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Relaxation and diffusion in a globally coupled Hamiltonian system
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The relation between relaxation and diffusion is investigated in a Hamiltonian system of globally coupled
rotators. Diffusion is anomalous if and only if the system is going towards equilibrium. The anomaly in
diffusion is not anomalous diffusion taking a power-type function, but is a transient anomaly due to nonsta-
tionarity. For a certain type of initial condition, in quasistationary states, diffusion can be explained by a
stretched exponential correlation function, whose stretching exponent is almost constant and correlation time is
linear as functions of degrees of freedom. The full time evolution is characterized by varying stretching
exponent and correlation time.
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I. INTRODUCTION

Relaxation to thermal equilibrium has been studied
Hamiltonian systems with long-range interactions@1–6#.
One of the characteristic phenomena in the relaxation p
cess is anomalous diffusion, since normal diffusion is
pected at equilibrium. Anomalous diffusion was first inves
gated in a one-dimensional chaotic map to describe enha
diffusion in Josephson junctions@7#, and is observed in man
systems both numerically@3,8–11# and experimentally@12#.

Anomalous diffusion is also observed in Hamiltonian d
namical systems. It is explained as due to power-type dis
bution functions@8,13,14# of trapping and untrapping time
of the orbit in the self-similar hierarchy of cylindrical canto
@15#. Self-similarity is expected to be one of the importa
concepts to understand statistics and motion in Hamilton
systems, but cannot be the main feature in systems
many degrees of freedom. Then, as the first step of appro
ing the study of self-similarity, we have to clarify whe
anomalous diffusion appears, and what is the origin of
anomaly.

Latoraet al. @10# discussed the relation between the p
cess of relaxation to equilibrium and anomalous diffusion
a globally coupled rotator system, by comparing the ti
series of the temperature and of the mean squared disp
ment of the phases of the rotators. They showed that ano
lous diffusion changes to a normal diffusion after a crosso
time, and that the crossover time coincides with the ti
when the canonical temperature is reached. They also c
that anomalous diffusion occurs in the quasistationary sta
which appear before the system goes towards equilibrium

The crossover from anomalous to normal diffusion det
mines the time when the anomalous diffusion finishes. Ho
ever, it is not clearly pointed out when the anomalous dif
sion starts, and hence the study of the relation between
relaxation process and anomalous diffusion is still not co
plete. Moreover, in Ref.@10#, the numerical calculations
were performed by using only one type of initial conditio
but different types of initial condition may change the co
clusion @16#.

*Electronic address: yyama@i.kyoto-u.ac.jp
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In this paper, we study the globally coupled rotator syst
considered in Refs.@10,17#, and we exhibit the relation be
tween relaxation to equilibrium and anomalous diffusi
with a different type of initial condition from the one used
Refs.@10,17#. Then we show that diffusion becomes anom
lous if and only if the state is neither stationary nor qua
stationary. In other words, diffusion is shown to be normal
quasistationary states, although a stretched exponential
relation function is present, contrary to previous claims t
report power law type function@17#. Simple scaling laws of
the correlation function imply that the result holds irrespe
tive of degrees of freedom.

This paper is organized as follows. The model, initial co
dition, and observed quantities are described in Sec. II
Sec. III, we study relaxation process, which we divide in
three stages: quasi-stationary, relaxational, and equilibr
stages. Diffusion process in each stage is investigated in
IV by using stretched exponential correlation functions
momenta. Dependence on degrees of freedom is also
ported both in Secs. III and IV. Section V is devoted
summary.

II. MODEL, INITIAL CONDITION, AND OBSERVED
QUANTITIES

The model considered in this paper hasN classical and
identical rotators confined to move on the unit circle, and
Hamiltonian is composed of a kinetic part and a poten
part @1,2,5,10,17#,

H5K1V5(
j 51

N pj
2

2
1

1

2N (
i , j 51

N

@12cos~u i2u j !#. ~1!

