentic dimethoxybenzyl alcohols (veratryl alcohol and its isomers).

1. Introduction

Lignin biodegradation has been greatly elucidated in recent years^{1~5)}. Ligninolytic enzyme (lignin peroxidase, ligninase) was purified from the culture filtrate of *Phanerochaete chrysosporium*^{6~9)} and the reaction mechanism of lignin peroxidase *via* aryl cation radical was proposed^{10,11)}. This enzyme activity was enhanced by the addition of veratryl alcohol, a secondary metabolite of *P. chrysosporium*¹²⁾.

We previously reported the degradation of non-phenolic β -O-4 lignin substructure model compounds in ligninolytic culture of *Coriolus versicolor* and suggested that a similar lignin peroxidase is excreted by *C. versicolor*^{13~15)}. In the present paper we report *de novo* synthesis of veratryl alcohol by *C. versicolor* and discuss the role of veratryl alcohol in lignin biodegradation.

2. Materials and Methods

2.1 Culture Conditions and Extraction

Coriolus versicolor Ps4a was maintained on 2% malt agar slants. Experimental culture (20 ml in 300 ml-Erlenmeyer flasks) were inoculated with a small mycelial mat from the slant and grown without agitation at 30°C. The culture medium was prepared as described previously¹³⁾.

The 7-day-old cultures (28 cultures) were flushed with sterile oxygen and incubated under the same conditions for 3 days. The whole cultures were combined, acidified with 1N HCl to pH 2 and extracted with 1 liter of ethyl acetate. The

^{*} A part of this paper was presented at the 29th symposium on lignin in Tokyo, Oct. 1984.

^{**} Research Section of Lignin Chemistry.

organic layer was washed with saturated NaCl solution, dried over anhydrous Na_2SO_4 and concentrated to dryness.

2.2 Syntheses of Authentic Compounds

2,3-Dimethoxybenzyl alcohol was prepared from 2-hydroxy-3-methoxybenzaldehyde (*o*-vanillin, Nakarai Chemicals Ltd.) *via* the following two steps; (i) methyl iodide/ K_2CO_3 in DMF at room temperature, and (ii) NaBH₄ in methanol at 0°C.

¹H-NMR (CDCl₃) δ (ppm); 3.87 (3H, s, -OCH₃), 3.89 (3H, s, -OCH₃), 4.70 (2H, s, -CH₂-), 6.82-7.12 (3H, m, aromatic-H).

2,4-Dimethoxybenzyl alcohol was prepared from 2,4-dihydroxybenzaldehyde (β -resorcylaldehyde, Nakarai Chemicals Ltd.) via the following two steps; (i) methyl iodide/K₂CO₃ in DMF at room temperature, and (ii) NaBH₄ in methanol at 0°C.

¹H-NMR (CDCl₃) δ (ppm); 3.80 (3H, s, -OCH₃), 3.83 (3H, s, -OCH₃), 4.60 (2H, s, -CH₂-), 6.40-6.46 (2H, m, aromatic-H_{3,5}), 7.16 (1H, d, J=9.0, aromatic-H₆).

2,5-Dimethoxybenzyl alcohol was prepared from 2,5-dimethoxybenzaldehyde (Nakarai Chemicals Ltd.) by reduction with $NaBH_4$ in methanol at 0°C.

¹H-NMR (CDCl₃) δ (ppm); 3.77 (3H, s, -OCH₃), 3.81 (3H, s, -OCH₃), 4.65 (2H, s, -CH₂-), 6.76-6.90 (3H, m, aromatic-H).

3,4-Dimethoxybenzyl alcohol (veratryl alcohol) was commercially available (Tokyo Chemical Industry Co., Ltd.).

¹H-NMR (CDCl₃) δ (ppm); 3.87 (3H, s, -OCH₃), 3.88 (3H, s, -OCH₃), 4.61 (2H, s, -CH₂-), 6.78-6.94 (3H, m, aromatic-H).

2.3 Instrument

¹H-NMR spectra were obtained with a Varian XL-200 FT-NMR spectrometer (200 MHz) using tetramethylsilane as an internal standard. Chemical shifts and coupling constants are given in δ values (ppm) and Hz, respectively.

3. Results and Discussion

The extracts were submitted to TLC (Kiesel gel 60, F_{254} , Merck, developing solvent: CH_2Cl_2). Veratryl alcohol was isolated and its structure was identified by ¹H-NMR. The ¹H-NMR spectra of the metabolic veratryl alcohol and authentic compounds are shown in Fig. 1. Possibility of 3,5-dimethoxybenzyl alcohol is ruled out, because the protons of the two methoxyl groups of the metabolite have different chemical shifts in ¹H-NMR spectrum, while the chemical shifts of methoxyl groups of 3,5-dimethoxybenzyl alcohol are identical. From the ¹H-NMR spectra shown in Fig. 1, it is clear that the metabolic product (A) is veratryl alcohol (B) and not other isomers (C-E).

