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Abstract--It is proved that the coefficients B ij and Dij of the fundamental equations
of the layered orthotropic shells can be calculated from the measured moduli of elasticity
(Exc, E ylJ ,"') and (EXb, En"'), respectively, according to the procedure shown in (3-17)
and (3-18). And this is better than the calculation using the elastic constants of veneers,
because the former include the effects of the adhesion and the pressing.

It is very difficult to solve precisely the fundamental equations when the axes of elastic
symmetry do not coincide with those of coordinates (B16;!;;=0, B26;!;;=0, D16;!;;=0 or D26;!;;=0).
The authers attempted to solve them by the application of the finite difference method
and succeeded in solving them with good accuracy of the approximation (see Figs. 7, 8
and 9). The application to the layered orthotropic shells is more complicated than that
to the isotropic shells, so the unique techniques were needed.

The characteristics of the layered orthotropic shallow shells with roller-supported edges
were made clear by this numerical analysis, that is to say, the influence of the following
problems were analysed, and the results are shown in the figures and the tables; 1) the
curvature, 2) the shape of the shells (R. P., Cyl., E. P.), 3) ratio of the side lengths,
4) the moduli of elasticity, 5) the direction of the elastic principal axis, 6) uniform pres
sure and a concentrated load.

Introduction

Theoretical studies on the mechanical characteristics of layered orthotropic

shells are very important to make clear the mechanical characteristics of plywood

shell roofs1,2l (include sandwich construction) and furniture made of curved ply

wood. But it is very difficult to get mathematically exact solution of the funda

mental equations of layered orthotropic shells, so an approximate method of the

solution must be used. As the approximate methods, finite difference method,

finite element methods and Ritz-Galerkin's method are considered to be applicable.

In the present paper, applications of the finite difference methods are attempted

to the problems of layered orthotropic shallow shells with four edges roller sup

ported, and the solutions with good approximate accuracy are obtained.

* Presented at the 20 th Meeting of the Japan Wood Research Society, Tokyo, Sep. 1970.
** Division of Composite Wood.
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Table 1. List of symbols used~

Symbol Definition

m

d

w

x
"""--_L..-:.:._-~X

elastic constant

modulus of elasticity

modulus of rigidity

moment of inertia

bending moment

membrane stress

shearing force

axes of elastic symmetry

shell dimensions in x and y directions, respectively

mesh size of the finite difference method

number of the layers

applied pressure

thickness

components of displacement in x and y directions, respectively

deflection

rectangular coordinates or curvilinear coordinates

distance from the neutral plane of plates and shells

shearing strain y
~~n y

angle between x axis and X axis

Poisson's ratio

normal stress

shearing stress

in bending of layered plates and shells

in compression or tension of layered plates and shells

in n-th lamina or n-th veneer

in x and y directions, respectively

in X and Y directions, respectively

(subscript)
( )

( )
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b

n

u, v
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Fig. 1. Figures for the derivation of the equilibrium equations (l-3}-"(l-7).
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Theory of Orthotropic Plywood Sallow Shells

1. The Fundamental Equations of Orthotropic Plywood Shallow Shells3
-

61

In this paper following assumptions are used for the theoretical analysis of

orthotropic plywood shallow shells; 1) small and elastic deformation, 2) Navier's

assumption, 3) symmetrical construction of lamination and perfect adhesion, 4)

uniform thickness.

The fundamental equations are derived by the following procedure:

The shapes of the shells are given by

f( ) - kx 2 ky 2 kx, Y --2-X +-2- y + xyxy.

kx, ky and kxy are the cuvatures.

B2f(x, y)
k x Bx2 k y B2f(x, y)

BxBy
(1-2)

The equations of equilibrium are

BNx + BNyx -k Q =0Bx By x x ,

BNy + BNxy -k Q =0By Bx y y ,

kxNx+2kxyNxy+kyNy+ B~x + B~y +p=o ,

Q = BMx + BMyx
x Bx By'

Q = BMy + BMxy
y By Bx'

(1-3)

(1-4)

(1-5)

(1-6)

(1-7)

where (1-8)

As the veneers are symmetrically laminated, the coupling of "the membrane

stress and the bending moment" does not occur. So that the strain-displacement

relations of the neutral plane are

Bv
ey= By -kyw ,

Bu Bv
rxy= By + Bx -2kxyw .

And the strain (caused by bending) -deflection relations are

ex/}= -ZW,xx ,

ey/}= -ZW,yy ,
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MASUDA, MAKU: Plywood Shallow Shells (I)

rxyb= -2zW,xy , (1-14)

where 82w
W,xy= 8x8y. (1-15)

As the veneer can be considered as an orthotropic material, the stress-strain

relations in the n-th layer are

a xn Clln C 12n C16n Cx

a yn C21n C22n C26n cy
Txyn C61n C62n C66n r xy

where C12n=C21n, C16n=C61n, C26n=C62n.

(1-16)

(1-17)

The membrane stress resultants and the bending moment resultants are obtained

by the integration of (1-16) over each lamina and totalizing over all laminae.

