<table>
<thead>
<tr>
<th>Title</th>
<th>Tangkhul Naga and Comparative Tibeto-Burman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Matisoff, James A.</td>
</tr>
<tr>
<td>Citation</td>
<td>東南アジア研究 (1972), 10(2): 271-283</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1972-09</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/55700</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学学術情報リポジトリ

Kyoto University Research Information Repository
Tangkhul Naga and Comparative Tibeto-Burman

by

James A. Matisoff*

Abstract

After reviewing Bhat's book, an attempt is made to illustrate the kind of contribution such well-recorded data can make to Tibeto-Burman studies in general. PTB initial velar clusters are examined in this context, with especial attention to the complicating role of prefixes. Various features of the PTB syllable-final where Tangkhul data is of interest are discussed, followed by some remarks on Tangkhul reflexes of proto word-families.

I Introduction

The crucially important and ramified group of Tibeto-Burman languages known variously as Kukish, Kuki-Chin, or Kuki-Chin-Naga, spoken in Assam and Western Burma, have long been something of a terra incognita. Benedict and Shafer (1940–1), deviating somewhat from the classification offered in the *Linguistic Atlas of India* (Grierson 1904), subdivide Kukish into no less than eight distinct smaller groups: Central Kuki, Northern Kuki, Old Kuki, Southern Kuki, Western Kuki, Northern Naga, Southern Naga, and Luhupa. The most useful Kukish language for comparative purposes has hitherto been Lushai (Central group), both because of the ample and well-recorded data available (Lorrain, Bright) and because of the many archaic features it preserves (contrastive vowel-length before consonants, retention of final -l and -r, etc.). Another key language has been Tangkhul or ‘Tangkhul Naga’ (Luhupa group), thanks to the voluminous dictionary of Pettigrew (1918). The importance of Tangkhul has now been increased still further by the work under review.

II Internal Critique of the Tankhur Naga Vocabulary.

Bhat's book has four parts. (a) In the brief Introduction (ix–xii) some basic phonological and grammatical information is provided. TN has seven vowels (i, u, u; e, o, o; a) and 17 syllable-initial consonants (stops p, t, k and ph, th, kh; affricates z[tś] and c[tś]; spirants

* Professor of Linguistics, University of California, Berkeley, U.S.A.
1) It is curious that Bhat nowhere makes mention of this earlier book. In what follows, forms cited from Pettigrew will be marked (P). Tangkhul Naga is abbreviated as TN. We continue to refer to this language as ‘Tangkhul’ rather than by Bhat’s name ‘Tankhur’.
s, ʃ, h; nasals m, n, ɻ; and w, r, y). /p t k/ become voiced intervocally, especially before a vowel under the low tone. The phoneme /r/ is realized indifferently either as a trill [r] or as a lateral [ɻ]. 3) The fricative /h/ has [f] as an alternant before /u/ or /w/, reminding one of Japanese and of the history of Loloish (PLolo *havak ‘rat’ > Lahu Ḗa). There are three tones, high-falling ‘/’, low-falling ‘/’, and an unmarked tone, presumably mid.

Bhat does not go on to analyze the structure of the TN syllable, though this is a rewarding enterprise. Syllables may end in one of 9 consonants: p, t, k; m, n, ɻ; w, r, y. Six of the vowels (all except /u/) may occur before the final stops, nasals, and -r. Before -y one finds only the non-front vowels /ə a u o/. As one would expect, the back vowels /u o/ do not appear before -w, but neither does /i/. These facts strongly suggest that the seventh vowel /u/ is to be analyzed as an underlying diphthong /uw/. Indeed, in the entire vocabulary /u/ is never found to occur before any consonant, except in the single item əmənwut ‘laughter’ (p. 24), where the -t is clearly suffixial (cf. khəmənw ‘to laugh’). 4)

The rest of the Introduction mentions a few grammatical points, 5) most interesting of which are the verbal prefixes ɻ-, mo-, pə- ~ phə-, kə- ~ khə-, and ci- ~ si-. The alternations in the non-nasal prefixes are conditioned by the voicing of the root-initial consonant, such that pə-, kə-, and ci- appear before voiceless consonants, while phə-, khə-, and si- are found before voiced ones. 9) This in itself is strong evidence that TN ə is sometimes the reflex of a voiceless palatal affricate, even though such a proto-initial is very poorly attested by the comparative data in root-morphemes.

(b) The main body of Bhat’s book is the TN-English vocabulary (1-72). The phonetic quality of the transcription of the TN forms is uniformly excellent, and there seems never to be any reason to doubt their accuracy (except in the case of obvious misprints). But again, Pettigrew was also no slouch as a phonetician, despite his rather infelicitous choice of symbols, and in fact the two transcriptions are readily interconvertible. Thus Pettigrew uses ‘a’ for Bhat’s ‘ə’, ‘ã’ for Bhat’s ‘a’, ‘ã’ for Bhat’s ‘u’, and ‘ci’ for Bhat’s ‘ay’. 7) Pettigrew uses ‘a’ for Bhat’s ‘ə’, ‘ã’ for Bhat’s ‘a’, ‘ã’ for Bhat’s ‘u’, and ‘ci’ for Bhat’s ‘ay’. 7)

3) Pettigrew also mentions some ɻ ~ r alternations (p. 4), but his dictionary, though based on the same standard ‘Ukhrul’ dialect as Bhat studied, systematically keeps /ɻ/ and /r/ apart, which indicates that the merger is of quite recent date. Pettigrew spells both ‘Tangkhul’ and ‘Ukhrul’ with -ɻ, but Bhat uses -r for the former while retaining -l for the latter (ix). Somewhat different is the case of w vs. v. Pettigrew reflects a subphonemic distinction, writing w before /ə u / and v otherwise. Bhat uniformly uses v, without comment.

