<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>報告:タイ・マラヤ・カンボジアにおける稲作施肥をみて</td>
</tr>
<tr>
<td>Author(s)</td>
<td>高橋 英一</td>
</tr>
<tr>
<td>Citation</td>
<td>東南アジア研究 (1967), 5(1): 155-165</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1967-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/55368</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
報告

タイ、マラヤ、カンボジアにおける稲作施肥をみて

高 福 英 一

はじめに

1966年夏、東南アジア研究センターから、
タイ、マラヤ、カンボジア3国の稲作施肥の
実態をみてまわる機会を与えられた。期間は
8月17日から9月8日の23日間であった
が、現地の方々の御援助のおかげで、多数の
関所（図1）をまわることができたのは幸い
であった。その主な目的は、施肥技術の導入
によってこの地域の米の生産性をどの程度向
上させるか、また導入に当たってどのような
問題点があるかを実地に見詰めることであっ
た。この種の問題についてはすでに専門家
諸氏による報告も多く、さまざまな種類の感が
あるが、一応現地をみての自己ながらの印象を
記して報告にかえさせていただくことにする。

Ⅰ 稲増産の必要性と施肥技術の導入

いうまでもなく、米は東南アジア諸国民の
主食であり、稲作面積は多くの場合その国の
耕地面積の中で首位を占めている。しかしな
がらその土地生産性は、わが国にくらべて極め
て低く（表1）フィリピン、マラヤ、インドネ
シア、東パキスタン、インドは自給できずに
輸入しており、輸出し得るのはわずかにタイ、
ビルマ、カンボジア3国にすぎない現状であ
る。しかも近年東南アジア諸国の人口増加は
著しく、年平均3％をこえる増加率を示して
いる。このような情勢は米輸入国にあっては
輸入の増大を、米輸出国にあっては外貨獲得
の手段である米の輸出の減少を招き、それ

図1 調査地点

1 Bangkok 13 Minburi
2 Bangken 14 Tasaan
3 Rangsit 15 Kuala Lumpur
4 Lopburi 16 Klang
5 Singburi 17 Tanjong Karan
6 Chainat 18 Serdang
7 Thomburi 19 George Town
8 Nakhon Pathom 20 Bukit Merah
9 Banglen 21 Chiangmai
10 Ongkharak 22 Siem Reap
11 Nakhon Nayok 23 Battambang
12 Ayutthaya 24 Phnom Penh
表 1 タイ、マラヤ、カンボジアにおける穀生産状況

<table>
<thead>
<tr>
<th></th>
<th>日 本</th>
<th>マ ラ ヤ</th>
<th>カンボジア</th>
<th>タ イ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000ha</td>
<td>3222→3285</td>
<td>348→392</td>
<td>1050→1599</td>
<td>4524→5979</td>
</tr>
<tr>
<td>1000ha</td>
<td>3222→3285</td>
<td>348→392</td>
<td>1050→1599</td>
<td>4524→5979</td>
</tr>
<tr>
<td>1000ha</td>
<td>3222→3285</td>
<td>348→392</td>
<td>1050→1599</td>
<td>4524→5979</td>
</tr>
<tr>
<td>収穫量*</td>
<td>48.1→52.6</td>
<td>19.5→25.3</td>
<td>11.4→10.5</td>
<td>12.6→16.1</td>
</tr>
<tr>
<td>生産量</td>
<td>15481→17283</td>
<td>678→1006</td>
<td>1200→1886</td>
<td>5709→9640</td>
</tr>
<tr>
<td>輸入量</td>
<td>(入) 760→222 (1956)</td>
<td>(入) 592→582 (1962)</td>
<td>(出) 49→378 (1956)</td>
<td>(出) 1001→1964 (1964)</td>
</tr>
<tr>
<td>生産者米倉**</td>
<td>28</td>
<td>9</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>収穫 cent/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>肥料消費量***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>125.9</td>
<td>6.1</td>
<td>---</td>
<td>0.7</td>
</tr>
<tr>
<td>P2O5</td>
<td>66.1</td>
<td>3.4</td>
<td>---</td>
<td>0.3</td>
</tr>
<tr>
<td>K2O</td>
<td>76.8</td>
<td>2.0</td>
<td>---</td>
<td>0.1</td>
</tr>
</tbody>
</table>

