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Abstract--This paper deals with the dielectric anisotropy of wood in relation to the
structures of wood and the mechanism of the relaxation process due to the motion of
CHzOH group in the disordered region of wood substance.

In very high frequency range in which only optical and infra-red polarizations con­
tribute to dielectric constant, the value of dielectric constant of wood substance in parallel
to grain direction was' equal to that in perpendicular to grain direction. The dielectric
anisotropy of wood, therefore, is mainly caused by the macroscopic structures. On the
other hand, in the frequency range in which the relaxation process due to the motion of
dipole contributes to dielectric constant, the value of dielectric constant of wood substance
in parallel to grain direction was always greater than that in perpendicular to grain direc­
tion, and the frequency corresponding to dielectric loss factor maximum in parallel to
grain direction was lower than that in perpendicular to grain direction. These results
show that the transition probability of dipole jump to an adjacent site when the electric
field applies to longitudinal direction is greater than that when the electric field applies
to the other directions, and the heights of potential barriers among sites in longitud·inal
direction are higher than those in the other directions. The dielectric anisotropy of wood
in low frequency range, therefore, depends not only upon the macroscopic structures but
also upon the molecular structures and motions in wood substance.

Introduction

There are a few reports which deal with the dielectric anisotropy of wood.

For instance, KRONER reported that the dielectric anisotropy was mainly caused

by the macroscopic structure of wood as a mixture of wood substance and airl).

NAKATO and UYEMURA also concluded that the anisotropy of the dielectric constant

in the perpendicular to grain direction could be explained by the arrangement of

wood cells2,3). On the other hand, SKAAR reported that the reason for the difference

between the parallel to grain and the perpendicular to grain dielectric constants

of wood might be resident in ultimate structure of the cell waIl4).

Up to this time, the dielectric anisotropy of wood has been discussed on the

value of dielectric. constant at fixed frequency. The problem on the dielectric

anisotropy of wood, however, should be considered in connection with dielectric

relaxation processes, since it seems that the dielectric anisotropy depends not only

* Previous Paper, Wood Research, No. 50, 36 (1970).
** Presented at the 21 th ~eeting of Japan Wood Research Society, Nagoya, April 1971.

*** Division of Wood Physics.
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upon the macroscopic structures of wood but also upon the molecular structures

of wood substance.

In this paper, the dielectric anisotropy of wood is discussed in relation to the

macroscopic structures of wood and the motions of dipoles in wood substance.

Experimental

The wood specimens used are shown in Table 1. Before the measurement the

specimens were dried at 105°C and then were dried over the phosphorus pentoxide

in vacuo (10-3 mmHg) at room temperature. The all measurements were performed

at the absolutely dried condition.

Table 1. Wood specimens.

Species Specl'fic I Thl'cknessDirectiongravity (mm) Treatment

Hoonoki (Magnolia 0.48 1. 9, 1.5 untreated,
obovata THUNB.) 0.45 L, R, T 5,0 hot water and alcohol-

benzene extraction

Keyaki (Zelkowa hot water and alcohol-
serrata MAKINO) 0.65 L, T 1.2 benzene extraction

Western hemlock
(Thuja heterophylla 0.48 L, R, T 1.3 untreated
SARGENT)

Kiri (Paulownia
tomentosa STEUD.) 0.30 'L, R, T 1.4 untreated

, .

Makanba (Betura
maximowicziana 0.61 L, R, T 1.5 untreated
REGEL)

Kashi
(Quercus spp.) 0.81 L, R, T 1.5 untreated

The inductive ratio arm bridge was used for the measurement of the dielectric

properties of wood in the frequency range from 30 Hz to 1 MHz and in the tempera­

ture range from -60° to 20°C.