4) The comparative evidence (see below) indicates that TN ut is sometimes, though not always, the reflex of the Old diphone *uə.

5) Pettigrew devotes 105 pages to TN grammar, much of which is quite valuable, though admittedly superficial by modern standards.

6) The TN ə ~ ɻ alternation is closely analogous to the situation in Jinghpaw (Kachin), where the causative prefix ɻ- is realized as dəə- before sibilants and aspirates (Hanson 221). The TN affix ci- ~ si- also conveys a causative or transitivizing meaning, and is clearly cognate to the Jinghpaw prefix, as well as to, e.g. the Lahu causative auxiliary verb ci.

7) Indeed, Pettigrew’s use of a and ə instead of ə and ə reflects the actual historical reality. Thus, ‘weep’ (P) kap, (Bhat) kap<PTB *krap, while ‘shoot’ (P) kəp, (Bhat) kap<PTB *gəp. See below.
already clearly recognized the three-way TN tonal contrast of high-mid-low (‘As in Manipuri, there are two noticeable changes in intonation in TN, a high and low tone to a great number of words which to the ignorant sound the same.’ [p. 4]), though he makes no attempt to mark these systematically, ‘as these differences can only be learned by ear’ (ibid). In those cases where Pettigrew does mark the tone, they do not always agree with Bhat’s transcription. Thus both writers agree that ‘red’ is high (hūy) and ‘neck’ is low (hūy), but Pettigrew distinguishes between ‘give’ (low) and ‘mankind’ (high), while Bhat has mid-toned mi for both. In any event, it is obvious that tone does not play as vital a role in distinguishing TN utterances (or Kukish utterances in general) as it does in such phonologically degenerate branches of Tibeto-Burman as Lolo-Burmese. In spite of clear contrasts (e.g. athy-rū ‘fruit juice’ vs. athy-rū ‘fruit pip’), there is much tonal variation among different occurrences of the same morpheme according to the particular compounds in which it appears.8

The entries in the Vocabulary are arranged in an alphabetical order modelled on that of Sanskrit, according to the position and manner of articulation of the syllable-initial consonant, with the velars coming first.9 The vowels are alphabetized in the order ə, a, i, u, u, e, o. A real innovation is Bhat’s convenient system of arranging the words in the alphabetical order of their root-syllables, with their prefixes stripped off.10 Groups of compounds containing distinct though homophonous roots are set off from each other under each head-syllable by separate Arabic numerals. For example, there are 12 different word-groups under the head-syllable hū(70). In general one can readily agree with Bhat’s morpheme identifications, though sometimes they seem a little fanciful, or just plain wrong. Thus the first subgroup under hū contains the four strange bedfellows k̥hū ‘to thatch’, m̥y̥hū ‘bonfire’, cautical ‘soot in the kitchen’, and k̥hū ‘to spread out (parasitic plant)’. Why not group ‘soot’ with, say, the compound ciful ‘dust’, given as the eighth of the 12 hū-groups?

The glosses themselves are detailed, and seem usually to be quite accurate, though occasionally they leave something to be desired. There are times when they are so overspecific that one suspects that Bhat is merely translating them as they appeared enshrined in the context of a particular elicited text, and has not extracted the core meaning of the word. Thus khorin ‘to have pain due to some hard thing in the bed’ (45);11 kokotho ‘to tuck in mud just near the nest inside a rat’s hole’ (21);12 k̥k̥k̥n̥m ‘to evade paying back debts by telling lies’ (22), etc. A serious mistake is the gloss of psy as ‘liver’ (26). This

8) As Bhat puts it (ix), ‘Since the tonal feature did not appear to be stable in word formation, and since no general rule could be formulated for its alternation, it has generally been neglected in the identification of roots, except when the difference in meaning appeared to be rather substantial.’
9) This is a practice of which the reviewer heartily approves, and has adopted in his Lahu-English Dictionary (forthcoming).
10) Pettigrew never analyzes his words into their constituent morphemes, so that, e.g. all the verbs in his dictionary are listed under k- or kh-, since they are cited with the infinitival prefix k̥ or k̥hr. A further advantage of Bhat’s presentation is that he cross-lists compounds under each constituent root.
11) Pettigrew glosses this as ‘to feel anything underneath one when sitting down’ (322).
12) This word appears in the same-numbered subgroup under tho as k̥θ̥o ‘eat well’ and k̥θ̥ok̥h̥ay ‘be very thick’.

273
word clearly means ‘spleen’, as attested by Pettigrew and by such cognate forms as Lahu peats and Angami Naga a-prì (Burling). The real TN word for ‘liver’ is amathin (Lushai [L] thin, Written Burmese [WB] ʔaʔn, Jinghpaw [Jg.] masín, Written Tibetan [WT] ʔtshin, etc.). This form is lacking in Bhat, but appears in Pettigrew.