*日本、マラヤ、カンボジアは FAO year book, タイは Agr. statistics of Thailand 1964による。
**諸資料、聴取結果より裁量。
***アジア経済研究所「アジアの稲作」(1960)より水田のみならず、全体面積に対する平均使用量。
****水田面積を100としたときの面積指数。満喫のコントロールが十分でないために、水不足あるいは水過剰により、収穫面積はかなりの減少を示す。ただし、1955年から1965年は減少割合が大分少なくなっている、この間における、ダム建設など満喫施設の進歩を反映している。

ならば国々の経済に大きな影響を与えるだけでなく、近い将来において深刻な食糧難を招く危険性さえある。一方南東アジア地域の気象条件は日本にくらべればはるかに稲作に有利である。すなわち年間を通じて気温は高く、空気は蒸し日射が豊富で、日本におけるようく温度が稲作の限定要因になったり、害害や日照不足にながらまされることなく、また台風などの心配もない。したがって、わが国の稲作の高度化稲作技術を導入すれば、南東アジア地域の米の収量をわが国の平均収量(3石/反)近くまで、すなわち現在の単位面積当たりの収量を約3倍に引き上げることはあらが不可能ではないであろう。しかも東南アジア地域の稲はほとんど無肥料に近い状態で栽培されてきているので(表1)，施肥による増収は将来大いに期待できるであろう。

以上が現地に行くまでにもっていた予備知識であった。現地を調査したあとこの大戦は正しいと思われたが、多少自分が想像していたのはちがったところや気がつかずにいいたかった。

これは一種の先入観であろうが、戦中戦後の深刻な米不足を体験させられたものにとつては、米不足というとすぐ飢えや寒さや死という暗い印象に結びつくやすい。しかし現地（今度訪れたタイ、マラヤ、カンボジア3国に限った場合）へいてみて、日本にくらべて果実類など米以外の食糧が豊かなようにみえること、また寒さに耐えるためや日常生活のために消費されるエネルギーがずっと少なくIssみそうなことなどを思いあわせ
ところ、同じ程度に米が不足しても、おそらく日本で感じるほどの危機感を現地人には与えないのではないかと思われた。もしそうならば、日本で統計資料をもって同じ米増産の必要性と同程度の必要性を、これら地域（タイ、マラヤ、カンボジア）の諸国民なり政府が感じるかどうかは疑問であり、稲作を最優先のわが国において発達した稲作技術を探るまざ導入することは、研究段階では別として、実用普及の段階では問題があるのではないか。これが現地へ行ってみて感じた第1の点であった。

第2に気付いたことは実際に生産にたずさわる農民のおかげであることであった。東南アジア諸地域の消費者米価はわが国にくらべて低いが、消費者米価はさらに低い（表1）。農民は華商のmillerのところへ米をもっていって買ってもらうが、millerは農民に対して融資なども行なうので、農民は米を貰いたいからも同じことを行うということを聞いた。これにくるべてわが国の生産者米価は著しく高く保証されており、しかも消費者米価を上まわるという特異な現象を呈している。またわが国では農業に関する試験研究あるいは技術普及の機関組織が著しく発達しているが、これら諸地域にあっては農民を組織化して新技術を導入し増産を行なわせる体制を通とところにはまだかなりの年月を要するように思われた。

このようにわが国にくらべて経済的的にも技術的にも保護をうけていない東南アジア地域の農民に施肥稲作を行なわせる場合、いろいろの問題がある。適切な施肥技術を正しく農民に普及させることは、わが国にくらべて非常に困難であろうし、さらに大きな問題は現在ではただりして増産にみあうだけの収益を農民が得られるかどうかということである。すなわち安い消費者米価に対して高い肥料代、また施肥にとまとめて必要となる農薬の施用は、かりに適切な施肥によって増収をあげ得ても、それが必ずしも農民のふところを豊かにするとは限らないのではないか。