Results and Discussion

The q.ielectric dispersion and absorption curves for Hoonoki in L direction

(longitudinal direction) at respective temperatures are shown in Figs. 1 and 2. The

corresponding curves for Keyaki in Land T (tangential direction) directions are

shown in Figs. 3 and 4. A relaxation process was observed in the frequency range

at low temperature. The value of dielectric constant decreased with increasing
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Fig. 1. The dielectric dispersion curves for
Hoonokrin'L direction at respective tempera­
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Fig.. 2. The dielectric absorption curves for
Hoonoki in L direction at respective tempera­
tures.
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Fig. 3. The dielectric dispersion curves for
Keyaki in L (upper curves) and T Clower
curves) directions at respective temperatures.
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Fig. 4. The dielectric absorption curves for
Keyaki in L (upper curves) and T Clower
curves) directions at respective temperatures.
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frequency and with decreasing temperature. The maximum value of.dielectric

19ss factor decreased with decreasing temperature and the frequency corresponding

to the dielectric loss factor maximum shifted to the low frequency range with

decreasing temperature. It has already been explained in the previous paper5
) that

the dispersion is due, to the motion of CH20H group in disordered region of wood
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Fig. 6. The dielectric loss factor vs. fre­
quency curves for Hoonoki in L, Rand T
directions at - 58°C.
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Fig. 5. The dielectric loss factor vs. fre­
quency curves for Hoonoki in L, Rand T
directions at -32°C.
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Fig. 7. The dielectric constant and the dielec­
tric loss factor vs. frequency curves for
Keyaki in Land T directions at -58°C.
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Fig. 8. The dielectric dispersion and absorp­
tion curves for western hemlock in L, Rand
T directions at - 58°C.
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substance. The dielectric loss factor f lf as a function of frequency for Hoonoki

in the three princical directions at - 32° and - 58°C are shown in Figs. 5 and 6.

The dielectric constant f' and the dielectric loss factor f" as a function of frequency

for Keyaki in Land T directions at -58°C fire shown in Fig. 7. The corresponding

curves for western hemlock in the three principal directions are shown in Fig. 8.

The value of fll for Hoonoki decreased in the order, L direction>R direction>T

direction. On the other hand, the values of f' and f lf in L direction for western

hemlock were greater than those in the other directions, while there was no differ­

ence between the values in the transverse directions. The frequency corresponding

to the f" maximum in L direction existed in the lower frequency range than those

in the other directions. Table 2 shows the value of f' for a few wood species in

the three principal directions. As is evident from the table, the value of f' in L

direction was always greater than those in the -other _directions, and for Hooniki

the value in R direction (radial direction) was greater than that in T direction,

Table 2. The values of f' for a few wood species at oven dried condition.

Species Direction Freq. (Hz) Temp. CC)

L 1.85

Kiri R 1.40

T 1. 51

L 2.49

Hoonoki R 1. 91

T 1.77
106 20

L 2.71

Makanba R 2.03

T 2.01

L 3.08

R 2.31

T 2.40
Kashi

L 2.51

R 30 2.09

T 2.16

L 1. 97

R 106 -58 1.67

T 1.66
western hemlock

L 2.39

R 30 1.82

T 1.83
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while for Kiri and Kashi in R direction was smaller than that in T direction. On

the other hand, there was no difference between the values of E' in the transverse

directions for Makanba and western hemlock.

1. The dielectric anisotropy and macroscopic structures of wood

LICHTENECKER and ROTHER gave the following equation for the dielectric con­

stant of a mixture.G)

(1)

where E', E/ and E2' are the dielectric constants of the mixture and the components

1 and 2, and 01 and 02 are the volume fractions of the components, respectively.

WIENER showed the following equations for the dielectric constants of a lamellar

mixture.7 )

(2)

(:3)

(4)

where E.L' and Ell' are the dielectric constants perpendicular and parallel to the

lamellae, respectively. The equations (2) and (3) are equivalent to the cases of

k= -1 and k= 1 in the equation (1), respectively. KRONER et al. represented the

perpendicular and the parallel to grain dielectric constants by the equations (2)

and (3) respectively, and gave the following equation for the dielectric constant of

cell wall. 1)

1
E/ = 2(E7/ -1) ((EL'ET' -1) +11' (EL'ET' -1)2-4(EL' -1) (ET' -1) J

where EL' and ET' are the dielectric constants in Land T directions. The value of

dielectric constant of cell wall calculated by them was 4.40 for Fichte at 300 Hz..

They also showed the relation between the dielectric constants of cell wall and

wood substance.

log E/ = Ow log Ew' (5)

(6)

where Ow and Ew ' are the volume fraction of wood substance in cell wall and the

dielectric constant of wood substance.