Thus:

m )hn
Nx=:E h axndz,

n=l n-!

m )hn
Nxy=:E h Txyndz,

n=l n-!

m )hn
Mx=:E h axnzdz,

n=l n-!

m )hn
M xy =:E h Txynzdz,

n=l n-!
(1-18) "-' (1-23)

where hn denotes distance from the neutral plane to the lower face of n-th lamina

(numbering from upper face lamina).

Using the following notations Aij, Dij :

where

m m

A ij = :E Cijn(hn- hn- 1) = :E Cijntn ,
n=l n=l

(1-24)

(1-25)

(1-26)

the stress and moment resultants are expressed as follows by substitution of (1

16) into (1-18) "-' (1-23) :

m )hn
Nx=:E h (Cllncx+C12ncy+C16nrXy)dz

n=l n-!

m m m

=cx:E Clln(hn- hn- 1) + cy :E C12n (hn- hn- 1) +rxy :E C16n (hn- h n- 1)
n=l n=l n=l

=AllCx+A12cy+A16rxv, (1-27)

N x All A 12 A 16 CX

Ny A 12 A 22 A 26 cy (1-28)
N xy A 16 A 26 A 66 rxy

- 47



WOOD RESEARCH No. 52 (1972)

(substitute (1-12) '"" (1-15))

= - (D11W,xx+DI2W,yy+2DI6W,XY) , (1-29)

M x D11 D12 D16 W,xx
My D12 D22 D26 W,yy (1-30)

M xy D16 D26 D66 2w,xy

Combining the all above equations (1-1) '"" (1-30) with the following stress function

¢, the fundamental equations can be derived in the more simply form.

(1-31)

This stress function satisfies the equations (1-3) and (1-4). Because the terms

kxQx and kyQy can be neglected when the shells are shallow.

From the equations of equilibrium (1-5) '"" (1-8), the following differential equa

tion is obtained:

82M x 2 8
2
M xy 8

2
My k N 2k N k N 08T+ 8x8y -+---ayz+ x x+ xy xy+ y y+p= (1-32)

The substitution of (1-30) and (1-31) in (1-32) yields the equation of equilibrium:

~w ~w ~w ~w
D11 8x4 +4D16 8x38y + (2DI2 +4D66) 8x28y2 +4D26 8x8y3

84w 82¢ 82¢ 82¢
+D22~ - kY-8 2 +2kxY~88 - kX-8 2 - P=0 (1-33)oy x x y y

And the compatibility equation is derived from (1-9)'""(1-11):

(1-34)

(1-35)

Substituting eq. (1-28) and (1-31) into this equation, the compatibility equation is

expressed by ¢ and:

84¢ 84¢ 84¢ 84¢ 84¢
B 22 8x4 -2B26 8x38y + (2B I2 +B66) 8x28y2 2B16 8x8y3 +B22 8x4

82w 82w 82w
+ky 8x2 -2kxY-8x8y +kx 8y2 =0,

where
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2. Relations between the Coefficients (Bij, D ij ) and the Moduli of Elasticity

In this chapter, the following problems, about the relations between the coeffi

cients (Bij, Dij) and the moduli of elasticity, are given the proof. Coefficients Dij

in the equilibrium equation (1-32) can be obtained by using the moduli of elasticity

of "bending" (EXb , E yb , GXYb and P.XYb) of the plywood strips which have the same

veneers and adhesives and the same construction of lamination as the plywood

shells, whose lamination is symmetric with respect to the middle plane. And the

coefficients B ij in the compatibility equation (1-35) can be obtained by using the

equations shown in (3-17), and the moduli of efasticity of "compression" (or tension)

(Exe , EYe, GXYe and p.xYe) of the same plywood strips. When the axes of elastic

symmetry (directions of the grain) do not coincide with the axes of coordinates

(directions of the edges), Bij and Dij are obtained by the application of the equa

tions of the coordinate transformation (3-10) """'-' (3-13) as if the plywood strips were

veneers which have the same elastic constants as those of the plywood strips (En,

E xe ,··) .

It is better to get the coefficients B ij and D ij by the above-mentioned method

which uses the moduli of elasticity of "the plywood" strips than by the calculation

according to the equations (1-24), (1-25) and (1-36), which uses the moduli of

elasticity of "the veneers". Because the former method gives the coefficients Bij

and Dij which include the effect of the adhesion and the effect of the change of

the specific gravity of the veneers by pressing.

Considering that the plywood shells and plywood strips are constituted by not

only veneers but also "adhesive layers", the problems mentioned above can be

given the proof as follows:

The elastic constant Exe (nominal Young's modulus of the plywood strip which

has the same construction of lamination as the plywood shells) is the ratio of N xl
t to cx when Nx~O and Ny=Nxy=O, i. e.