施肥技術を導入するに当たってはとるべきいろいろな処置があるが、それがどの程度期待できるかはその国における米の増産の必要性がどの程度であるかによってきまるであろう。また施肥技術の問題は単に収量との関係において考えるだけでなく、直接生産にたずさわる農民の経済的必要性をも考慮に入れないければ普及は困難であろう。これが現地を訪れて得た実感であった。

II 稲作のちがいと施肥技術の導入

つきに施肥技術導入の上で問題になることはわが国と東南アジア地域における稲作のちがいであろう。わが国の稲作は集約農業の上に発達してきたものである。東南アジアの稲作は粗放農業の上に立っている。もちろん収量の向上を考えたためには集約農業へ向かわねばならないが、それにはかなりの年月を要するであろう。たとえば単位面積当たりの増収のためには肥沃性品種を育成し、これを導入することが必要であるが、このような品種は既にかなり短縮であり、東南アジア地域で現在かなりの面積を占めている深水帯（たとえば表2参照）には不適当であって、この種の品種の導入にあたっては田間管理などによる灌排水のコントロールが先決問題となる。また排排水設備が整って乾季における栽培も可能になるので、栽培面積面積は2倍となり、また気温や日照の関係で乾季の力が収量性が高いので、年間収量は一躍2倍以上になる可能性がある。このような点からすると粗放農業の中農業技術がとり入れられていく過程の中で、施肥技術の導入はかなりの段階においてであり、水利、育種などの技術導入以来はなされて考えられない性質のものといえる。

157
<table>
<thead>
<tr>
<th>調査水田の所在地</th>
<th>田面水深（最大）</th>
<th>移植時期</th>
<th>収穫予定時期</th>
<th>本田期間</th>
<th>施肥</th>
<th>収穫量の他</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lopburi (tenant)</td>
<td>30〜40 cm</td>
<td>6月28日</td>
<td>明年1月</td>
<td>5〜6</td>
<td>無</td>
<td>黒色、重粘土輪のみアルカリ性10〜15tang/rai</td>
</tr>
<tr>
<td>Singburi (holder)</td>
<td>30</td>
<td>8月7日</td>
<td>明年1月</td>
<td>5</td>
<td>ammophos 15kg/rai-DDT使用</td>
<td></td>
</tr>
<tr>
<td>Thomburi (tenant)</td>
<td>30</td>
<td>7月初旬</td>
<td>12月初旬</td>
<td>5</td>
<td>ammophos 10kg/rai (移植後生育をみて) DDT使用</td>
<td></td>
</tr>
<tr>
<td>Nakhon Pathom (holder)</td>
<td>50</td>
<td>8月初旬</td>
<td>明年2月</td>
<td>6〜7</td>
<td>緑肥（田植後後に）時々DDT使用</td>
<td></td>
</tr>
<tr>
<td>Banglen (holder)</td>
<td>100〜200</td>
<td>5月20日</td>
<td>9月下旬</td>
<td>4</td>
<td>生育の悪い場所に施肥</td>
<td></td>
</tr>
<tr>
<td>Ongkharak (tenant)</td>
<td>50</td>
<td>6月下旬</td>
<td>12月初旬</td>
<td>5</td>
<td>化学肥料の使用 (esso 8kg/rai)</td>
<td></td>
</tr>
<tr>
<td>Nakhon Nayok (tenant)</td>
<td>70</td>
<td>7月9日</td>
<td>12月初旬</td>
<td>5</td>
<td>無</td>
<td></td>
</tr>
<tr>
<td>Minburi (tenant)</td>
<td>50〜60</td>
<td>7月7日</td>
<td>明年1月</td>
<td>6〜7</td>
<td>無</td>
<td>16tang/rai</td>
</tr>
<tr>
<td>Tasaan (tenant)</td>
<td>70〜80</td>
<td>7月20日</td>
<td>11月初旬</td>
<td>3〜4</td>
<td>超代施肥 糠肥</td>
<td></td>
</tr>
<tr>
<td>Bangkhen (holder)</td>
<td>50</td>
<td>7月22日</td>
<td>明年1月</td>
<td>6</td>
<td>ammophos 15kg/rai</td>
<td></td>
</tr>
</tbody>
</table>