NAKATO gave the following equation for E.L' in due consideration of the actual

macroscopic structures of wood. 2
)

, '0 {} E/(1-0102)2
E.L =El 1 2+ El'(1-01)+01{}1

where {}1 and (}2 are the volume fractions of cell wall in series and parallel with

cell lumen, respectively. UYEMURA introduced the equation for E.L' from the equa­
tions (2) and (3).3 )

- 17-
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(7)

KR +KT =1

where rand r1 are the specific gravities of wood and wood cell wall, and K is the

constant representing the anisotropy.

Fig. 9 shows the relation between the dielectric constants in parallel and perpen­

dicular to grain at 1 MHz and 20°C and the specific gravity of wood r. ~n this

figure the results reported by UYEMURA,3) NAKATO,2) TAKEMuRA,8) and SUZUKI9l are

included. Our results agreed well with their results, especially with UYEMURA'S

results. In the figure the solid lines represent the values calculated by the equa­

tions (3) and (7), and the calculated values agreed well with the experimental

ones. The values of dielectric constant parallel and perpendicular to grain at r=

1.43, which represents the density not only of wood cell wall but also of the wood

substance, 10) calculated from the equations (3) and (7) were 5.0 and 4.3, respec-

6,...---------------.

°o~--~~-~~--~--...J1.6

Fig. 9. The relationship between dielectric constant and specific gravity.
a, Kiri (E'1..). b, Hoonoki (E'1..). c, Makanba (E'1..). d, Kashi (E'1..). e, Kiri (E' /I).
f. Hoonoki (E' /I). g, Makanba (E' /I). h, Kashi (E' /I). i, Kiri (E'1.., T. UYEMURA3)).

j. Hoonoki (E'1.., T. UYEMURA). k, Makanba (E'1.., T. UYEMURA). I, Kashi (E'1..,

T. UYEMURA). m, Hinoki (E'1.., calculated value, K. NAKAT02)). n. Hinoki (E' /I,
calculated value, K. NAKATO). 0, MizunaIa (E'1.., calculated value, K. NAKATO).
p,Mizunara (E'/I, calculated value,K. NAKATO). q, Buna (E'R, T. TAKEMURA8)).

Y, Hinoki (E' /I, M. SUZUKI9
)).
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Table 3. The dielectric constant of cell wall and wood substance.

Species j(Hz)
I

T CO) dielectric constant of cell .
Referencewall or wood substance

~

Fichte 3x 102

20 4.40 (cell wall) KRONER et al. l )Buche 5x 102 4.70
--

20 9.4 (L) (wood substance) KRONER et al. 1)8.3 (R)
--

Fichte 1 x 103 20 6.6 (T) (wood substance) TRAPP et al. 33)

Rotbuche 1 x 106 3 9 (R T) (specific gravity RAFALSKI32 ). , =1.40)
---

30 wood 2 x 106 4.2 (.1) (wood substance) SKAAR4)species
-

Hinoki 0.55 x 106

30 3.67(.1) (cell wall) NAKATO et al. 21
1. 90 x 106 3.25(.1)

-

many wood 1 x 106 20 4.8 (.1) (wood substance) UYEMURA3)species
-

many wood 1 x 106 20 5.0 (L) (cell wall) NORIMOTO and
species 4.4 (.1) YAMADA

tively. For comparison, the values of dielectric constant for wood cell wall and

wood substance reported by many investigators are shown in Table 3. Under the

condition at 1 MHz and 20°C, the greater part of relaxation process, which is due

to the motion of CH20H group in the amorphous region of wood substance as

reported in the previous paper,5) contributes to the dielectric constant. In Fig. ]0

the dielectric constants of wood (western hemlock) and wood substance in parallel

and perpendicular to grain at -58°C as a function of frequency 'are shown. The

6
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i
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Fig. 10. The dielectric constants of western hemlock and wood substance in parallel
and perpendicular to grain at -58°C as a function of frequency.
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values of fo l and fool in the figure were calculated from COLE-COLE'S plots. The

value ?f fl woo in parallel to grain· was identical with that ·in perpendicular to grain.

In other words, the dielectric anisotropy of wood is caused by the macroscopic

structures in very high frequency range in which only optical and infra-red polari­

zations contribute to dielectric constant. On the other hand, the value of f w
l in

parallel to grain was slightly greater than that in perpendicular to grain in low

frequency range. These results show that the dielectric anisotropy depends not

only upon the macroscopic structures but also upon the molecular structures in

wood substance in the frequency range in which· the orientational polarization

contributes to dielectric constant. The reason for the dielectric anisotropy in wood

substance will be discussed later.