Understandably enough, the English glosses contain a fair number of misprints and awkwardnesses of style, which sometimes seriously impede understanding. Thus khappor ‘to have boils (due to fire)’ [p. 18; blisters?]: khomshak ‘to be choked’ [p. 67; fortunately Pettigrew supplies the gloss ‘to choke’]; phykhaŋprok ‘to express each other’ [p. 50; Pettigrew has pheikhaŋprohok ‘to strip’; does Bhat mean ‘to undress each other’?].

(c) The third section of the book is an unanalyzed list of words entitled ‘Additional Vocabulary’ (AV: 73–83), consisting mostly of plant and animal names with unilluminating glosses like ‘kind of tree’ and ‘kind of fish’. It is hard to see what criteria Bhat used to determine what words should appear in the AV rather than in the main vocabulary (MV). Thus karkawphan ‘spiderweb’ appears under the syllable phan in the MV, while karkaw ‘spider’ is to be found only in the AV. Three kinds of eagle (rapzik, rappop, rapca) are listed under rap in the MV, while two others (kharaj, kharajosa) are given only in the AV. The names of the months of the year are divided about equally between the two lists, etc. Most disconcerting, hidden away among all the flora and fauna in the AV are some of the most important words in the language for comparative purposes: ‘six’, ‘seven’, ‘ship’, ‘horse’, ‘elephant’, etc.

(d) The book concludes with a useful ‘Root Index of English Meanings’ (84–100). As Bhat says in his introduction, this index is ‘neither exhaustive nor exact … and its purpose is only to provide an easy cross-reference to the main vocabulary’. In a few cases, a word given in the index is not to be found at all in the MV (sam ‘steep’ [98]; cat ‘raw’ [95]), or else is found with a different spelling (‘hoof’: hò [index] but sò [MV]).

In sum, then, Bhat’s book is a valuable source of raw data on TN, an important check on and supplement to Pettigrew. It does not purport to be anything more. No historical-comparative remarks are ventured anywhere, no attempt is made to distinguish loanwords from native items, and nothing is said about the vocalic and consonantal alternations in TN ‘word-families’ (see below).

III The Contribution of TN to Tibeto-Burman Studies

Comparative Kuki-Chin (KC) studies are so far quite modest in scope.13 This is not

13) Benedict (Sino-Tibetan linguistics, vol. 14) assembled all the primary sources on these languages then available, but did not try to reconstruct syllable-initial consonants, confining himself to a study of the ‘rhythms’, and in fact not even considering those rhythms that end in nasals. More recently (1965) the Japanese scholar Ono Tōru has used newer materials from eight closely related KC languages (not including Tangkhul) to arrive at ‘Common Kukish’ initial consonant reconstructions, but without attempting to integrate his results into a broader Tibeto-Burman framework. Also of interest are the unpublished comparisons of Mundhenk 1968, 1969.
the place to undertake anything more ambitious in this regard, though perhaps we can indi-
cate the dimensions of the task by a brief discussion of the TN reflexes of proto-Tibeto-Burman
(PTB) *velar initials, followed by some remarks on the contributions TN data can make to
the reconstruction of PTB vowels and final consonants.

1. TN and the PTB system of initial consonants.

PTB syllables had a canonical shape roughly like \((P)C_t(G)V(C_f)\), where \(P\) represents
one of eight prefixes of largely obscure morphological import \((g-, d-, b-, m-, r-, l-, s-, \overline{z})\);14) \(C_t\) a large class of root-initial consonants; \(G\) a glide \((-y-, -w-, -r-, -l-); V\) one of
perhaps three vowels \((a, i, u)\); and \(C_f\) a syllable-final consonant \((-p, -l, -k; -m, -n, -\eta; -r, -l; -s; -y, -\overline{z})\).15) Note that despite the fact that dozens of modern TB languages have
contrastive tone, there is no justification for imputing any tonemes to the proto-language.
Tones have arisen in TB (and doubtless arise in general) through the influence of the syllable­
initial and/or syllable-final consonants (Matisoff 1970, 1971). Indeed, all the elements in
the TB syllable are highly interdependent. It is traditional in Sino-Tibetan studies to divide
syllables into ‘initials’ and ‘rhymes’, where the latter refers to the whole syllable minus the
initial consonant(s). Yet as far as influence on neighboring segments is concerned, there
is no principled basis for assigning the proto-glides to the initial as opposed to the rhyme,
or vice versa. A *-y-*, for example, may either palatalize the preceding consonant or front
the following vowel, or both.