*粗 25tang/rai=1石/反

このような現状から、東南アジア地域の稲作に対する施肥技術の導入には二つの場面が考えられる。

第1は灌漑水を制御し得ない場面、すなわち深水の条件下で生育し得る稲長の長い、しかもながら耐肥性は乏しい在来稲に対して施肥を行ない増収をはかろうという場面である。この場合施肥の効果を十分に発揮させることは期待しにくいけれども、粗放農業から集約農業への過渡期においては重要なことである。

第2は田面水の制御が可能となり短稈の肥料応答性の高い品種を導入した場面における施肥

<table>
<thead>
<tr>
<th>項目</th>
<th>最大値</th>
<th>最小値</th>
<th>平均値</th>
</tr>
</thead>
<tbody>
<tr>
<td>収穫量（gantangs/a）</td>
<td>999</td>
<td>170</td>
<td>585</td>
</tr>
<tr>
<td>穗数（m²当り）</td>
<td>199</td>
<td>65</td>
<td>109</td>
</tr>
<tr>
<td>1穂粒数（平均）</td>
<td>226</td>
<td>39</td>
<td>162</td>
</tr>
<tr>
<td>登熟歩合（%）</td>
<td>93.1</td>
<td>77.6</td>
<td>84.7</td>
</tr>
<tr>
<td>千粒重（g）</td>
<td>28.1</td>
<td>19.8</td>
<td>24.3</td>
</tr>
</tbody>
</table>

300gantangs/a=1石/反（玄米）
1gantang=2.540kg=5.600lb

Rice Culture in Malaya, p.7 (Symposium Series No.1, The Center for Southeast Asian Studies, Kyoto University, 1965)
表4 タイ中央平野部における施肥試験（場面試験）（福井捷郎ほか）

<table>
<thead>
<tr>
<th>訓所</th>
<th>Rangsit 農試場（1区画 4.8m×8m）</th>
</tr>
</thead>
<tbody>
<tr>
<td>期間</td>
<td>1966年6月〜12月</td>
</tr>
<tr>
<td>品種</td>
<td>Powang Nakh 16</td>
</tr>
<tr>
<td>施肥</td>
<td>N（硫安）下表, P₂O₅（過リン酸石灰）80kg/ha</td>
</tr>
<tr>
<td>移植</td>
<td>7月20日</td>
</tr>
</tbody>
</table>

A. 密植区（栽植密度40×40cm）

<table>
<thead>
<tr>
<th>訓授区</th>
<th>N/ha 施肥量</th>
<th>kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>訓授期（12月30日）における1株当たりの収穫量</th>
<th>収穫量構成4要素</th>
<th>一株当たりヘクター当たり</th>
</tr>
</thead>
<tbody>
<tr>
<td>萩</td>
<td>大穂</td>
<td>重穂</td>
</tr>
<tr>
<td>萩</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>大穂</td>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>重穂</td>
<td>4</td>
<td>120</td>
</tr>
</tbody>
</table>

B. 密植区（栽植密度15×15cm）

<table>
<thead>
<tr>
<th>訓授区</th>
<th>N/ha 施肥量</th>
<th>kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>訓授期（12月30日）における1株当たりの収穫量</th>
<th>収穫量構成4要素</th>
<th>一株当たりヘクター当たり</th>
</tr>
</thead>
<tbody>
<tr>
<td>萩</td>
<td>大穂</td>
<td>重穂</td>
</tr>
<tr>
<td>萩</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>大穂</td>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>重穂</td>
<td>4</td>
<td>120</td>
</tr>
</tbody>
</table>