The N particles are globally coupled through the mean fie
defined as

M5
1

N (
j 51

N

~cosu j ,sinu j !5M ~cosf,sinf!, ~2!

where the modulusM (0<M<1) represents the magnetiza
tion of this system. We remark that the potentialV and the
kinetic energyK are related to the magnetizationM as fol-
lows:
©2003 The American Physical Society10-1



o

a

th

ar
b
cl

s
rg

se

o
in
v

ds

n

es
th

tiz
-

ea

ta

ilib-
re
I and

al

YOSHIYUKI Y. YAMAGUCHI PHYSICAL REVIEW E 68, 066210 ~2003!
2V/N512M2, 2K/N52U211M2, ~3!

whereU is the energy per particle, i.e.,U5E/N, andE is the
total energy. The free energy of this system has been
tained in the canonical ensemble@1,2,18#, and it has been
shown that system~1! has a second-order phase transition
the critical energyUc50.75. If the energyU is greater than
the critical energy, the largest Lyapunov exponent goes
zero in the thermodynamic limit (N→`) @19#. Then, all ro-
tators freely rotate, and diffusion becomes ballistic. On
contrary, if U is small compared toUc , all rotators are
trapped in the potential well and no diffusion occurs. We
therefore interested in a value of the energy which is near
less than the critical energy in order to allow some parti
diffusion. Hereafter, we setU50.69 ~a value studied also in
Refs.@10,17,18#!.

The canonical equations of motion for system~1! can be
cast in a form that uses the mean field Eq.~2! as follows:

du j

dt
5pj ,

dpj

dt
52M ~ t !sin„u j2f~ t !…, ~ j 51, . . . ,N!.

~4!

We numerically integrate Eq.~4! by using fourth-order sym-
plectic integrators@20,21#. The time slice of the integrator i
set atDt50.2 or 0.4, and it suppresses the relative ene
error down touDE/Eu,531027.

We have performed the integrations starting fromM (0)
50. To prepare these initial conditions numerically, we
qj (0)52p j /N, andpj (0) is taken from a uniformly random
distribution whose support is@2 p̄,p̄#, where the valuep̄ is
chosen to get the energy densityU. The total momentum
( j 51

N pj is an integral of the motion and we initially set it t
zero. This initial state corresponds to a local entropy m
mum @22#, and to a stationary stable solution to the Vlaso
Poisson equation@2#, although the system goes towar
Gibbs equilibrium due to finite size effects@6#. With respect
to theM (0)51 initial condition chosen in Refs.@10,17#, the
one we choose has the advantage of being a quasistatio
state from the start.

We numerically observe the time series of two quantiti
One is for the relaxation process and the other is for
diffusion process.

To observe the relaxation process, we use the magne
tion M (t). Note that observingM (t) corresponds to observ
ing 2K(t)/N by using Eq.~3!, and 2K(t)/N is the time series
of the temperature, since the canonical average of 2K/N co-
incides with the canonical temperature.

To observe the diffusion process, we introduce the m
square displacement of phasessu

2(t) defined as

su
2~ t !5

1

N (
j 51

N

@u j~ t !2u j~0!#25^@u j~ t !2u j~0!#2&N .

~5!

The symbol̂ •&N represents the average over all theN rota-
tors. The quantitysu

2(t) typically scales assu
2(t);ta, and

the diffusion is anomalous whenaÞ1,2, while it is normal
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whena51 and ballistic fora52. The quantitysu
2(t) can be

rewritten by using the correlation function of momen
Cp(t;t) as

su
2~ t !5E

0

t

dt1E
0

t

dt2 ^pj~ t1!pj~ t2!&N

52E
0

t

dsE
0

t2s

dt Cp~s;t!, ~6!

whereCp(t;t) is defined as

Cp~ t;t!5^pj~ t1t!pj~t!&N . ~7!

FIG. 1. Temporal evolutions ofM (t). U50.69 andN5100,
1000, 10 000. The horizontal line represents the canonical equ
rium value of M. On each curve, two short vertical lines a
marked. The first and the second ones are at the end of stages
II, respectively. Solid curves are hyperbolic tangent functions~10!.