2. The application of Cole-Cole's circular arc law to the dielectric properties of

wood.

The complex dielectric constant f* for a number of dielectrics is represented by

the following COLE-COLE'S circular arc lawyl

(8)

where fo l and fool are the static and the infinite frequency dielectric constants, and

To and a(O'::;a<l) are the generalized relaxation time and the parameter relating

to the distribution of relaxation times. The locus of the equation (8) in complex

plane shows a circular arc. Although the width of the distribution of relaxation

times can be estimated quantitatively from COLE-COLE'S circular arc law, it is

difficult to understand the physical significance of the equation. HIGASI et al.

reported about the relation between COLE-COLE'S circular arc law and the function

for the distribution of relaxation times similar to that derived by FROHLICH, and

explained qualitatively the physical picture of COLE-COLE'S· equation.12 ,13l

For the first time TAKEDA showed that COLE-COLE'S arc law could be applied

to the dielectric relaxation process of wood. 14l Tsutsumi showed that the dielectric

dispersions of wood in L direction in both lower and higher frequency regions

satisfied COLE-COLE'S law, and with increase in temperature the value of (fo
l
-fool)

decreased and in contrast with this the value of a increased. l5l Recently, NANASSY

applied the law to the experimental results of oven dried yellow birch.16) ISHIDA

et al. applied the law to the various cellulose fibers in the direction of fiber axis,

and showed that the dipoles in the amorphous region and surface of crrstallites

could make a great contribution to the dielectric dispersion, since the value of (fo
l

- fool) for dry cellulose fibers decreased with increase in degree of crystallinity. 17)

The results of COLE-COLE'S plots for Hoonoki, Keyaki and western hemlock

- 20-
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are shown in Figs. 11, 12 and 13, respectively. The experimental values agreed well

with the equation (8). The values of (fo'-foo') and ~ ·a at various conditions of

temperature and frequency for four wood species are shown in Table 4. The width

of the distribution of relaxation times became narrow with increasing temperature.

The value of (fo' -foo') in L direction was always higher than that in transverse

directions, while there was no difference among the widths of the' distribution of

relaxation times in three directions. The result of temperature dependence of

(I-a) for wood in L direction is shown in Fig. 14 and compared with those ob­

tained by TSUTSUMI and NANASSY for wood and by ISHIDA et al. f6r Bemberg. Our

0.2

0./

0.2

Fig. 11. The COLE-COLE'S plots for Hoonoki in L direction at -49°, -19° and 3°C.
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Fig. 12. The COLE-COLE'S plots for Keyaki
in Land T directions at -58°C.

Fig. 13. The COLE-COLE'S plots for western
hemlock in L, Rand T directions at -58°C.

Table 4. The values of (fo' -foo') and parameter ~.a calculated from COLE-COLE'S

plot for four wood species.

Species Direction Temp. CC) fo' -foo'

3 0.63 52

Hoonoki L -19 0.61 55

-49 0.63 62

Keyaki
L 0.84 63

0

T 0.33 66

L 0.66 64

western hemlock R
-58

0.26 61

T 0.27 61

L 0.83 64

Kashi R 0.37 65

T 0.32 64

result agreed well with ISHIDA'S result for cellulose fiber.

3. The application of Hoffman's theory to the dielectric relaxation process of wood.

MIKHAILOV et al. investigated the dielectric relaxation in the glass-like state of
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Fig. 14.. The relationship between the parameter (l-a) and temperature for

wood and cellulose.
0: Hoonoki in L direction, e: TSUTSUMI'S result for Buna in L direc­
tion15), .: NANASSY'S result in L direction16), EEl: ISHIDA'S result for
cellulose fiber17).

cellulose and its derivatives, and explained that the relaxation might be due to

the movement of CH20H group in the less ordered zones of the polymer from the

results of NMR study.IS) In the previous paper, we reported that the dielectric

dispersion of oven dried wood and cellulose in high frequency region might be

caused by the movement of CH20H group since the dispersion did not occured in

beech xy1an, which has not CH20H group.5)

Fig. 15 shows the mode of molecular motion of a primary hydroxyl group in

a glucose unit. ZHBANKOV reported that 0 6 atom in CH20H group has three stable

positions, namely at 80, 177 and 3000 clockwise from the cis-position of the 0 6 and

C4 atoms. The calculated value of the energy barrier among the sites was 3,-....,10

kcal/more and was almost equivalent to the apparent energy of activation calcu­

lated from the curve of the frequency corresponding to the dielectric loss factor

maximum versus the reciprocal of absolute temperature.20 ,2U As a simple case,

Fig. 15. The mode of molecular motion of a primary hydroxyl group
in a glucose unit.