*（）はAの栽植区の無窒素区の精稈収量を100とした場合の指数
<table>
<thead>
<tr>
<th>試験区</th>
<th>移植時（7月30日）</th>
<th>幼苗形成時（11月16日）</th>
<th>計</th>
<th>収穫時（1月10日）における収穫時の株数</th>
<th>一株当たりの穀重</th>
<th>一株当たりの穀重</th>
<th>一株当たりの穀重</th>
<th>一株当たりの穀重</th>
<th>一株当たりの穀重</th>
<th>一株当たりの穀重</th>
</tr>
</thead>
<tbody>
<tr>
<td>W - 1</td>
<td>0.18</td>
<td>0.18</td>
<td>0.36</td>
<td>98</td>
<td>7.7</td>
<td>11.8</td>
<td>14.6</td>
<td>0.81</td>
<td>7.7</td>
<td>81.3</td>
</tr>
<tr>
<td>W - 2</td>
<td>0.36</td>
<td>0.18</td>
<td>0.54</td>
<td>100</td>
<td>11.7</td>
<td>16.7</td>
<td>26.6</td>
<td>0.63</td>
<td>11.7</td>
<td>62.9</td>
</tr>
<tr>
<td>W - 3</td>
<td>0.72</td>
<td>0.18</td>
<td>0.90</td>
<td>97</td>
<td>15.8</td>
<td>17.9</td>
<td>29.7</td>
<td>0.60</td>
<td>15.8</td>
<td>56.8</td>
</tr>
<tr>
<td>W - 4</td>
<td>1.44</td>
<td>0.18</td>
<td>1.62</td>
<td>96</td>
<td>22.0</td>
<td>21.2</td>
<td>45.6</td>
<td>0.47</td>
<td>22.0</td>
<td>52.7</td>
</tr>
<tr>
<td>C - 1</td>
<td>0.18</td>
<td>0.18</td>
<td>0.36</td>
<td>102</td>
<td>6.5</td>
<td>9.6</td>
<td>15.6</td>
<td>0.62</td>
<td>6.5</td>
<td>44.2</td>
</tr>
<tr>
<td>C - 2</td>
<td>0.36</td>
<td>0.18</td>
<td>0.54</td>
<td>110</td>
<td>9.7</td>
<td>15.5</td>
<td>26.2</td>
<td>0.59</td>
<td>9.7</td>
<td>46.9</td>
</tr>
<tr>
<td>C - 3</td>
<td>0.72</td>
<td>0.18</td>
<td>0.90</td>
<td>120</td>
<td>8.0</td>
<td>13.7</td>
<td>25.2</td>
<td>0.54</td>
<td>8.0</td>
<td>81.6</td>
</tr>
<tr>
<td>C - 4</td>
<td>1.44</td>
<td>0.18</td>
<td>1.62</td>
<td>116</td>
<td>5.0</td>
<td>9.9</td>
<td>16.1</td>
<td>0.61</td>
<td>5.0</td>
<td>100.9</td>
</tr>
</tbody>
</table>
表6 カンボジアにおける日本稲施肥栽培試験（平野 俊氏）

<table>
<thead>
<tr>
<th>場所</th>
<th>Battambang 中央農試圃場</th>
</tr>
</thead>
<tbody>
<tr>
<td>施肥量</td>
<td>N: P₂O₅: K₂O=120(40施肥): 120 : 120</td>
</tr>
</tbody>
</table>

試験I

<table>
<thead>
<tr>
<th>品種</th>
<th>豊年早生</th>
</tr>
</thead>
<tbody>
<tr>
<td>全生育日数</td>
<td>85日（苗床11日，移植～出穂40日，出穂～収穂34日）</td>
</tr>
<tr>
<td>種</td>
<td>収量/ha</td>
</tr>
<tr>
<td>NPK</td>
<td>4.03(100)</td>
</tr>
<tr>
<td>0 PK</td>
<td>2.13(53)</td>
</tr>
<tr>
<td>N0K</td>
<td>0.88(16)</td>
</tr>
<tr>
<td>NP0</td>
<td>3.70(92)</td>
</tr>
<tr>
<td>000</td>
<td>0.10(3)</td>
</tr>
</tbody>
</table>