FIG. 2. Dependence on degrees of freedom oft I/II ~squares! and
t II/III ~crosses!. Stars representt I/II 26. The lower straight line rep-
resents the power lawN1.7/150. The upper curve is a theoretic
prediction of the boundary timet II/III using Eqs.~11! and~12! with
M th50.99Meq.
0-2
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FIG. 3. Four parametersa, b,c, andd are reported as functions of degrees of freedom.~a! Log-log plot ofac. ~b! Log-log plot of 10b.
~c! Liner-log plot of c. ~d! Log-log plot of d. Solid curves are scaling functions described in Eq.~11!.
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Moreover, if the system is stationary andCp(t;t) does not
depend ont accordingly,

Cp~ t;t!5Cp~ t;0!, ~; t.0! ~8!

then Eq.~6! is simplified as

su
2~ t !52E

0

t

~ t2s!Cp~s;0! ds. ~9!

III. RELAXATION PROCESS

Temporal evolutions ofM (t) are shown in Fig. 1. In orde
to suppress fluctuations, we have calculated averages
realizations. Throughout this paper, unless no comments
pear, the number of realizations aren51000, 100, and 8 for
N5100, 1000, and 10 000, respectively. We divide the te
poral evolutions into three stages, I, II, and III. In stage I, t
value of magnetization is almost constant but smaller t
the canonical value. After stage I, magnetization rapidly
creases towards its equilibrium valueMeq, and we call this
time interval stage II. Finally the system reaches equilibri
during stage III.

Let us define boundary times between stages I and II,t I/II ,
06621
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and between stages II and III,t II/III , as follows. The magne
tization takes the local minimum attmin , and we adoptt I/II
5tmin . We define the other boundary timet II/III as the first
passage time which satisfiesM (t)50.99Meq. Values of the
two boundary times are reported in Fig. 2 as functions
degrees of freedom. The local minimum time is proportion
to N1.7 for N>100 with our initial conditionM (0)50, as
with another initial conditionM (0)51 @23#. For smallN, we
cannot neglect the initial time regiont,6 in which the level
of M (t) goes toO(1/AN) coming from the law of large
numbers@see Fig. 3~d!#, and hence the power law break
The power law recovers by subtracting the initial increas
time 6 from t I/II as shown in Fig. 2, i.e.,t I/II 26;N1.7 (N
>10).

A theoretical prediction oft II/III , the upper curve in Fig. 2
is obtained by fitting the magnetizationM (t) as hyperbolic
tangent function,

M ~ t !5$11tanh@a~ log10t2b!#% c1d. ~10!

The parameterd represents the initial level ofM (t), andc
the half width between initial and equilibrium levels o
M (t). The productac is the slope at log10t5b, i.e., ac
0-3
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FIG. 4. ~a! Double log-log plot of normalized correlation functionCp(t;teq)/Cp(0;teq) at equilibrium withteq5220, N51000. We take
an average overn5100 realizations. The straight line and the curve represent the stretched exponential function~16! and the power-type
function (t/410)20.32/e, respectively. The upper horizontal line is fluctuation levelO(1/ANn). The inset shows a log-linear plot with th
stretched exponential function.~b! Log-log plot of su

2(t;teq) with the approximate function produced by Eqs.~15! and ~16!.
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5dM /d(log10t)u log10t5b , and 10b is the time scale. As shown
in Fig. 3, these four parameters are fitted as

a~N!5
AN

100 c~N!
, 10b(N)5

1

9
N1.7,

c~N!5
@Meq2d~N!#

2
, d~N!5

1.7

AN
. ~11!

By using the scaling law Eq.~11!, we can predict whenM (t)
reaches a given threshold level,M th , as a function ofN. Let
t th be the threshold time, which satisfiesM (t th)5M th , then
t th is expressed as

t th510bS M th2d

Meq2M th
D (ln 10)/2a

. ~12!

In Fig. 2, t th is reported forM th50.99Meq, and the predic-
tion is in good agreement with numerical results. We rem
that, roughly speaking,t II/III is asymptotically proportional to
N1.7.