E xe = NX
t

when Nx~O and Ny=Nxy=O. (2-1)
cx

When the fiber directions (axes of elastic symmetry) coincide with the axes

of coordinates, the equation of stress resultant (1-28) is expressed as follows;

N x A I I A I n 0 cx

Ny A nI Ann '0 cy (2-2)

N xy 0 0 A VI \1 rXY

Substituting the stress conditions (2-1) i. e. Nx~O and Ny=Nxy=O in this equ

ation, cx, under that stress condition, is expressed as follows;

cx An n N (2-3)
AIIAnn-Alj[2 x
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(2-4)Exe

So the Young's modulus of compression (or tension) Exe can be expressed using

only Au and t by the substitution of eq. (2-3) in (2-1) :

ArrAnn-Arn2
An nt

In the same way, EYe, GxYe , f-tXYe and f-tYXe are also expressed using only A lJ

and t as follows:

ArrAnn-Arn2 (E Ny )
EYe AI It Ye= syt when Ny~O, Nx=Nxy=O ,

Gxye = A~ (Gxye= ~:~ when Nxy~O, Nx=Ny=O),

f-tXYe= AA r n (f-txye =-~ when Nx~O, Ny=Nxy=O),
nn Sx

An r AI n (sx )f-tyxe=~=~ f-txYe=-e;- when Ny~O, Nx=Nxy=O .

(2-5)

(2-6)

(2-7)

(2-8)

Denoting Cue and CUn as follows:

C Exn
Irn=~, C I nn f-tXYnEYn C G

, , VIVIn= XYn,
An

An = 1- f-tXYnf-tYXn, (2-9)

C r ne f-tXYeEYe C G
, , VI VIc = XYe
Ae

and Ae = 1- f-tXYef-tYXe , (2-10)

Au are expressed in only t and CUe by substitution (2-5) "-' (2-8) in (2-9) :

ArrAnn-Arn2
A r rAn n

(2-11)

C Ar r
r re=~t~' C An n

nne=~t~' C A r n
I ne=~t~'

C A VIVI
VIVIe=~t~, (2-12)

i. e. (2-13)

Then, Au can be obtained from E xe , EYe, GXYe and f-tXYe which are measured

by "the tension (or compression)" of the strips made of the same construction

of lamination as the plywood shallow shells. And it is now given the proof that

the coefficients B ij of the compatibility equation (1-35) can be obtained from the

measured moduli of elasticity Exe , EYe, GXYe and f-tXYe. Because Bij values are obtained

by inverting the matrix Aij, A ij values are obtained by the coordinate transforma

tion of Au, which is expressed in the next chapter, Au values are obtained from

Cue by using the equation (2-13), and CUe is obtained from the measured value

E xe , EYe, GXYe and f-tXYe:

(2-14)
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In the same way, it is also given the proof that the coefficients Dij of the equi

librium equation (1-33) are obtained from EXb , E yb , GXYb and f-lXYb which are mea

sured by "the bending" of the same plywood strips:

(2-15)

(2-16)

In this case it is necessary only to change t~/, ex, ey, rXY~W,XX, W,yy, 2w,xY,

N~M, and subscript c~ subscript b and use eq. (1-30) instead of eq. (1-28).

For example, instead of eq. (2-1), following equation is used;

Mx/ when Mx~O, My=Mxy=O,
W,XX

where W,xx (see eq. (1-15)) is equal to curvature (1/px) given by the bending of

the plywood strips.

3. The Coordinate Transformation of the Elastic Constants

To complete the proof of last chapter, it is necessary to give the equations of

the coordinate transformation7 ,8) for the layered plates (or the plywoods), whose

laminae are orthotropic and are laminated parallel or perpendicular to the adjacent

ones.

The equations of the transformation for the not laminated orthotropic plates

(or the veneers) can be expressed as follows:

\

Cl1n =C I InCOS40+ C nnnsin40+ 2(C Inn +2CVIVIn)Cos20sin20,

C12n= (C I In + C nnn-4C'1VIn)Cos20sin20+C I nn(COS40+ sin40),

C16n = (C I InCOS20- Cnnnsin20)cosOsinO- (C I nn +2CVIVIn)

x (cos30sinO- cosOsin30),

C22n = C I Insin40+ C nnnCOS40+ 2(C Inn +2CVIVIn)Cos20sin20,

C26n = (C I Insin20-Cnnncos20)cosOsinO+ (C I nn+2CVIVIn)

x (cos3OsinO- cosOsin30) ,

C66n = (C I In + Cnnn- 2C I nn)cos20sin20+ CVIVIn(COS20-sin20)2,

(3-1)

(3-2)

(3-3)

(3-4)

(3-5)

(3-6)

where, Cijn are elastic constants at coordinate direction (see eq. (1-16)), and

CIJn are elastic constants parallel to the axes of the elastic symmetry (parallel or

perpendicular to the fiber direction), which are inclined 0 rad. to the coordinate

axes. Substituting eq. (3-1) in eq. (1-24), the following equation is obtained:

m

A l1 = ~ eC I IntncoS40+Cn nntnsin40+2(C I nn+2CVIVIn)tncos20sin20J. (3-7)
n=l

As 0 is same in all laminae when the lamination is parallel or perpendicular

as expressed above, this equation can be rewritten as follows:
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And as A lJ can be written from eq. (1-24) as follows:

m

A lJ = LJ ClJntn ,
n=l

the following relation is obtained:

All=A r rcos40+An nsin40+2(A r n+2AVI\1)Cos20sin20.