*処理区により出穂期±3日変動

試験II

<table>
<thead>
<tr>
<th>品種</th>
<th>豊年早生</th>
</tr>
</thead>
<tbody>
<tr>
<td>全生育日数</td>
<td>117日（苗床11日，移植～出穂72日，出穂～成熟34日）</td>
</tr>
<tr>
<td>N-P₂O₅-K₂O</td>
<td>植え高cm</td>
</tr>
<tr>
<td>80/40-120-120</td>
<td>64</td>
</tr>
<tr>
<td>0/40- 40 -40</td>
<td>52</td>
</tr>
<tr>
<td>0- 0- 0</td>
<td>44</td>
</tr>
<tr>
<td>植え高</td>
<td>16</td>
</tr>
<tr>
<td>18</td>
<td>64</td>
</tr>
<tr>
<td>穀数</td>
<td>72</td>
</tr>
<tr>
<td>72</td>
<td>86</td>
</tr>
<tr>
<td>86</td>
<td>5.2(100)</td>
</tr>
<tr>
<td>40- 40</td>
<td>90</td>
</tr>
<tr>
<td>3.1(60)</td>
<td></td>
</tr>
<tr>
<td>2.7(52)</td>
<td></td>
</tr>
</tbody>
</table>

161
表 7 タイにおける日本稲施肥栽培試験（高橋治助氏）

調査	稲作農業試験場
场所	Chainat
期間	1966年6月〜8月
栽植密度	20×20cm
1区画の広さ	4×4m

試験A 品種の栽培適応試験

播種	1966年6月13日
移植	8月28日
収穫	8月22日
施肥量 kg/rai	12 : 12 : 6 (硫安・過石・塩加)

試験B 米代日数（本田日数）の長短の影響

播種	1966年5月20日
移植	A-Series 1966年6月4日
	B-Series 10日
	C-Series 17日
収穫	21日
	28日
	63日

試験C 施肥用量試験

<table>
<thead>
<tr>
<th>plot</th>
<th>N</th>
<th>P2O5</th>
<th>K2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>18</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

施肥量、施肥時期の三つの因子を組合わせた圃場試験を実施中である（表4参照）。
また〔密植一過繁殖一相互遮蔽一収穫〕の関係を明らかにするため、同じく福井君らによってBangkenのRice Departmentにおいてポット試験を実施している。これはポットのならば方をかえることによって密植、疏植の条件をつくるもので、現地の場合のように栽培密度によって根圏土壌の量がかわり、それがあも養分その他の環境条件の変化をもたらすという場面はとりのぞかれる、より直接に地実上部の相互遮蔽の影響を観察できるものと思われる（表5参照）。
訪タイ中に調査を行なったときは、いずれの試験も処理開始後4週間経過したばかりであったが、すでに処理間にはかなりの差異がみとめられ、その後の生育がどのように推移するか興味がもたれた。最近収量調査の結果
表8 マラヤにおける耐肥性新苗種

<table>
<thead>
<tr>
<th>品種</th>
<th>Malinjia</th>
<th>Maskudi</th>
<th>IR-8-288-3 (Ria)</th>
</tr>
</thead>
<tbody>
<tr>
<td>種配</td>
<td>Siam 29 (インディカ)</td>
<td>台中65 × Mayang Ebos 80 × Pe Bi Fun (ジャポニカ)</td>
<td>Peta (インディカ) × Dee-geo-woo-gen (ジャポニカ)</td>
</tr>
<tr>
<td>生育日数</td>
<td>135日</td>
<td>135日</td>
<td>120日</td>
</tr>
<tr>
<td>程長</td>
<td>110cm</td>
<td>100cm</td>
<td>60〜70cm</td>
</tr>
<tr>
<td>茎型</td>
<td>直立型</td>
<td>直立型</td>
<td>直立型</td>
</tr>
<tr>
<td>耐肥性</td>
<td>N60 lb/a 700〜800 gantang/a</td>
<td>N60 lb/a 700〜800 gantang/a</td>
<td>Tanjong Karan N120 lb/a 1000 gantang/a Bukit Merah N180 lb/a 1000 lb/a gantang/a</td>
</tr>
<tr>
<td>耐病性</td>
<td>耐病性やや悪る</td>
<td>耐病性やや悪る</td>
<td>イモチに強い。シラハガレには弱いという</td>
</tr>
<tr>
<td>普及率</td>
<td>20％ (P.W.*)</td>
<td>70％ (P.W.)</td>
<td>試験段階</td>
</tr>
</tbody>
</table>