What makes the reconstruction of PTB initials so difficult is the unpredictable way in
which the prefixes may interact with the rest of the syllable (the ‘root’) through time. In
a given daughter language a particular proto-prefixed syllable may (a) retain the prefix in
its presumably original form, with an epenthetic shwa before the \(C_t\); or (b) substitute a differ­
ent prefix for the ‘original’ one;16) or (c) drop the prefix entirely, with no trace; or (d) retain
the prefix but drop the \(C_t\);17) or (e) fuse the prefix with the \(C_t\). (This latter development is
especially common when the \(C_t\) is a resonant.) Thus a hypothetical etymon \(*g\cdot ya\) could
develop into, say, \(k\acute{a}ya\) (prefix-retention), \(p\acute{a}ya\) (prefix-substitution), \(ya\) (prefix-dropping),
\(ka\) (prefix-preemption), or \(\overline{d}za\) (prefix-fusion).18) While the various daughter languages

14) See Wolfenden 1929 and Matisoff 1971. It seems obvious that these prefixes were regularly realized
with an unstressed shwa-like vowel before the root-initial consonant, as e.g. in modern Tangkhul or
Jinghpaw.
15) This is something of an oversimplification, since \(-s\) could occur syllable-final after other consonants.
16) It is of course often impossible to say whether a daughter language has really innovated, or whether the
proto-language itself hesitated between alternative prefixes, as in e.g. ‘three’ Written Tibetan (WT)
\(g\acute{a}sum, TN\) k\(\ddot{a}thum\) (<*\(g\cdot sum\)), but Jinghpaw (Jg.) m\(\ddot{a}\)sum (<*\(b\cdot sum\)); ‘six’ WT drug, TN th\(\ddot{a}r\)\(\ddot{u}\)
(<*\(d\cdot r\acute{a}k\)), but Jg. k\(\ddot{r}\)\(\ddot{u}\)?, Written Burmese (WB) kh\(\ddot{r}\)\(\ddot{k}\) (<*\(g\cdot r\acute{a}k\)).
17) E.g. ‘seven’ \(*n\cdot n\acute{a}\) (cf. Jg. sm\(\ddot{n}\)it) >Lahu \(\ddot{h}\), with nothing left of the \(C_t\) \(n\).\n18) A further possibility is that the fused syllable will then be re-prefixed (e.g. m\(\ddot{u}\)\(\ddot{z}\)a). Similarly, there is
nothing stopping a prefix-loving daughter language from adding a prefix to a root that had never had one
at all.

275
and language families show certain general preferences in the way they treat prefixes, there is no way of predicting how a particular prefixed etymon will fare in a given language (at least in the present state of our knowledge).

Since there is such a rich array of possible $P + Ci + G$ combinations, it is not surprising that many correspondences involving non-simple initial consonants are unique. For example, we are not likely to find too many words exemplifying the proto-initial combination $*s$-kte. In fact, only one has so far been discovered (‘blood’ $*s$-$kwiy$). Yet this etymon is amply attested throughout Sino-Tibetan, and there is no reason to doubt the reconstruction of its initial.

Tangkhul Naga reflexes of PTB velars. We need reconstruct only two manner-series of PTB stops, *voiceless and *voiced. In Tangkhul (as in Lushai, Jinohpaw, and Written Burmese) the old *voiceless series becomes aspirated, while the *voiced series loses its voicing. Thus $*k > TN, L, WT, Jg., WB kh$; Lahu (Lh.) qh: (1) ‘bitter’ $*ka > TN kha, L khÅ ah, WT kha, Jg. khÅ ah, WB khÅ h, Lh. qhå; $*g > TN, L, Jg., WB k; WT g; Lh. q$: (2) ‘scorch/ roast’ $*ga-n > TN knt, L. knnt, Jg. ksañ, WB knñ, Lh. qñ$.

Moving on to syllables with *prefix+velar (but no following glide), we see that ‘chaque mot a son histoire’: In (3) ‘twenty’ $*m-kul$, TN muku (along with Ao Naga mnts and Mikir itÅ koi $< *imkoi$) reflects the nasal prefix,19) though this is absent from Jg. khun and Garo (Ga.) khol; contrariwise, in (4) ‘head’, the TN form kuy shows no prefix, though both *m- and *s- are attested elsewhere (WT mgå, Digaro mkuå $< *m-gou$; Ga. sgo, Dimasa sçgau $< *s-gou$). In (5) ‘nine’ $*d-guw$ (WT dgu), both Tangkhul and Jinohpaw show palatalization of the dental prefix (Jg. dÅ kÅ h, TN ciko [with restressing]).20)

In syllables with *velar+glide, the Tangkhul developments are complex.

b) The normal Tangkhul reflex of $*kr$ is c [i$:] (10) ‘weep’ $*krap > TN cåp, L trÅp—lap, WT khrab-khrab ‘crybaby’, Jg. khråp, Ga. grap; (11) ‘fear’ $*kri-t > TN ci, L ti, Jg. khråi; (12) ‘horn’ $*kraw > TN ci, WB khrui, Lh. khr$.22) In the set for ‘foot’, which we tentatively reconstruct as $*kwiy$, Tangkhul (and also Angami Naga) have labials, while Lushai and Lolo-Burmese have velars:23) TN phyu, Angami ú-phè; L kèc, WB khre, Lh.