(3-8)

(3-9)

(3-10)

In the same manner, A 12 , A 16 , A 22 , A 26 and A 66 are expressed in the same form,

that is, C is replaced by A, subscripts ijn and lJn by ij and lJ, respectively, in eqs.

(3-1),...., (3-6). (3-11)

So the transformation equations of the elastic constants of the orthotropic

layered plates, i. e. AlJ---+Aij are obtained.

And the transformation equations of the elastic constants for bending, i. e. DlJ

----+Dij, are also obtained in the same manner, for example;

(3-12)

D 12 , D 16 , D 22 , D 26 and D 66 are also expressed by the replacement, C---tD, subscripts

ijn---tij and lJn---tlJ in eqs. (3-1),...., (3-6). (3-13)

Expanding the range of the application of eq. (2-12), Cije is denoted as fol

lows:

(3-14)

Substituting these relations (2-12) and (3-14) in the transformation equation

(3-10) and (3-11), the following relation is obtained:

(3-15)
I

and the same relations as eqs. (3-2),...., (3-6), whose subscript n is changed to sub-

script e.

So the route ·····---tshown below can also be given the proof.

Au (3-10)(2-y ~(3-1l)

----~ C[Je _ A ",J' ---_ B(2-10), .- )10 )Ij.
" ~ (1~36)

(3-15) "" "..
and (3-16)'~, .... ".. ".. (3-11)

C(jr:. ,/

(3-16)

(3-17)

And the following relation for the bending elastic constants are also given the

proof:
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(ExIJ ,"')
(2-10)* (3-18)

* change the notations of the equations to the
bending type according to the manners ex
pressed between (2-15) and (2-16).

Then, it is now proved that the coefficients of the fundamental equations of

the layered orthotropic shells i. e. B ij and Dij can be calculated from the measured

moduli of elasticity i. e. (Exe , EYe, GXYe , f!.XY,,) and (Exb , En, GXYb , f!.XYb) , respec

tively as shown in (3-17) and (3-18). And this means that the coefficients can be

calculated as if the shells were the not layered orthotropic shells with the nominal

moduli of elasticity, E xb , E yb ,., ·for the bending moments and E xe , EYe,., ·for the

membrane stresses.

Procedure of the Numerical Analysis by means of the

Finite Difference Method

1. The Finite Difference Equations of the Fundamental Equations

As it is very difficult to get the mathematically exact solution of the funda

mental simultaneous equations (1-33) and (1-35), the finite difference method is

applied to solve them approximately. The fundamental equations are replaced by

the corresponding finite difference equations shown in Figs. 2 and 3 in the same

w

-Ee E6 Ea
-Eg E4 E2 E5 Eg
E7 E3 E1 E3 E7

Eg E5 E2 E4 -Eg
Ea E6 -Es

+
-°4 Dz °4
03 0 1 03

°4 °2 -°4

where, EI = 6Dll + (SDI2 +16D66 )A-2+6D22,<-4
E2= - (16DI2+32r66),<-2_4D22A-4

E3= -4Dll- (4DI2+SD66 ),<-2
E4 = 2D16A-1+ (2D12 +4D66 ),<-2 +2D26,<-3
E5 = - 2D16,<-1 + (2D12 +4D66),<-2 - 2D26,<-3
E 6=D22A-4, E 7 =DII, E s=D26A-3, E g =D16A- 1,
DI=2kx ,<-2+2ky , D2= -kx A-2 D3= -ky ,

-~k -I _-.!!JLD4 - 2 xyA ,A - dx .

Fig. 2. The finite difference equation of the equilibrium equation (1-33)
at the nodal point k.
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-C8 C6 C8

-e.g C4 C2 C5 Cg

C7 C3 C1 C3 C7

C9 C5 C2 C4 -es
C8 Ce; -Ca

+
04 -°2 -°4
-°3 -°1 -°3
-°4 -°2 °4

w

= 0,

(4-1)

where, Cl =6B22+ (8B12+4B66).r2+6Bll.r4

C2= -(4B12+2B66 )A-2-4Bll.r4

Ca= -4B22- (4B12+2B66).r2

C4 = - B26.r1+ (2B12 +B 66 )A-2- B16.ra

C5=B26.r1+ (2B12+ B 66).r2+ B16.ra

C6=Bll A-4 , C7=B22,
1 1

Cs= -TB16.ra, Cg = -TB26.r1.

Fig. 3. The finite difference equation of the compatibility equation (1-35)
at the nodal point k.

manner as written in the previous report "Numerical Analysis of Orthotropic
P1ates"gl.