- 23-



WOOD RESEARCH No. 51 (1971)

let us consider a model in which 0 6 atom has two stable positions 180° apart,

namely 120° and 300°, since the energy barrier between 80° and 177° is remarkably

low compared with the others. The theory associated with so called site models

have been treated by DEBYE,22l KAUZMANN,23l FROHLICH,24) HOFFMAN,25) and ISHIDA

and YAMAFUJI.26l In this paper, HOFFMAN'S two position model is used to account

for the dielectric dispersion of wood.

The coordinate system used in the calculation of the complex dielectric constant

is shown in Fig. 16. 0 6 atom can rotate on XY plane and the stable positions of

the atom 180° apart are fixed on the X axis. The electric field F applies to the

. direction having the polar angle (j and the longitude lp with respect to the coordi­

nate. By generalization of the theory on HOFFMAN'S two positions model, the total

polarization P is given by

z F

(9)

--~---,jI&--"'''''----X

y

Fig. 16. The coordinate system used in the calculation of the complex
dielectric constant of wood.

P=<~Pi>AJ'=~ 4NiAN iR/-lF fir fir sin2{}cos2lpsinO·dfj.dlp
i NikT Y?=o) 0=0 41t'

= ~~. 4NiA N iR/-lF
i 3 NikT

Ni=NiA+NiR, N=~Ni

/-l = /-lo sin f3

where N iA and N iR are number of dipoles in site A and B in i-th energy state,

and. N is total number of dipoles, k and T are BOLTZMANN'S constant and absolute

temperature, /-l, /-lo and f3 are the component of the permanent dipole moment

perpendicular to the axis of rotation, the permanent dipole moment in C60 6 direc­

tion and the angle subtended by the dipole and the axis of rotation, respectively.

Then, the polarizabiIity a and the complex dielectric constant f* are giv~n by
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P 4p.NiAN iB

a= NF = ~ 3kTNiN

* , '" S4p.NiA N iB 1
f - foo ::::::; "7 3kTNiN 0 1+ iwri

, , S'" 4p.NiAN iB
fo -foo ~ ~ 3kTNiN

where S is the constant. When the relaxation times distribute continuously, f* is

given by the following equation.

f*-foo' = (00 (f ' -foo') y(~) .dr
) 0 0 1+ lwr

~
oo (', ') (/j(1n r) .' d I

= fo - f oo 1+ . 0 n r
-00 lwr

,~oo q)(1ogr)
= (fo'-foo') 1+· .dlogr

-00 lwr

f' - foo' (00 <P(1og r) d I
fo' - fo/ L oo 1+w2r2' og r

fl! (00 q)(1og r)wr d I
fo'-foo' )_00 1+w2r2 0 ogr

(12)

(12-a)

(12-b)

~~y(r)dr=~:oo(/j(1n r)d In r= ~:00<P(10gr)·d 10gr=1

where the functions y(r), (/j(1n r) and q)(1ogr) are the distribution of relaxation

times. The relation among <P(1ogr), (/j(1n r) and y(r) is given by

~(1og r) =2.303 (/j(1n r) =2.303 ry(r) (13)

Thus, the general form of DEBYE'S equation can be obtained by the generali­
zation of HOFFMAN'S theory.

4. The application of Frohlich's theory to the dielectric properties of wood.

FROHLICH proposed the theory of dielectric relaxation on the two position

mode1.24
) In his theory, the following, points are assumed: (1) the potential

barrier between the two positions has a different height for each molecule and the

heights of the potential barriers H distribute over a range between Ho and Ho+vo,

(2) the interaction between dipoles can be neglected and the contribution of a

dipolar molecule to fo' is independent of H, (3) the relaxation time depends on

H. The distribution function of relaxation times and dielectric properties, f' and
f", are given by

kT 1y(r) =--0- (rl~r<i2)
Vo r ,

y(r) =0 (r<r1, r>r2)

(14)
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(15)

wherer2 and r1 are the maximum and the minimum relaxation times, respectively.