19) Note that the prefix blocks the aspiration of the Ci in Tangkhul.
20) Contrast TN thrÅu ‘six’ $< *d-ruk$. It almost looks as if two different dental prefixes, say $*t-$ and $*d-$, are to be reconstructed for some stage of pre-Tangkhul. Or are the divergent developments to be accounted for by the difference in the Ci’s? The vowels of both the TN form and L pÅ hÅ a reflect an alternant $*gwa$.
21) One is reminded of the various developments of PIE $*âw$ in Greek (p, t, or k), depending on the neighboring vowel. The Lahu ph reflex here seems to be unique. See ‘foot’ (13).
22) Another possible set, of uncertain validity, is ‘count’ $*b-gralJ > *krak > WT bgralJ, TN rak$.
23) This reminds us of the Lahu reflex of ‘dog’ (8).
khé. (This is to be contrasted with (14) ‘rat’ *g-r-wak > WB krowak, Lh. fà2, TN și-wok, where both the g- and the r- are prefixial.) In (15) ‘scratch’ *kret (Jg. mākhrēt, WB khrac), Tangkhul has dropped the glide entirely (khet ‘strike a match’). The TN reflex of the voiced cluster *g_r is š.24 (16) ‘hear’ *g_ra > TN ša, WB krā, Lh. kā; (17) ‘cool/cold’ *g_rαy ∼ *g_rak > TN šay, L. tay-tham, WT gra; Atsi (Burmish) kyo?, Lh. kā?. In several other superficially similar words, a velar+r combination in other languages corresponds to a simple r in Tangkhul, indicating that the velar is prefixial: (18) ‘bone’ *g-ra > TN aru ara ‘bones of all sorts’ (elaborate expression), Jg. ḫrūt ḫra ‘id.’; WT gra-ma ‘fishbones’. In the Lahu form ḫ-kā-ku ‘bone’, the prefix has fused with the root (*kr regularly > Lh. k), while *k > Lh. q). Similarly, (19) ‘ant’ *g-r-i-n ∼ *g-yi-n > TN rāy-sa ‘white ant’, WT gre-mog-bu ‘ant, emmet’, Jg. kγyin ‘white ant’.

c) There is good evidence that *kγy and *gγy developed conversely in Tangkhul from *kr and *gr; i.e. *kγy > TN š, and *gγy > TN c. Thus, (20) ‘burn/scorch’ *kγiy > TN šit, WB kkyac, Lh. chi?; (21) ‘parrot’ *gγy > TN hut-ci, L rā-ki, OB kyē, Lh. ḫe-čē-qā. The word for (23) ‘house’ *kγym ∼ *kγyim has had a more complex history. Some languages have treated the initial as a fused unit (WT khyim, TN tīm, Nung kyim-tīm), while others analyze the y as the Ci, chopping off the velar as if it was a prefix: L ʔin, WB ʔim, Lh. yē. Similarly with (24) ‘right (side)’, *g-γa- ∼ *g-ra. It seems certain that this velar prefix derives from a metanalysis of the compound *lak-γa ‘right hand’.26) Tangkhul and Burmese both have ya, reflecting the uncontaminated root. Jinghpaw ḫhrā (pronounced without a shwa) and Lahu ša show fusion of the prefix with the Ci.27) The prefix retained its separate identity in the WT form gyas, which must have been pronounced [gayas], since the y is written on the line and not as a subscript. Finally, in the word for (25) ‘ashamed’ *g-yak ∼ *s-rak, TN khavak and Jg. kṣyāʔ show retention28) of the velar prefix; WB hrak and Mikir thorak testify to the alternate s-prefix; while L zak and Lh. yāʔ-tə reflect prefixless prototypes.

d) Most intricate of all are etyma where the velar initial is both preceded by a prefix and followed by a glide, or where a velar is followed by two more consonants.29) To start with a relatively simple case, (26) ‘twist’ *d-kr(y) ∼ *b-kr(y): WT dkr, bkr; Jg. k(h)ri, mākhri: TN kḥkhri ‘twist in (as a screw)’, kγjṛs ‘twist back on itself’. Tangkhul here treats the r as the Ci, so that the original velar Ci gets reanalyzed as a prefix while the original d ∼ b prefix is dropped. The TN i ∼ y alternation reflects a proto-variation between short and long *i (see below). In (27) ‘hair’ *s-rka > TN a-hā ‘feather, fur, body-hair’, WT skra

24) It will be remembered that Tangkhul lacks a voiced palatal affricate, which destroys the parallelism with *kr > TN c. See also ‘dove’ (32).
25) For a reconstruction of the first word in these expressions, see ‘boney’ (68).
26) For some discussion, see Matisoff 1969.
27) The regular Lahu reflex of plain *y is y: ‘take’ WB ju, Lh. yu.
28) The k̪ṣ in the TN form is not the usual ‘infinitival’ prefix that automatically gets prepended to every verb. The infinitive of this verb is k̪hṣyak.
29) See also ‘foot’ (13) and ‘rat’ (14).
'hair of head', Jg. korā 'id.', Jinghpaw has dropped the s- and reanalyzed the k as a prefix, while Tangkhul has fused the whole *skr cluster into h. Note that we must assume the existence of the s- at some point in pre-Tangkhul, since a plain *kr would have become TN c.