*Province Wellesley 州

の一部が判明したが、これによると畑場試験
の築植区の場合（表4のA）生育後期の窒素
施葉は収量にかなり著しい効果があるように
推察された。31

つぎに第2の場面における試験としては
肥料応答性の高い適地品種として、日本で栽培
されている品種の中から適当なものをえら
び施肥試験を行なう場合と、新苗種を育成し
てこれに対して試験を行なう場合の二つがあ
る。

前者の例としてはカンボジアの Battam-
bang 中央農試（平野俊氏ら）およびタイの
Chainat 農試（高橋治枝氏ら）における日本稈
の施肥栽培試験がある（表6および表7参照）。

Battambang では高温と短日で栄養生长期
間が短縮されることの少ない蓬菜種が有望で
あることが昭和40年度の試験でみられてお
り、Chainat では昭和41年度から16品種

1) これらについてはあらためて詳細な報告をする
予定である。

の日本稈を試験中であるが、畑場を訪れた時
（8月19日収穫予定3日後）台中65号、関東
51号以外は全部出穂して良好な登熟をしてい
た。これは19年度の第二作であったが、第
一期作では反力窒素8kgs程度の施肥によっ
て3石近い収穫をあげたという。生育日数は
3カ月ほどであるので2回から3回の栽培
が可能であり、適当な施肥によって6〜9石
の収量をあげることも期待できる。また生育
日数が短いためであって施肥に対する応答性
が高く、窒素、リン酸以外にカリの肥効もみ
とめられる（Battambang では流出粘土から
のカリの供給が豊富のようにカリの肥効はみ
とめられないが、窒素とともにリン酸の肥効
が顕著であるという）。

肥料応答性の高い新育苗品種としては、日
本人育種家の手になる Malinjia, Maskuri が
有名であるが、最近マラヤの国際稈作研究所
（IRRI）で育成された IR-8-288-3 なる品種
（マラヤでは Ria（幸福）という愛称がつけら
れている）が各地（マラヤの Tanjong Karan, Bukit Merah, タイの Chiengmai, カンボジアの Battambang 試験地）で試験され注目をあびているようであった（表8参照）。この品種は Malinia, Mashuri より生育日数が短く、非常に短冊で葉が長くついた直立型である。耐肥性を著しく、IRRI では窒素120ポンド/エーカー, Bukit Merah の試験では窒素180ポンド/エーカーで1000ガンタン/エーカーを越える収量を得たという。反応

表9 カンボジアにおける米生産費と生産者米価

<table>
<thead>
<tr>
<th>米種</th>
<th>[]日本</th>
<th>kg 当り</th>
</tr>
</thead>
<tbody>
<tr>
<td>生産者価格 粗米</td>
<td>2.5 riel [¥100]</td>
<td></td>
</tr>
<tr>
<td>消費者価格 精米</td>
<td>5〜7 riel [¥100]</td>
<td></td>
</tr>
<tr>
<td>鈴米</td>
<td>3 riel</td>
<td></td>
</tr>
<tr>
<td>輸出価格（1等米）</td>
<td>5.7 riel</td>
<td></td>
</tr>
</tbody>
</table>

1 riel=10 Yen official rate

<table>
<thead>
<tr>
<th>肥料価格</th>
<th>[]日本</th>
<th>kg 当り</th>
</tr>
</thead>
<tbody>
<tr>
<td>尿素</td>
<td>5 riel [¥40]</td>
<td></td>
</tr>
<tr>
<td>鉱安</td>
<td>3 riel [¥20]</td>
<td></td>
</tr>
<tr>
<td>リン鉱粉（農業）</td>
<td>3 riel</td>
<td></td>
</tr>
<tr>
<td>過リン酸石灰</td>
<td>2.5 riel [¥15]</td>
<td></td>
</tr>
<tr>
<td>塩化加里</td>
<td>2.5 riel [¥20]</td>
<td></td>
</tr>
<tr>
<td>復合肥料（15-15-15）</td>
<td>5 riel</td>
<td></td>
</tr>
</tbody>
</table>