HIGASHI et al. discussed the relationship between FROHLICH'S theory and COLE­

COLE'S circular arc law12) and showed the following relation between the parameter
Vo

a and kT

4 -l' 2kT . Vo ]a=l--tan 1 --tan-1smh--
1C Vo 2kT

(16)

The values of r2, r1 and Vo calculated from the equation (16). for Hoonoki in L

direction at -49°C were 2.88 x 10-3sec, 9.75 x 10-9 sec and 5.60 kcal/mole (3.90 x 1013

erg), respectively. In Fig. 17 the comparison between the calculated and the experi­

mental values of f' and f" is shown. The FROHLICH'S theory could not exactly be

applied to the results of wood. The relaxation times, therefore, do not distribute

uniformly in wood substance.

,..-----------------,0./2

P08

(.I,) <J)

0.04

0
6

Fig. 17. The dielectric dispersion and absorption curves for Hoonoki.
0: experimental, .: predicted by the barrier theory of FROHLICH.

5. The calculation of the distribution of relaxation" times of wood.

Fuoss and KIRKWOOD reported that the distribution function of relaxation times

could be calculated by the following equation, if f" could be empirically represented

by an analytic function. 27l

1C$(S)=H(S+ i;)+H(S- i;)

$(S) =ry(r), S=ln r/ro

(17)

'f"
H(w) = f f

fo -foo
(18)
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They also showed that H(x) for a number of polar polymers could be represented

by the empirical equation. (19) and obtained the distribution function of relaxation

times (20) by the substitution of (19) in (17).

H(x) =H(O) sech Ax, x=ln coo/co

</J(S) 2 cos(A7t'/2) cosh AS
H(0)=7C· cos2(A7t'/2) +sinh2AS

where A is a parameter which measures the width of the distribution of relaxa­

tion times, and H(O) is the maximum value of H(x).

The values of H (0) and A are determined by the following equations.

A
H(O)=T

cosh-1 H(OL=Ax
H(x)

The value of (fo! -foc') calculated from A for Hoonoki was 0.72 and was slightly

larger than that obtained by COLE-COLE'S plot. In Fig. 18 cosh-1H(O)/H(x) vs.

logcoo/w curve for Hoonoki is shown.' The value of A calculated from the slope

of the straight line was 0.217. In Fig. 19 the values of f" for Hoonoki calculated

from the following relation are compared with the 'experimental ones. The experi­

mental values were in satisfac~ory agreement with the empirical equation.

f" =f"max sech (2.303A(logfo/ f)J (23)

1.5

~
"--"
:r::
~
0

1.0
::r:
'I
-I;:
lrJ
C)
u

0.5

o~-.I..__---L.__--I_-----lo--.....l
-3 -2 -I a

Log Wo/W

Fig. 18. cosh-1 H(o)/H(x) vs. log coo/co
curve for Hoonoki.

0.10

0.08

".\D 0.06

0.04

0.02

o"'-----"*"3--_2;l;--_~/L---!:0:---..L.---2:!---.J3L...J

Log wo/w

Fig. 19. The dielectric absorption curve for Hoono­
ki in L direction.
0: experimental, -: calculated (equation (23)).

In Fig. 20 the distribution function of relaxation times for Hoonoki calculated from

the equation (20) is shown, together with those obtained by the approximation
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•
O'--__"""--__""""'-__---L.__---'L...-_----'

-7 - 6 -5 -4 -3 -2

Log l: (T in sec)

Fig. 20. The distribution function of relaxation times,- of Hoonoki in L direction.
-: zero order approximation, 0: second order approximation, +: equation (20).

methods.

On the other hand, the distribution function can be calculated directly from

the equations (12-a) and (12-b) by the' approximate methods. The zero order

and the first order approximations,28) and the second order approximation29 ) pro­

posed by WILLIAMS and FERRY are given by

2 EI!
$0 (In r) = - .~'---,----:-

IT Eo' - Eoo '

E' -E '
$1 (In r) = - , 00 , / d In co

Eo - Eoo

$2(Inr)=B ,EI! , (l-·Idlog ,EI! , /dlogcol)
Eo - Eoo Eo - Eoo

B=(l+I~J)/2r(+_I;1 )r(++ 1;1)
d log $1 (In r)

m=~~~'-"---~'--

dlogr

where r is gamma function.