The system seems quasistationary in stage I. The e
tence of quasistationary states for sufficiently long time
been questioned in Ref.@23#. We will answer to the question
by observing dependence ont of the correlation function
Cp(t;t) in Sec. IV B.

IV. DIFFUSION PROCESS

As described in Eq.~6!, the mean square displaceme
su

2(t) is obtained from correlation function of momen
Cp(t;t), and hence we study diffusion process by observ
the correlation function. We start from the simplest sta
stage III, because we may use the simple expression~9!.
Next, we progress to stage I, where we expect that the
tem is quasistationary, and that we may use Eq.~9! again. In
nonstationary stage, stage II, we check whether diffusio
of a power type. Finally we investigate dependence on
grees of freedom for some important parameters.
06621
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A. Diffusion at equilibrium

Assuming the system has reached equilibrium att5teq,
we observeCp(t;teq) andsu

2(t;teq), where

su
2~ t;teq!5^@u j~ t1teq!2u j~ teq!#

2&N . ~13!

At equilibrium we may assume that the system is stationa

Cp~ t;teq1t!5Cp~ t;teq! ~; t.0!, ~14!

and hence

su
2~ t;teq!52E

0

t

~ t2s!Cp~s;teq! ds. ~15!

Now let us consider the correlation function forN
51000. We adoptteq5220.106 which is long enough to
reach equilibrium imaging from Fig. 1. The correlation fun
tion Cp(t;teq) is reported in Fig. 4~a!, and is well approxi-
mated by the stretched exponential function@24#,

Cp~ t;teq!50.47 exp@2~ t/410!0.32#, ~16!

rather than by a pure exponential@see the inset of Fig. 4~a!
which is a log-linear plot ofCp(t;teq)].

We remark that a stretched exponential functi
exp@2xb# with a small exponentubu!1 is indistinguishable
from a power-type function in the regionub ln xu!1:

exp@2xb#5exp@2exp~b ln x!#

;exp@212b ln x#

5x2b/e.

However the fitting function~16! well agrees with the nu-
merical result even aroundu0.32 ln(t/410)u51, whose two
solutions aret.18, 9330. We therefore adopt a stretch
exponential function as an approximation ofCp(t;teq).
0-4
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FIG. 5. Correlation function of momentaCp(t;t) for various values oft50, 1024,2048, 4096, 16 384, 65 536, and 1 048 576 from l
to right. ~a! Log-log plot. ~b! Double log-log plot.~c! Relative error Eq.~18! of Cp(t;t) from Cp(t;0).
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By using the fitting function~16! and Eq.~15!, we nu-
merically reproducesu

2(t;teq), and the reproduced curv
well approximates the numerical result as shown in Fig. 4~b!.
Note that su

2(t;teq) is proportional tot2 in the limit of t
→0, since Cp(s;teq) in Eq. ~15! goes to the constan
Cp(0;teq). On the other hand, in the limit oft→`, su

2(t;teq)
is proportional tot, because bothCp(s;teq) and sCp(s;teq)
are almost zero in long time region, and hence their integ
become constants. The crossover fromt2 to t is also observed
if we assume an exponential correlation function, and he
we conclude that diffusion at equilibrium is normal as e
pected although a stretched exponential is present.

B. Diffusion in quasistationary state

Except for stage III, we cannot expect stationarity to ho
Eq. ~8! any more. However, from the temporal evolutions
M (t), Fig. 1, we may expect quasistationarity in stage I,

Cp~ t;t!5Cp~ t;0!1e~ t;t!, ~17!

wheret belongs to stage I ande(t) is suitably small.
The correlation functionCp(t;t) for various values oft is

reported in Figs. 5~a! and 5~b! for N51000, and the relative
error of correlation function defined as
06621
ls

e
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f

R~t!5max
t

ue~ t;t!u
Cp~0;0!

~18!

is also reported in Fig. 5~c! as a function oft. The error
R(t) stays small up to the end of stage I, and hence
conclude that the system is quasistationary in stage I.
believe that the quasistationary states correspond to sta
ary stable states of the Vlasov equation@25#. We remark that
R(t) is constant in stage III again due to stationarity at eq
librium.