In (28) 'village' *grwa-ŋ>TN khua, L. khūa, WB rwa; WT groŋ, Bisu (Loloish) khūŋ-ba, the velar has been treated like a prefix in Burmese and dropped, while in Tangkhul and Lushai it is the r that has been driven out by the velar, after influencing the vowel quality of the TN form. (The usual TN reflex of *-wa is -o; cf. 'hoof' (6) and (29) 'grass' *r-tswa> WT rtswa, TN wo, L. hlo.) The velar is clearly prefixial in the set for (30) 'bamboo', which we provisionally reconstruct as *g-pra or *g-pwa>TN kha, Jg. kwa, Mikir kep, Angami kērē, L. rua, WB wā, Lh. vā; WT spa-sha 'cane', Nung thōwa. (The WT and Nung forms reflect an alternant with the s-prefix.) The h in Tangkhul is paralleled in (31) 'pig' *pwaÌk>TN hok, WT phag, L. vōk, Jg. wā?, WB wa, Lh. vā?30)

In three interesting roots ('dove', 'bile', 'skin') a kr-cluster must have preceded by the m-prefix. Yet again, each individual case has to be discussed separately. In (32) 'dove' *m-kruw, Jg. khru, Ga. krū, and WB khru̱-khuy̱ show no trace of a prefix, though this is abundantly attested by Miři p<k̕u (< *mo-), Khami tɕ̄-mākhu, Angami mākru,31) Lh. gū,32) and the curious TN form nasha (P), which would be n̅s̄ut in Bhat's transcription.33) The second syllable of the Lushai form vā-huy̱ is also cognate. The set for (33) 'bile', *m-kri-kjt, *s-kri-kjt>WT mkhris (< *mkrids), West Tibetan thigs-pa, TN sa-thik, Jg. sgrī, Lh. s-khi, exhibits a variation between final dentals and velars that is widespread in Tibeto-Burman after front vowels. The TN, Jg., and Lh. forms point to the s-prefix (which is often used in words denoting animal matter34), rather than m-. The dental in Tangkhul is to be explained as an assimilatory development of *kr>*tr>th. (The retroflexed initial in the West Tibetan form attests to the reality of this intermediate stage.) The most speculative set in this group is (34) 'skin' *m-krwi>TN a-huy, WB ore, Lh. gi. So far the only direct evidence for the nasal prefix in this word is the voicing of the Lahu initial.

In three other roots ('eight', 'hundred', 'penis'), an rgy-cluster is to be reconstructed: (35) 'eight' *br-rgyat>TN ciśt, L. riat, WT bṛgyad, Jg. mōtāt, WB hrac, Lh. hi. When dealing with a cluster of this complexity, it is obviously putting too fine a point on things to presume to trace the exact order of developments in each language. It does seem, however, that the immediate ancestor of the TN form is *gyrat, with the *gy>TN c, as is regular (see 'parrot' [21]), and the cor- combination then evolving to cos- via an intermediate retroflexed

30) There is nothing strange in the development of h from a labial stop. The same thing has happened in the history of Japanese.
31) This form is cited by Benedict, but does not appear in Burling's word-list.
32) We have shown in detail elsewhere (Matisoff 1971) how the Lahu voiced series of obstruents derives from the Proto Lolo-Burmese prenasalized series.
33) Bhat gives only sVur 'kind of small dove' and sumpy 'kind of big dove' (58).
34) This animal prefix is simply a reduced form of the omnipresent Tibeto-Burmese root *syâ 'animal/meat' (cf. TN sa).
J.A. MATISOFF: Tangkhul Naga and Comparative Tibeto-Burman

stage, *cog-.35) The Lushai form seems rather to come from *g-ryat. Somewhat different is (36) ‘hundred’ *r-gya>TN ša, L zāa, WT grya, Jg. lōtsa, WB ra, Lh. ha. The WT initial is the same as in ‘eight’, but the b– looks like an analogical addition under the influence of the latter, since the Jinghpaw, Lushai, and Burmese initials are not the same in the two words. Lushai z is the regular reflex of *y (cf. [37] ‘sell’ *ywvar>TN yôt, L zūar), which suggests a pre-Lushai form *gr-ya. The same TN š: L z correspondence is found in (38) ‘penis’ *rgyay>TN shaykui (P), L sang (Lorrain), which leads us to set the root up with *rgy-. This is corroborated by the Garo form ri-gaj.

The most involved (not to say tortuous) set of all is the word for ‘star’ (39). The WT skar and Jg. sgan straightforwardly reflect a *s-kar prototype. The Tangkhul, Lushai, and Khami forms, however, all have two full syllables, one of which is si.36) In Lushai and Khami the si comes second (L birka-si, Kh. ka(r)-si~a-si);37) but in Tangkhul it comes first: si-ra. What may have happened is this: the pre-TN compound *si-kar (which had competed in Proto-Kukish with *kar-sz) developed an ‘echo-vowel’, becoming *si-kara.38) The first a then lost stress, becoming shwa, so that the resulting ka-was reinterpreted as a prefix and was dropped, yielding si-ra. The WB form kray exhibits metathesis of the a and the r,39) as does the second syllable of Lh. mšš-kš.

All in all, we see that Tangkhul Naga is of great value in the elucidation of the prefixial dynamics of these etyma, and in fact preserves the PTB prefixes much better than Lushai.

2. Tangkhul Naga and the PTB system of rhymes.

As Benedict demonstrated as early as 1940 (Conjectus), Proto Tibeto-Burman had basically a three-vowel system, with a length-contrast for the high vowels. Phonetically the long vowels were probably diphthongs when no further C followed, thus: *i/*iy, *u/*uw, *a. When we add to these the diphthongs *ay and *aw, we come out with quite a symmetrical proto-system. (The low vowel *a had a length distinction only before consonants, including *-y and *-w.) Complicating the picture are a small number of roots that seem to reconstruct with the mid-vowels *e and *o (see below).