2. The Finite Difference Equations of the Boundary Conditions

In this paper, the application of the finite difference methods to the problems

of the layered orthotropic shallow shells with "four edges simply supported by

means of rollers"· is discussed. This roller-support boundary condition can be ex

pressed as follows:

on the edges parallel to the y axis, i. e. X= ± a/2,

w=Mx=Nx=ey(or v) =0,

on the edges parallel to the x axis, i. e. y = ± b/2,

w=My=Ny=ex(or u) =0. (4-2)

These boundary conditions are also expressed by using only wand ¢. The

bending moments and the membrane stresses are expressed by using the equations

(1-30) and (1-31), respectively. And the membrane strains are expressed as fol

lows from eqs. (1-28), (1-31) and (1-36) :

ex B ll B 12 B 16
B2¢
BY2

ey B 12 B 22 B 26
B2¢

(4-3)
rx2

r xy B 16 B 26 B 66
B2¢

BxBy

These equations can also be replaced by the corresponding finite difference

equations as shown in Fig. 4.

- 54-



MASUDA, MAKU: Plywood Shallow Shells (I)

RI4 RI2 -R14

RI3 R11 RI3

-R14 RI2 RI4

Rll=4Dll +4D12r2

R12= -2D12r2

R13= -2Dll
R14=DI6A-1

W A=dy/dx.

I
dil\2

P24 P22 -P24

P23 P21 P23

-P24 P22 P24

I X
di

P21= -2BI2r2-2B22
P22=BI2A-2

P23=B22
1ct> P24=TB26rl

Fig. 4. The finite difference equations of the bending moment M x , the membrane
stress N x and the membrane strain Cy at the nodal point k.

3. Computation Procedure

In order to solve the simultaneous linear equations consist of the above finite

difference equations of "the fundamental equations and the boundary conditions",

y

t

~
I
I
I

mm.~·~;:·~ Gr··
~'--L...,<,,+L....L-.<4L-.L-L.+, ~~-~-------'8

dx~

Fig. 5. An example of the meshes of the finite difference method.

- 55-



WOOD RESEARCH No. 52 (1972)

the number of the equations must be equal to that of the unknowns. Taking

advantage of symmetry with respect to the central point C, for example, WA =WA',

Wn=Wn' .. ·, only the half of the shell is considered as shown in Fig. 5.

1) The finite difference equations of the equilibrium equation and the com

patibility equation hold at each nodal point of symbol 0 in Fig. 5.

2) The finite difference equations of the boundary conditions (4-1) and (4-2)

hold at each nodal point of 6 and x, respectively.

3) On the corner points 0, Ws and Uh are equal to zero.

The number of the finite difference equations is smaller than that of the un

knowns by four and six about wand cP, respectively. To equalize these, the follow

ing relations are used:

(4-4)

(4-5)

The relations (4-5) are equivalent to "Nx=Ny=O at the corners". And the

relations (4-4) means that the deflections of the imaginary nodal points on the

extended lines of the edges are equal to zero. These are equivalent to "Mx=My=O

at the corners" when the axes of elastic symmetry coincide with the axes of coordi

nates, but are not equivalent when those do not coincide.

As the imaginary nodal points 4 and 8 in Fig. 5 are not used, the values of

M x, My, M xy and N xy at the corners are calculated by means of the extrapolation.

Thus, the simultaneous linear equations i. e. the finite difference equations are

obtained in the following form:

eqilibrium equations

compatibility equations

boundary conditions

~~k_l
= I 01

10J .
"

(4-6)

As the matrices of these simultaneous equations are large and complicated (for

example, 86 x 86 for 8 x 8 meshes and 128 x 128 for 10 x 10 meshes), the authers

designed the computer programs not only to solve the linear equations but also to

make the matrices. So the accuracy of the approximation is easily examined by

changing the input data card for the mesh sizes. Thus, the distributions of the

deflection wand the stress function cP are obtained by the computatton, and then

those of the bending moments and the membrane stresses are also calculated by

using the equations shown in Fig. 4.
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I/fII!I- - - -

Cyl. 0 0 shell

H'P· 0 0 shell

Cyl. 450 shell

H'P· 450 shell
Fig. 6. Figures of the orthotropic plywood cylindrical shells and the H. P. shells,

whose face grain (principal elastic axis) is parallel and/or inclined at 45° to
the edges.

Results and Discussions

1. Accuracy of the Solutions by the Finite Difference Method

As the finite difference method is one of the techniques to get approximate

solution, it is necessary to examine the accuracy of the solution. The influence

of the mesh sizes is shown in Figs. 7, 8 and 9. These figures show that the finite

difference method mentioned above gives good approximate solutions to the pro

blems of the roller-supported plywood shallow shells. The finer the mesh becomes,

the more accurate solution can be obtained. But the capacity of the memory and

the computation time give the limitation to the mesh sizes. So it is effective to

apply the extrapolation method (see authors report9 ) p 23 eq. 16-2), when the more

accurate solutions are needed.

As is evident from the figures, the results with the 8 x 8 grid give the sufficiently

accurate solutions to make clear the mechanical characteristics of the orthotropic

plywood shallow shells. So the results computed with the 8 x 8 meshes are used

in the following discussions.