It seems natural that we regardCp(t;t) as a series of
stretched exponential functions oft rather than power-type
functions, since this function fitsCp(t;t) in more than two
decades of time~power law fits of the correlation function
hold in one decade!. Moreover, at equilibrium,Cp(t;teq) is
also a stretched exponential rather than a pure exponentia
shown in Fig. 4.

In the quasistationary region, stage I, the mean squ
displacementsu

2(t) can be derived by the correlation func
tion Cp(t;0), which is reported in Fig. 6 for N
5100, 1000, and 10 000. We approximateCp(t;0) by a
stretched exponential function as

N5100: Cp~ t;0!50.38 exp@2~ t/20!0.68#,
0-5
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N51000: Cp~ t;0!50.38 exp@2~ t/180!0.91#,

N510 000: Cp~ t;0!50.38 exp@2~ t/2200!0.90#. ~19!

The prefactor 0.38 comes fromCp(0;0)52K(0)/N.
Using the approximate functions~19! and Eq.~9!, we are

able to reproducesu
2(t), as shown in Fig. 7. The approxima

tion is good in stage I, i.e., in the quasistationary time regi
irrespective of the value ofN. Consequently, there is n
anomaly in diffusion in stage I, since the diffusion is e
plained by stretched exponential correlation function.

C. Diffusion in nonstationary state

After the quasistationary region, diffusion becom
anomalous, which is faster than normal diffusion, in stage
If we fit su

2(t) by a power-type functionta in stage II, the
exponenta is estimated as 1.54, 1.59, and 1.74 forN
5100, 1000, and 10 000, respectively. The values of ex
nent tend to increase asN increases as reported for the sy
tem having the so-called two-dimensional egg-crate poten
@3#. On the other hand, the duration in which diffusion
anomalous becomes shorter and shorter in logarithmic t
scale asN increases, in accordance with the sharper cha
of M (t). Moreover,su

2/ta is not constant, but has a wave
stage II ~see Fig. 8!. Hence we guess that the anomaly
diffusion is not anomalous diffusion taking a power-ty
function but a transient anomaly due to nonstationarity
stage II.

Let us proceed to investigate the origin of anomaly
diffusion. We focus on the behavior forN51000. The mean
square displacementsu

2(t) is perfectly determined by the
correlation functionCp(t;t) using Eq.~6!, once we assume
that Cp(t;t) is a series of stretched exponential function
We introduce three parameters,Cp(0;t), tcorr(t), andb(t),
to describe the stretched exponential function as

Cp~ t;t!5Cp~0;t!exp@2$t/tcorr~t!%b(t)#. ~20!

FIG. 6. Correlation function of momenta att50, i.e.,Cp(t;0).
The inset is magnification of the horizontal axis aroundt50 for
N5100. These numerical results are approximated by solid cu
which are stretched exponential functions~19!.
06621
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We investigate which of the three parameters is the m
important to yield anomaly in diffusion.

The strategy is as follows. We reproduce dsu
2(t)/dt by

using the three parameters and the formula

dsu
2

dt
~ t !52E

0

t

dt Cp~0;t!exp@2$~ t2t!/tcorr~t!%b(t)#.

~21!

es

FIG. 7. Time series of the mean square displacement of
phasessu

2(t). N5100, 1000, and 10 000 from top to bottom. Th
vertical axis is the original scale only forN510 000, and is multi-
plied by 103 and 106 for N51000 and 100, respectively, just for
graphical reason. In stage I where the system is quasistationary
numerical results are approximated by solid curves which are
tained from Eq.~9! using functions~19!. After the system reache
equilibrium, diffusion becomes normal. Anomaly in diffusion is o
served only in stage II. The two short vertical lines on each cu
show the end of stages I and II, which correspond to those foun
Fig. 1.