35) For the restressing of the shwa, see ‘nine’ (5).
36) Tempting as it might seem, this syllable cannot be identified with the morpheme *sij ‘fruit/small round object’, since *s-z regularly becomes th in both Tangkhul and Lushai. See set (41).
37) The Lushai initial ? is unexplained.
38) This is not as far-fetched as it sounds. Thus the word for ‘I’ is pa or pai throughout most of Tibeto-Burman, but Bodo and Garo have a as do the languages of the Bahing-Vayu group (Rai, Limbu, etc.). If these forms are all cognate, one way to relate them would be to assume an intermediate form with an echo-vowel *apa. Another possible example is ‘sleep’, which is ip, yip, or yu in most TB languages, but is pi in Tangkhul (*ip> *ipi> *pi). Burling 1961 has pointed out that Garo develops echo-vowels in the environment of glottal stop.
39) This is common enough in Indo-European in the environment of liquids. Cf. Greek kardia ~ kradia ‘heart’, etc.
Vowel length: Tangkhul Naga is just as valuable as Lushai, Tibetan, Burmese, or Lahu in reflecting the contrast between *i* and *iy*: *i>*TN i, L ii, WT i, WB e, Lh. i ([40] ‘die’ *si>*TN thi, L thi, WT ši, WB se, Lh. ši): *iy>*TN ay, L ey, WT e, WB i, Lh. i ([41] ‘fruit’ *iy>*TN thy, L thi, WT se, WB si, Lh. ši. On the other hand, *u* and *uw* have merged to TN u, though they have been kept apart in Burmese: *u>*WB u, TN u ([43] ‘thorn’ *tsu>*WB chû, TN su ’to prick’): *uw>*WB ui, TN u ([32] ‘dove’ *m-krwu>*WB krâi, TN šu). Tangkhul apparently offers no evidence to distinguish *awl* or *a·w* or such other rhyme-pairs with consonantal finals as *ill* *i·l, *ull*u.l, or *arl*a·r. For all these, we are still dependent on the testimony of Lushai: *aw>*TN aw, L aaw ([43] ‘grasshopper’ TN khâw, L khaaw) vs. *a·w>*TN aw, L aaw ([44] ‘fat/grease’ TN thaw, L thaaw) vs. *a·w>*TN aw, L aaw ([43] ‘fat/grease’ TN thaw, L thaaw) vs. *a·w>*TN aw, L aaw ([43] ‘grasshopper’ TN khâw, L khaaw) vs. *a·w>*TN aw, L aaw ([44] ‘fat/grease’ TN thaw, L thaaw) vs. *a·w>*TN aw, L aaw ([44] ‘fat/grease’ TN thaw, L thaaw) vs. *a·w>*TN aw, L aaw ([44] ‘fat/grease’ TN thaw, L thaaw) vs. *a·w>*TN aw, L aaw ([44] ‘fat/grease’ TN thaw, L thaaw) vs. *a·w>*TN aw, L aaw ([44] ‘fat/grease’ TN thaw, L thaaw) vs. *a·w>*TN aw, L aaw ([44] ‘fat/grease’ TN thaw, L thaaw) vs. *a·w>*TN aw, L aaw ([44] ‘fat/grease’ TN thaw, L thaaw).

In many other rhymes, however, especially those with stopped or nasal finals, the TN reflexes are sensitive to the length of the proto-vowel. In these cases the testimony of Tangkhul is just as valuable as that of Lushai, and we may pinpoint the proto-final’s length even in the absence of a Lushai cognate. Thus, *att>*TN at, L at ([55] ‘dream’ TN mât, L mât) vs. *a·t>*TN at, L aat ([56] ‘black’ TN haât, L haat): *ap>*TN ep, L aep ([57] ‘snot’ TN nêp, L nêp vs. *a·p>*TN ep, L aep ([58] ‘flutter/wave’ TN yap ‘call by waving the hand’, L safp ‘fan, winnow, flap, flutter’): *uk>*TN uk, L uk ([59] ‘six’ TN thorû L pû-rûk) vs. *u·k>*TN uk, L uup ([60] ‘knee/angle’ TN khûk, L kâup, WT kâug): *al>*TN ay, L al ([61] ‘forehead’ TN khorwêy, L él, WT dpral, Tiddim Chin tal) vs. *a·l>*TN ay, L aal ([62] ‘filth/excrement’ TN pây, L bâal): *or>*TN oy, L or ([63] ‘horse’ TN sî-kuy, L sâ-kôr) vs. *o·r>*TN or, L oor ([64] ‘peel/husk’ TN kôr, L kôor, etc.