Russell et al.¹⁶⁾ found veratraldehyde in a culture of C. versicolor. De novo syn-

Fig. 1. ¹H-NMR spectra of metabolic veratryl alcohol (A) and authentic compounds (B-E).

thesis of veratryl alcohol by *P. chrysosporium* was reported previously by Lundquist and Kirk¹⁷⁾. Afterwards many papers were published in relation to physiological and biochemical role of veratryl alcohol in lignin biodegradation by *P. chrysosporium*. Shimada *et al.*¹⁸⁾ reported the biosynthesis of veratryl alcohol in relation to lignin degradation by *P. chrysosporium*. It was demonstrated that addition of veratryl alcohol to the culture of *P. chrysosporium* increased the ligninolytic activity and the production of lignin peroxidase in the culture^{12,19)}. It was further reported that the oxidation of monomethoxylated aromatic monomers²⁰⁾ and 2-keto-4-thiomethyl butylic acid (KTBA)²¹⁾ by lignin peroxidase of *P. chrysosporium* was enhanced by veratryl alcohol.

— **2**0 —

Our previous investigations^{13~15)} showed that the main degradation products of non-phenolic β -O-4 lignin substructure model compounds by C. versicolor were similar to those obtained by lignin peroxidase of P. chrysosporium^{6~9,22,23)}, suggesting that a similar lignin peroxidase is excreted by C. versicolor. These results also suggest that veratryl alcohol enhances the ligninolytic activity and the production of the lignin peroxidase by C. versicolor.

Acknowledgement

This research was partly supported by a Grant-in-Aid for Scientific research (No. 59760124) from the Ministry of Education of Japan.

References

- 1) C.-L. CHEN and H-m. CHANG: "Biosynthesis and Biodegradation of Wood Components", (T. HIGUCHI ed) Academic Press, Florida, p.535 (1985).
- 2) T. HIGUCHI: *ibid.* p. 557.
- 3) T.K. KIRK and M. SHIMADA: ibid. p. 579.
- 4) M.S.A. LEISOLA and A. FIECHTER: "Advances in Biotechnological Processes vol. 5", (A. MIZRAHI and A.L. VAN WEZAL eds.) Alan R Liss, New York, p. 59 (1985).
- 5) P.J. HARVEY, H.E. SHOEMAKER and J.M. PALMER: Ann. Proc. Phytochem. Soc. Eur., 26, 249 (1985).
- 6) M. TIEN and T.K. KIRK: Science, 221, 661 (1983).
- 7) M. TIEN and T.K. KIRK: Proc. Natl. Acad. Sci. USA, 81, 2280 (1984).
- 8) J.K. GLENN, M.A. MORGAN, M.B. MAYFIELD, M. KUWAHARA and M.H. GOLD: Biochem. Biophys. Res. Commun., 114, 1077 (1983).
- 9) M.H. GOLD, M. KUWAHARA, A.A. CHIU and J.K. GLENN: Arch. Biochem. Biophys., 234, 353 (1984).
- 10) P.J. KERSTEN, M. TIEN, B. KALYANARAMAN and T.K. KIRK: J. Biol. Chem., 260, 2609 (1985).
- 11) K.E. HAMMEL, M. TIEN, B. KALYANARAMAN and T.K. KIRK: J. Biol. Chem., 260, 8348 (1985).
- 12) B.D. FAISON and T.K. KIRK: Appl. Environ. Microbiol., 49, 299 (1985).
- 13) S. KAWAI, T. UMEZAWA and T. HIGUCHI: Agric. Biol. Chem., 49, 2325 (1985).
- 14) S. KAWAI, T. UMEZAWA and T. HIGUCHI: Appl. Environ. Microbiol., 50, 1505 (1985).
- 15) S. KAWAI, T. UMEZAWA and T. HIGUCHI: FEBS Lett., in press.
- 16) J.D. RUSSELL, M.E.K. HENDERSON and V.C. FARMER: Biochim. Biophys. Acta, 52, 565 (1961).
- 17) K. LUNDQUIST and T.K. KIRK: Phytochem., 17, 1676 (1978).
- 18) M. SHIMADA, F. NAKATSUBO, T.K. KIRK and T. HIGUCHI: Arch. Microbiol., 129, 321 (1981).
- 19) M.S.A. LEISOLA, D.C. ULMER, R. WALDNER and A. FIECHTER: J. Biotechnol., 1, 331 (1984).
- 20) P.J. HARVEY, H.E. SHOEMAKER and J.M. PALMER: FEBS Lett., 195, 242 (1986).
- 21) V. RANGANATHAN, K. MIKI and M.H. GOLD: Arch Biochem. Biophys., 241, 304 (1985).
- 22) T. UMEZAWA, M. SHIMADA, T. HIGUCHI and K. KUSAI: FEBS Lett., 205, 287 (1986).
- 23) T. UMEZAWA and T. HIGUCHI: FEBS Lett., 205, 293 (1986).