FIG. 8. Log-log plot ofsu
2(t)/ta. The exponenta is estimated

as 1.54, 1.59, and 1.74 forN5100, 1000, and 10 000, respectivel
The two short vertical lines on each curve show the end of stag
and II. In stage II,su

2/ta is not constant. The vertical axis is th
original scale only forN5100, and is multiplied by 10 and 100 fo
N51000 andN510 000, respectively for a graphical reason.
0-6
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We consider the first derivative ofsu
2 instead ofsu

2 itself,
because the former requires only single integration while
latter requires double integrations~6!. We first omit the de-
pendence ont of the parameterCp(0;t) and fix it to a con-
stant value to observe how it affects the anomaly in dif
sion. We then fix the two other parameterstcorr(t) andb(t)
to determine their effect on the mean square displaceme

From the numerical results ofCp(t;t), Fig. 5~b!, we de-
termine the values of three parametersCp(0;t), tcorr(t), and
b(t) at some value oft by using the least square metho
The discrete values of the parameters are not enough to
producedsu

2(t)/dt accurately, and then we approximate t
parameters by hyperbolic tangent functions as follows:

Cp~0;t!50.046 @11tanh„2.5~ log10t24.35!…#10.385,

tcorr~t!580 @11tanh„1.5~ log10t23.4!…#1170,

b~t!50.31 @11tanh„1.5~ log10t23.8!…#10.29. ~22!

The hyperbolic tangent functions are in good agreem
with numerical results, as shown in Fig. 9. To confirm t
validity of the approximation, we reproduced dsu

2/dt using
Eqs.~21! and~22!, and the reproduced one is in good agre
ment with numerical results, as shown in Fig. 10~a!.

If we fix Cp(0;t) at its middle value 0.431 we find tha
the dependence ont of Cp(0;t) does not affect significantly
dsu

2/dt, as shown in Fig. 10~b!. By fixing tcorr(t) at its
middle value 250 we obtain the same conclusion fortcorr(t)
as forCp(0;t), particularly in stage II@see Fig. 10~c!#. On
the contrary, if we fixb(t) at 0.6 or 0.9, we observe n
anomaly in diffusion as shown in Fig. 10~d!, because
dsu

2(t)/dt is proportional tot and is constant in short an
long time regions, respectively, and the same behavio
obtained at equilibrium@see Fig. 4~b!#. Consequently, among
the three parameters,b(t) plays a crucial role to produc
anomaly in diffusion.

FIG. 9. The three parametersCp(0;t), tcorr(t), and b(t) as
functions of t. The latter two parameterstcorr(t) and b(t) are
multiplied by 1/1000 and 1/2, respectively, for a graphical reas
Solid curves are hyperbolic tangent functions described in Eq.~22!.
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D. Dependence on degrees of freedom

In stage I~and III!, we fit Cp(t;0) @resp.Cp(t;teq)] by a
stretched exponential function, which has three paramet
Cp(0;0), tcorr(0), andb(0) @resp.Cp(0;teq), tcorr(teq), and
b(teq)]. In order to obtain scaling laws for the paramete
we show them as functions of degrees of freedomN. The
parametersCp(0;0) andCp(0;teq) represent temperature a
t50 and at equilibrium, respectively, and hence they do
depend onN. We therefore focus on the other four param
eters,tcorr(0), b(0), tcorr(teq), and b(teq). The correlation
functions,Cp(t;0) andCp(t;teq), are shown in Fig. 11, and
values of the four parameters are reported as functions oN
in Fig. 12.

For largeN, N>200, the correlation times are propo
tional toN, that is,tcorr(0)5N/5 andtcorr(teq)5N/2, and the
stretching exponentsb(0) andb(teq) are almost constants
We expect that these scaling laws for the four quantities
kept even in the thermodynamic limit, although they bre
for small N, where tcorr(0) is larger thanN/5 andb(0) is
smaller than the constant. The duration of stage I,t I/II , is
around 23 forN5100, and hencetcorr(0) andb(0) are es-
timated mainly not in stage I but in stage II from Fig. 11~a!.
In stage II,tcorr(t) and b(t) are increasing and decreasin
functions oft, respectively~see Fig. 9!, and hencetcorr(0)
and b(0) are larger and smaller than expected values,
spectively.