2. Effect of the Curvature

Deflection

The effect of the curvature on the deflection of the orthotropic plywood cy

lindrical shallow shells is shown in Fig. 10, and that of the hyperbolic paraboloidal

(H. P.) shells is in Fig. 11. And the effect of the rise on the central deflection10 ) is

shown in Fig. 12. As is evident from the figures, the effect of the curvature or
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o

Fig. 7. Influence of mesh sizes on the deflec
tion along the central curved line of the
orthotropic cylindrical shells* (kx =0.01 or
rise/span=0.075) under uniform pressure. 0°,
30° and 45° denote the shells whose principal
elastic axes are inclined to the edges at 0°,
30° and 45°, respectively.
* The dimension of the shells is 60 cm x 60

cm x 0.9 cm. The moduli of elasticity are
equal to those of C in Table 2.

** When the case **** in Table 2, the unit
of the scale is x 10-3 cm/(kg/m2).

Fig. 9. Influence of mesh sizes on the mem
brane force Nx along the central curved line
of the orthotropic cylindrical square shells
(the same shells as shown in Fig. 7).
* When the case **** in Table 2, the unit

of the scale is x 10 (kg/m)/(kg/m2).
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x ax8 ..
o IOxlO •
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c:
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~LO
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o
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Fig. 8. Influence of mesh sizes on the deflec
tion (along the central line parallel to x axis)
of the orthotropic H. P. shells (kxy =0.005).
See * in Fig. 7.
* When the case **** in Table 2, the unit

of the scale is x 10-2 cm/(kg /cm2).

(kglmV( kgIm2)
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kxy=O.O0° shell
2-

------ 45° shell
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------ 45° shell
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~ "-aD ~.---- ....
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0 _QQ.~ 0
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CD CD- 0.005 -CD CD
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Fig. 10. Effect of the curvature on the deflec
tion (along the central line parallel to x axis)
of the orthotropic cylindrical shells under
uniform pressure. See * in Fig. 7 and 8.

Fig. 11. Effect of the curvature on the deflec
tion (along the central line parallel to x axis::
of the H. P. shells under uniform pressure"
See * in Fig. 7and 8.

Fig. 12. Effect of the rise (or the curvature)
on the central deflection of the shells (cylin
drical, H. P. and E. P.) under uniform pres
sure. See * in Fig. 7 and 8.
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Fig. 13. Effect of the curvature on the bending moment of
the orthotropic cylindrical shells under uniform pressure.
See * in Fig. 7. When the case **** in Table 2, the unit
of the scale is x (kg o m/m)/(kg/m2).
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rise on the deflection of the cylindrical (CyI.) shells with four edges roller-supported

is much larger than that on the deflection of the H. P. shells. And the effect of

rise on the deflection of the cylindrical shells is almost the same as that of the

elliptic paraboloidal (E. P.) shells. lO ) As is shown in Fig. 10, the central part of

the deflection curve is depressed when the rise increases.

Bending Moment and Membrane Stress

The effect of the curvature on the bending moment and the membrane stress

of the cylindrical shell is shown in Figs. 13 and 14. The bending moment pararell

to the face grain decreases as the curvature increases. The membrane stress is

equal to zero when the curvature is equal to zero (i. e. the plates), and it increases

as the curvature increases. But it begins to decrease when the curvature becomes

larger than a certain amount, as shown in Fig. 14. This phenomenon can be ex
plained by' the increase of the stress component against the external force.

The average face-strain caused by the bending moments is almost the same

as that caused by the membrane stresses when the curvature kx is about 0.01.

3. Influence of "the Direction of the Axes of Elastic Symmetry" and "the ModuH

of Elasticity".

Direction of the Axes of the Elastic Symmetry

The central deflection of the square plates and shells under uniform pressure

is shown in Table 2.

The deflection of the square shells becomes smallest when the direction of the

axes of elastic symmetry inclines at 45° to that of the edges, except the case of

A (parallel laminated shells). This is one of the interesting characteristics of the

orthotropic plates and shells.

The deflection of 0° shell (the elastic principal axis is parallel to the edges or

to the x axis) is almost the same as that of 90° shell except the case of A-CyI. in

Table 2.

Examining Table 2 with consideration that "the bending elastic constants of

cases Band C and/or D and E" and "the compression (or tension) elastic con

stants of cases Band D and/or C and E" are equal to each other, it becomes clear

that the effect of the membrane stress to the deflection becomes larger than that

of the bending moment as the rise increases.

Except the extreme case of Ex">Ey as case A in Table 2, the deflection curves

of the orthotropic plates and shells are similar to each other (in the cases-(Iot

B, C, D and E). The deflection of the "isotropic" plates and shells, whose el~stic

constants are equivalent to the orthotropic plates and shells, is shown in ;..F,of
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Table 2. Influence. of "the moduli of elasticity", "the curvature" and "the direction of the
axes of elastic symmetry" to the central deflection under uniform pressure.*