(24)

(25)

(26)

0.06

P t-o 0./2 t-o
I:: 0,/2 C))

......, C); C)

Cl -.,

i-eJ 0.04
'-...) '-../

'---' C> 008 ""0,08 I~ ~ lie-I

L :a
",8- 8 (j) 0,02

(j) I 004 fJ)

0,04 _1 0

_ C> ' r

(j) ,\.1) \D
'---' '----'

0 0
0 -7 -6 -5 -4 -3 -2

-2
log 1: ( 1: in sec)

Fig. 21. The distribution function of relaxa­
tion times for Hoonoki in L, Rand T direc­
tions at -32°C.

,Fig. 22. The distribution function of relaxa­
tion times for Hoonoki in L, Rand T direc­
tions at -58°C.
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In Fig. 20 the distribution functions calculated from the equations (24) and (26)

are shown together with that obtained by the equation (20). As is evident from

the figure, the values calculated from these distribution functions were almost

identical. In Figs. 21 and 22 the distribution functions calculated from the equation

(24) for Hoonoki at - 32° and - 58°C are shown.

WAGNER proposed that the distribution function of relaxation times was govern­

ed by a probability function in dielectrics, 30) and YAGER descrived the graphical

method of evaluating the constants of the following WAGNER'S equations for (/ and
flf .31)

1 1[1+ kb _b2Z02~00 -b2u2 cosh(2b 2Zo-l)u d ]f =foo ~·e e· . u
11 n: 0 cosh u

If fo"!kb -b2Z02~00 -b2u2 cosh 2b2Z ou d
f =-----=-·e e· . u

11 n: 0 cosh u

Zo = In (J)7:0, U = In (J)7:

(27)

(28)

Assuming the distribution of relaxation times for wood is represented by the

probability function, we obtain the following equation for flf by use of equations

(24) and (29).

[
n:(f 1- f I) n ]IOgflf=log 0 00 .--= -0.217n2Z 2

4.606 11 2n: I '
!

Z = log 7:/7:0

Futhermore, we obtain the equation for fl from equations (25) and (29).

(29)

(30)

1 (X 1 _ x 2

2+ )011 2n: ·e T ·dx (31)

x=nZ

The value n which represents the width of the distribution of relaxation times is

determined by the value flf max.,

(32)

In Figs. 23 and 24 the comparison of the experimental values with the calculated

ones for dielectric constant and dielectric loss factor of Hoonoki and western

hemlock is shown. The calculated values coincided completely with the experi­

mental ones.
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Fig. 23. The comparison of experimental
values with calculated values (equations (30)
and (31») for dielectric constant and dielectric
loss factor of Hoonoki in· L direction at
- 58°C. 0: experimental, -: calculated

Fig. 24. The comparison of experimental
values with calculated values (equations (30)
and (31») for dielectric constant and dielectric
loss factor of western hemlock in L direction
at - 58°C. 0: experimental, -: calculated

(33)

6. The dielectric anisotropy of wood substance.

By applying the theory of rate process to the dielectric relaxation process, the

apparent energy of activation iJE can be calculated by the following equation.23 )

iJE= -2.303.R. d~?f-{m

where R, T and fm are gas constant, absolute temperature and the frequency cor-

7

,-...
I\J::r::.
c::. 6 T

.,..
<.-E:

~ 5

OJ
CJ

4

"1.0 4.2 4.4 4.6 X /0-3

T-1 (OK -I)

Fig. 25. logfm vs. 1 1 curves for Keyaki in Land T directions.
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responding to dielectric loss factor maximum, respectively. In Fig. 25 the curves

of 1m versus T-l in Land T directions for Keyaki are shown. The values of LJE

calculated were 9.6 and 8.5 kcal/mole in Land T directions respectively, and the

value in L direction was about 1 kcal/mole greater than that in T direction. This

result shows that the heights of potential barriers in L direction among the sites

are higher than those in T direction and the frequency corresponding to dielectric

loss factor maximum in L direction is low by one decade compared with that in

T direction. In fact, as shown in Figs. 5, 6 and 7, the frequency corresponding to

(/1 max in L direction was lower than that in· the other directions by about one

decade.

As previously stated, the value of (.1 in L direction in low frequency range is

greater than that in the other directions. This result shows that the transition

probability of dipole jump to an adjacent site when the electric field applies to L

direction is considerably greater than that when the electric field applies to the

other directions.
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