V. SUMMARY

As a summary, we have investigated the relation betw
relaxation and diffusion in a Hamiltonian system with lon
range interactions. The relaxation process is divided i
three stages: quasistationary, relaxational, and equilibri
We showed that diffusion becomes anomalous only in
second nonstationary stage, where magnetization is incr
ing and goes towards to the canonical value. The result m
tioned above does not depend on the number of degree
freedom, at least fromN5100 to 10 000.

The interval where the anomaly in diffusion appears b
comes shorter and shorter in logarithmic time scale asN
increase corresponding to a sharper change of magnetiza
Moreover, a detailed investigation exhibits the absence
power-type diffusion even in the nonstationary stage.
guess that anomaly in diffusion is a transient anomaly du
nonstationarity.

Diffusion is obtained by integrating the correlation fun
tion of momentaCp(t;t) and the correlation function is ap
proximated by a series of stretched exponential functi
Cp(t;t)5Cp(0;t) exp@2„t/tcorr(t)…b(t)#. Among the three
parameters,Cp(0;t), tcorr(t), and b(t), the stretching ex-
ponentb(t) plays a crucial role to yield anomaly in diffu
sion. If we assume thatb(t) is a constant, we never observ
anomaly in diffusion. This result is consistent with the fa
that anomaly in diffusion does not appear in~quasi!stationary
state, because correlation functionCp(t;t) and b(t), ac-
cordingly, are almost invariant with respect tot.

We also investigated scaling laws concerning degree
freedomN. The duration of quasistationary stage is prop

.
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FIG. 10. Time derivative of the mean square displacement , dsu
2(t)/dt. ~a! Numerical results~crosses! and reproduced one~solid curve!

using Eq.~21! and the approximate functions of the three parameters in Eq.~22!. In ~b!, ~c!, and~d!, Cp(0;t), tcorr(t), andb(t) are kept
constant, respectively. In~d!, two constants forb(t) have been tested. Solid and dashed curves representb50.6 and 0.9, respectively. Th
short vertical lines mark the end of stages I and II.

FIG. 11. Double log-log plots of correlation functions for various values of degrees of freedomN. ~a! Cp(t;0) ~stage I!. ~b! Cp(t;teq)
~stage III!. In both ~a! and ~b!, N5100(1000), 200(500), 300(300), 500(200), 1000(100), 2000(100), 3000(50), 5000(10)
10 000(10) from top to bottom, where the inside of parentheses represent numbers of realizations forCp(t;teq). For Cp(t;0), the number is
1000 forN51000 and is 100 for the others.
066210-8
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FIG. 12. Two parameters of correlation function as functions of degrees of freedom,tcorr(N) ~a! andb(N) ~b!. In both~a! and~b!, squares
(3) represent values of the parameters forCp(t;0) ~stage I! and crosses (3) for Cp(t;teq) ~stage III!.
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ien
tional to N1.7, and relaxation time, at which the syste
reaches at equilibrium, is also proportional toN1.7 asymptoti-
cally although some corrections must be added. In both q
sistationary and equilibrium stages,tcorr is proportional toN
and b is almost constant. These simple scaling laws im
that fitting by stretched exponential functions is valid irr
spective of degrees of freedom.

We have not understood the theoretical reason of the
pearance of a stretched exponential function. If we assu
that several time scales with exponential correlation fu
tion, exp(2t/tcorr), are present, and we assume probabi
distribution function of tcorr, P(tcorr), then we obtain a
stretched exponential function*P(tcorr)exp(2t/tcorr)dtcorr by
et

06621
a-

y

p-
e
-

choosing suitable forms forP(tcorr) @26,27#. In our model,
P(tcorr) corresponds to the distribution of time scales of
dividual rotators. The investigation of the macrovariab
C(t;t) in relation with the microvariables of the individua
particle correlation functions will be a subject of futu
work.

ACKNOWLEDGMENTS

I thank Stefano Ruffo for a careful reading of the man
script and useful comments. I acknowledge valuable disc
sions with Alessandro Torcini, Freddy Bouchet, and Jul
Barré.
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