Moduli of elasticity Central deflection (weip) X 1O-3cm/(kg/m2)****

of the plates and 0 Plate
I Cyl. Cyl. Cyl. E. P. H·P

shells kx=ky= kx=O.OOl kx=0.005 kx=O.Ol kx=ky= kx=ky=O
x 103 kg/cm2*** I

0.005
kxy=O Iky=kxy=O ky=kxy=O ky=kxy=O kxy=O kxy =0.005

EXb=145 Exc=145 0° 1.859 1.815 1.120 0.498 0.477 1.692

EYb= 5 EYe = 5 30° 1.813 1.787 1.337 0.767 0.747 1.620
A

GXYb= 5 GXYe= 5 45° 1.734 1.710 1.277 0.718 0.709 1.539

flXYb=0.55 flxYe=0.55 90° 1.859 1.804 1.029 0.393** 0.477 1.692

EXb=lOO Exe=lOO 0° 1.981 1.884 0.864 0.313 0.308 1.707

B
EYb= 50 EYe= 50

I
30° 1.342 1.237 0.419 0.125 0.121 1.054

GXYb= 5 GXYe= 5 45° 1.191 1.064 0.283 0.069 0.068 0.865

flXYb=0.055 flxYe=0.055 90° 1.981 1.884 0.858 0.302 0.308 1.707

EXb=lOO Exc= 75 0° 1.981 1.883 0.856 0.309 0.304 1.703

C
EYb= 50 EYe= 75 30° 1.342 1.227 0.390 0.112 0.109 1.039

GXYb= 5 GXYc= 5 45° 1.191 1.048 0.250 0.057 0.056 0.842

flXYb=0.055 flxYe=0.037 90° 1.981 1.883 0.851 0.299 0.304 1.703

EXb= 75 Exe=lOO 0° 1.984 1.888 0.864 0.310 0.309 1.711

D
EYb= 75' Eyc= 50 30° 1.303 1.204 0.415 0.123 0.121 1.041

GXYb= 5 GXYe= 5 45° 1.142 1.026 0.281 0.069 0.068 0.851

flXYb=0.037 flxYe=0.055 90° 1.984 1.888 0.863 0.309 0.309 1.711

EXb= 75 Exc= 75 0°&90° 1.984 1.887 0.857 0.306 0.305 1.708

EYb= 75 EYe= 75 30° 1.303 1.194 0.385 0.110 0.109 1.022
E

GXYb= 5 GXYe= 5 45° 1.142 1.009 0.248 0.057 0.056 0.822

flXYb=0.037 flxYe=0.037 I

Eb=Ee=54.3 - 1.441 1.289 0.352 0.095 0.096 1.062

F Eb=Ee=20.8

Iflb= fle =0.309

* The dimension of the plates and shells is 60cm x 60cm x 0.9cm (thickness).
** In this shell the deflection becomes maximum (0.441) near the mid point between the not

curved edge and the center of the shell.
*** except for fl

**** When the sizes of the plates and the shells are 6m x 6m x 9cm and the curvatures are 1/10
of this table i. e. the same rise/span ratio, the unit is x 10-2 cm/(kg/m2

).

Table 2. These isotropic elastic constants are calculated with consideration that

"the lamination and the adhesion of the infinitesimally thin veneers in every direc

tion" make isotropic plates and shells. The values of the deflection of these iso

tropic plates and shells are between those of 0° and those of 45° of the orthotropic

plates and shells (B, C, D and E in Table 2) except the case A.
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Table 3. Rectangular plates and shells.*

Central deflection (Weip) X 1O-3cm /(kg/m 2)

Curvature 0 square 'rectangular I rectangular
1:1 I 1:1.5 1:2

(60cm x 60cm)** (60cm x 90cm)**1(60cm x 120cm)**

Plate 00 1.981
I

2.818
I

3.012

kx= ky= kxy=O 300 1.342
I

2.516 3.345

450 1.191 2.423 3.531

900

I
1.981

I 4.295 5.522
I

Cyl. 0° 0.856 1.569 2.112

kx=0.005 300 0.390 1.028 1.995

ky=kxy=O 450 0.250 I 0.858 2.028

900 0.851
I

1.942 3.031

Cyl. 00 0.309 0.669 1.089

kx=O.Ol 300 0.112 0.363 0.890

ky=kxy=O 450

I

0.057 0.278 0.873

900 0.299 0.720 1.278

* the moduli of elasticity are the same as those of type C shown in Table 2.
** See **** in Table 2.

Rectangular Plates and Shells

The central deflection of the rectangular cylindrical shells under uniform pres

sure is shown in Table 3. When the ratio of the side lengths is 1: 2, the minimum

central deflection is obtained at smaller angle than 45°.

4. Distributions of the Deflection, the Bending Moments and the Membrane Forces

under Uuiform Pressure

Deflection

Distributions of the deflection, the bending moments and the membrane forces

of the "cylindrical" shells with the moduli of elasticity of type C (Table 2) "under

uniform pressure" are shown in Figs. 15---...,21.

The deflection distributions of the cylindrical shells (kx =O.01, rise/span=0.07f)

are shown in Fig. 15. The deflection curves of the 45° shell (face grain is inclined

at 45°) and that of the isotropic shell (F in Table 2) are flat except near the

edges, and those deflections are much smaller than that of the 0° shell.