米生産費（ヘクタール当り）
肥料（現行価格 N, P2O5, K2O 各 75kg/ヘクタール施肥の場合） 2500riel
農薬類（主としてメイ虫駆除の BHC 代） 1500
農作業費（耕作施肥除草収穫の費用等） 2600
灌漑水利費 600
7200riel

施肥（N, P2O5, K2O 各 75kg/ヘクタール）した場合の農家収入

<table>
<thead>
<tr>
<th>稲収量</th>
<th>ヘクタール当りの純益</th>
<th>農家 1 戸当りの純益</th>
</tr>
</thead>
<tbody>
<tr>
<td>トンヘクタール</td>
<td>2500×3=7500=900</td>
<td>a 300×3=900</td>
</tr>
<tr>
<td>5ヘクタール</td>
<td>2500×5=12500=1500</td>
<td>b 300×5=1500</td>
</tr>
</tbody>
</table>

a カンボジア全土の農家 1 戸当りの水田面積 3 ヘクタール
b バックバン州の農家 1 戸当りの水田面積 5 ヘクタール
るおう可能性はどうかという点である。
すでに述べたようにこの地域における生産者米価はわが国にくらべ著しく低く、肥料の価格は相対的にかなり高い。また施肥すれば病害虫防止のため農薬の使用は必要となり、これらは農民にとってかなりの投資負担となることが予想される。それが現状においてこれらの地域における農民が施設を行なうことによってどれだけの効果をあげ得るかを推察するために現地で得た資料を中心にして、カンボジアの場合について試算を行なってみた結果を表9に示す。

これは日本稲を栽培し施設を行なった場合の例であるが、現状でも収穫量で3トン/ヘクタール以上とすれば一応の収益がある計算になり、また3トン/ヘクタール（これは雨季の場合で、日照量のより豊かな乾季ならば5トン/ヘクタール）の収穫量をあげることも可能といわれているので、現在の時点においても施設の経済性はあるものとみてよいであろう。

東南アジアのような粗放農業を営んでいる地域に農業技術を導入してゆく場合、施肥技術は比較的あとの役割で入ってゆくべき性格のもののように思われる。たとえば未開の地に入ってゆく場合を想定すると、まず工兵が道をひき橋をかけ、そこを歩兵が進み、その後を軽重兵が尾随して運んでゆくのが常法であって、軽重兵が先頭に立って進んでもそれはナンセンスである。それと同様に、有効な施肥を行なうにはそれにふさわしい水稲品種の導入が必要であり、そのためには灌排水の制御など立地条件の整備が必要である。また化学肥料は工業的に製造される「商品」であるから、その価格（絶対価格よりも農産物たとえば米の価格に対する相対価

2) 平野 健氏より提供をうけた。

格）が適当であるための社会的・経済的背景も問題である。これらの諸条件や背景を無視して単独しても効果は乏しく普及は困難であった。このようなところに施肥技術の限界やむずかしさがある。

しかしながら将来これらの国々において肥料の価格が相対的になり安価になり、また現地に適した耐肥性品種の導入が可能となった時には、施肥技術による農民所得は伸び、増・家への農民の意欲も増加し、米の生産性の飛躍的向上は十分期待されよう。

謝 辞

今回の調査にあたっては現地の方々から多くの御協力と御援助を受けたが、中でも次にあげる諸関係者に対して特に感謝の意を表したい。

National Research Council of Thailand
京大東南アジア研究センター、同バンコク連絡事務所
石井米雄助教授（東南アジア研究センター在タイ）
高橋治史氏（FAO専門家 在タイ）
川上昭一郎氏（コロンボプラン専門家 在マラヤ）
平野 俊氏（カンボジア農業技術援助派遣団長）
福富敬雄氏（同上団員）
Dr. Sala Dasanandana（タイ農務省米穀局長）
Dr. Bhakdi Lusanandana（同局技術部長）
Mr. Somphot Suwanwaong （同局土壤研究室長）
Dr. Ng Siew Kee（マラヤ農務省 土壌肥料研究部長）