Secondary vowels: Some of the modern Tangkhul vowels are demonstrably of quite recent,
secondary origin. There are so far no good etymologies for TN open syllables ending in
\(-u\) or \(-o\), or for the diphthongs \(-uw\), \(-ew\), \(-oy\). Occupying an intermediate historical position
are the TN mid-vowels \(e\) and \(o\). These can sometimes easily be shown to derive from \(*ya\)
and \(*wa\), respectively. Thus the rhyme \(*ak > TN ok\) if there is no preceding glide (\([65]\) 'difficult' \(*tsak > TN sok, L sək)\), while \(* yak > TN ek\) (\([66]\) 'lick' \(*m-lyak > TN morek, L
liək)\), and \(*wak > TN ok\) (\([31]\) 'pig' \(*pəwak > TN hək, L vək). These \(e\)'s and \(o\)'s we may call
'secondary mid-vowels'. In at least one case, however, the mid-vowel seems to be primary as
far back as one can trace. Thus (15) 'scratch/scrape' \(*kret,.....,.*,khet > TN kət, WB
məkřet)\) (contrast, e.g. 'eight' \([35]\). And yet in one other set, even though other languages
point to a primary \(*e, Tangkhul has a shwa: (67) 'kick' \(*r-dek > WT rdeg, Ga. gətek, Lh. thə'\), but TN
θək). Clearly this is an area where more work is needed, and where
Tangkhul can make a valuable contribution.

Final \(-s\). The correspondence of a Tangkhul open vowel to a Lushai final \(-ə\) under the
low tone is an excellent indication that a final \(-s\) was present.\(^{44}\) In several cases the \(-s\)
is overtly attested elsewhere: (68) 'bonez' \(*rus > TN ru, L rə?, WT rus, Jg. ʁrut; (69)
'two' \(*g-nis > TN khən, L pə-hu?, WT gənis; (70) 'seven' \(*s-nis > TN ʃi, L pə-sə-ɾə?, Jg.
səmt, Kanauri stis; (71) 'feed/food' \(*da-s > TN sa 'eat', L fə 'feed with the mouth',
WT zən ~ zəs 'food'. In other cases we may set up \(-s\) on the basis of the TN zero/I.
correspondence alone: (72) 'leaf' \(*s-nas > TN a-na, L hna?; (73) 'rain' \(*rws > TN rə (v.),
L ruə? (n), WB rəva (v.); (74) 'chew/bite' \(*s-ris > TN sə, L ʃə?; (75) 'thick' \(*təsas > TN
ʃə, L cha?.

3. Proto 'word-families' and TN rhyme-alternations.

Bhat's phonetic accuracy, and his arrangement of words by root-syllable make it easy
to uncover examples of phonological variation within the same morpheme, of the sort that
characterizes what Sino-Tibetanists have traditionally called 'word-families'. The most
interesting of these involve final consonants.\(^{45}\)

a) Nasals varying in point of articulation: \(-m ~ -n (athom 'sprout (n.)' ~ reytheon
'to sprout'); \(-ŋ ~ -n (khomŋy 'drink' ~ kəsimən 'cause to drink'; maj 'dream (n.)' ~ kəsimən

42) WB \(ac\) may thus sometimes derive from \(*et, as well as from \(*iə (seven' \(*s-nis > WT knəc)\) and \(*ək ('joint'
\(*tsək > WB cha). \(*i-t\) evidently became \(WT it ('reap' \(*rət > WT rət, L rət.\)
43) \(*ek\) merged with \(*at in Lahu (cf. 'flower' \(*wat > Lh. ət\).
44) The mysterious but intimate connection between \(z\) and glottality has most recently been pointed out
by the reviewer in connection with syllable-initial consonants (Matisoff 1969, 1970).
45) Alternations among initial consonants are less numerous, though occasionally striking: 'left side' \(wuy ~
wuy (both in Bhat) ~ pʰui (P). Vocalic alternations sometimes reflect proto-hesitation between a long
and short vowel: \(*i ~ *iy > TN i ~ iy ('twist' kəri ~ gəray); \(*əc ~ aC > TN aC ~ aC ('rom-san
'wild animal' ~ rom-hu 'wolf' ['wild dog']; \(gəŋ ~ gəŋ 'smell'; kəhat 'saw/repal ~ kəkəht 'make to saw
or reap'; yək ~ yək 'twist', etc.). Other sporadic types of alternation involve vowel quality: \(nəm 'humble'
~ nəm 'low'; kək ~ kək 'peel'; \(θət 'kill' ~ kəθət 'cause to kill'. In this last example it looks as if
the last vowel is harmonizing with the \(i\) of the causative morpheme \(ci\).

281

Elucidation of these relationships (e.g. to what extent they reflect the blind workings of universal phonetic phenomena, as opposed to quasi-systematic morphophonemic relationships in the proto-language) is, along with a more precise attack on the prefix problem, one of the chief desiderata of Tibeto-Burman studies. The time is rapidly approaching when a serious etymological dictionary of Tibeto-Burman will be possible. Much premature worrying about the ‘irregularity of sound-change’ will be avoided once we understand better the complex interrelationship between phonological and morphological variation through time. As an example of the involved word-families we shall have to set up, we offer (76) ‘winnow/fan/wave/paddle’ (an etymon for which Tangkhul has preserved three variants): *

46) This r ~ y alternation also shows up syllable-initially: PathVariable: ‘enemy’ ~ PathVariable: ‘enmity’.
47) The dental nominalizing suffix is one of the most solidly reconstructible grammatical morphemes in Tibeto-Burman. See Wolfenden 1929 and Benedict 1940.
48) A concept persuasively advanced in the last few years by William S-Y. Wang and his students. See for example POLA No. 12, 1971.
49) Part of this set appeared as (58) above.
References

Bright, William. 1956. An English-Lushai word list. Dittoed MS.