Bending Moments

The distributions of the bending moment parallel to the elastic principal axis

of the orthotropic shells (Mx ) are shown in Fig. 16 with the distribution of the

maximum bending moment of the equivalent isotropic shell (Mmax). The bending

moment of the 45° shell and that of the isotropic shell are smaller than that of
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Fig. 15. The distribution of the deflection of the cylindrical
shells (kx =O.OI or rise/span=O.075) under uniform pressure.
See * and ** in Fig. 7. The moduli of elasticity of the
isotropic shell are shown in Table 2-F.

Fig. 16. The distribution of the bending moment of the cylin
drica' shells under uniform pressure. These are the same
shells as those shown in Fig. 15. M max dehotes the max
imum bending moment. When the case ***~ .in Table 2,
the unit of the scale is x 10-1 (kg o m/m)/(kg!m2).
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Fig. 22. The distribution of the deflection of the orthotropic
cylindrical shells (kx =O.Ol or rise/span =0.075) under a central
concentrated load Pc. See * in Fig. 7 and Table 4.

Fig. 21. The distribution of the membrane shearing force
Nxy of the orthotropic H. P. shells under uniform pressure.
These are the same shells as those shown in Fig. 17. See *
in Fig. 9.
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the 0° shell. And the curves are depressed near the central parts. The depres

sion of the 45° shell and that of the isotropic shell are much larger than that of

the 0° shell. Particularly, the bending moment value of the 45° shell becomes

negative near the center (cL Fig. 13). The bending moment curves on the edges

of the 45° shell are complicated, and two of the diagonally opposite corners have

the negative bending moment value as shown in Fig. 16. The similar phenomenon

is also observed in the H. P. 45° shell (see Fig. 17). The central depressions in

the H. P. (45° and isotropic) shells are smaller than those of the cylindrical shells.

The bending moment value of the H. P. shells are about 7 times as large as that

of the cylindrical shells as shown by the scales of Figs. 16 and 17.

The figures of the distribution of the bending moment perpendicular to the

elastic principal axis are omitted. The values are about half of M x , and the dis

tribution curves are similar to those of M x .

The figures of M xy (the torsion moment parallel to the elastic principal axis')

are also omitted, because the values of the orthotropic shells are much smaller

than those of M x • The M xy of the 45° shell is n,early equal to zero.

Membrane Forces

The distribution curves of the membrane forces (Nx, N Xy) of the H. P. shells

are more complicated than those of the cylindrical shells (see Figs. 18 and 19).

The shear membrane forces of the 45° shells are much smaller than those of

0° (see Figs. 20 and 21). This is an advantage of the 45° shells.

The average of the membrane forces of the H. P. shells are nearly equal to

or a little larger than those of the cylindrical shells, but the moments of the H. P.

shells are much larger than those of the cylindrical shells. This is a disadvantage

of the roller-supported H. P. shells, and an advantage of the cylindrical shells.

5. Central Concentrated Load

The distributions of "the deflections, the bending moments and the menbrane

forces" of the cylindrical shells "under a concentrated load" are shown in Figs.

22"-'24. And the central deflection of "the plates, the cylindrical shells and the

H. P. shells" are shown in Table 4. The deflection of the plates and the H. P.

shells under the concentrated load, which is equal to the total of the uniform

pressure, is "about 3 times" as large as that under uniform pressure. With respect

to the cylindrical shells, the ratio becomes larger as the curvature increases. And

when kx equals to 0.01, the ratio is about 4.5 for the 0° shell and about 14 for 45 )

shell. Nevertheless the deflection of the 45° shell is much smaller than that of 0 )

shell (about 60% of that of 0° shell).
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Table 4. Central deflection of the shells and plates under a central con
centrated load*: weip (mm/36kg).

8 Plate Cyl.
kx=0.005

Cyl.
kx=0.01

H. P.
kxy =0.005

0° 5.828 2.884 I 1.368 5.009

30° 4.201 1.712 0.894 3.236

45° 3.821 1.372 0.786 2.672

90° 5.828 2.935 1.474 5.009

Ratio of the central deflection of the shells and plates "under a central
concentrated load" to that of "under uniform pressure"*: welwu.

o Plate Cyl.
kx=0.005

Cyl.
kx=0.01

H. P.
kxy=0.005

0° 2.94 3.37 4.43 2.94

30° 3.13 5.08 7.98 3.11

45° 3.21 5.49 13.87 3.17

90° 2.94 3.45 4.96 2.94

* The moduli of elasticity are the same as those of C in Table 2. The
dimension is 60cm x 60cm x 0.9cm. The concentrated load (36kg) is equal
to the total of the uniform pressure (100kg/m 2

).

The distribution curves of the bending moments have steep ascent near the

center of the shells (compare Fig. 23 with "Fig. 16). And the bending moments at

the center are infinite, so the center i. e. the loaded point is a singular point for

the elastic analysis.

The distribution curves of the membrane force N x have the mountain range

which runs parallel to each principal elastic axis as shown in the both figures of

0° shell and 45° shell (compare Fig. 24 with Fig. 18 with consideration of the scales).

The distribution curves of Ny of "0° shell" have not such a mountain range but

those of Ny of "45° shell" have a similar mountain range which runs diagonally

(parallel to Y axis).
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