<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>焼畑土地利用の履歴と休閑地の植生回復状況の解析 - ミャンマー、バゴー山地におけるカレン焼畑の事例 - 特集 - ミャンマー少数民族地域における生態資源利用と社会変容 -</td>
</tr>
<tr>
<td>Author(s)</td>
<td>鈴木 玲治、竹田 晋也、Hla Maung Thein</td>
</tr>
<tr>
<td>Citation</td>
<td>東南アジア研究 (2007), 45(3): 334-342</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2007-12-31</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/56799</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
<tr>
<td>School</td>
<td>京都大学</td>
</tr>
</tbody>
</table>

京都大学学術情報リポジトリ
KURENAI
Kyoto University Research Information Repository
Analysis of Land Use History and Fallow Vegetation Recovery:
A Case Study of Shifting Cultivation by the Karen in the Bago Mountains, Myanmar

Suzuki Reiji,* Takeda Shinya* and Hla Maung Thein**

In the Karen area of Myanmar, where the Karen have practiced traditional shifting cultivation since colonial times, we tried to reconstruct a land use history of their shifting cultivation practices using a combination of field observations, global positioning system (GPS) mapping, and interviews conducted during 2002–06, as well as analyses of JERS and LANDSAT satellite images taken in 1989–2001. The vegetation recovery process during the fallow period was also analyzed using a supervised classification of high-resolution QuickBird satellite images taken in 2005. The satellite image analysis suggested that 65–75% of the shifting cultivation fields could be extracted from JERS images taken between November and January by using the normalized difference vegetation index (NDVI) as an indicator. The overlap of shifting cultivation fields from 1989 to 2006 showed that the fallow period of most shifting cultivation in this area exceeded 9–12 years. According to the vegetation recovery analysis, most fallow land was covered with bamboo within 5 years after the harvest, and that fallow land was reopened when a few tree species started to grow in the bamboo-dominated forests. Vegetation analysis showed that around 90% of the shifting cultivation fields were opened by slashing and burning bamboo-dominated forests in 2006, although more tree-dominated forests with a longer fallow period could have been opened. These results showed that the recovery of bamboo-dominated forests is a key factor in maintaining the practice of shifting cultivation in this area.

Keywords: long fallow, normalized difference vegetation index (NDVI), remote sensing, supervised classification

キーワード：長期休閑、正規化渓生指標（NDVI）、リモートセンシング、教師付分類

* Graduate School of Asian and African Area Studies, Kyoto University, 46 Shimoadachi-cho, Yoshida Sakyo-ku, Kyoto 606-8501
** University of Forestry, Forest Department, Ministry of Forestry, Myanmar
Corresponding author’s e-mail: rsuzuki@asafas.kyoto-u.ac.jp
I はじめに

世界有数のチーク産地であるミャンマー・バゴー山地は、その大部分がReserved Forestとして林業省の管理下にあり、森林伐採や焼畑は厳しく制限されている。しかしながら、19世紀末にReserved Forest内での焼畑耕作を植民地政府から認められたカレンエリアでは、今日でもカレンの人々による長期休閑型の焼畑が政府の規制を受けることなく営まれている。現在の東南アジアにおいて、このような地域は極めて希有なものであり、伝統的なカレンの土地利用形態や長期の休閑期間における植生回復を考察する上で、非常に重要な地域といえる。

井上（1995）、Schmidt-vogt（1999）、尹（2000）等、これまで多くの研究で伝統的焼畑モデルの営む長期休閑型の焼畑は生態学的には持続的で、森林破壊の要因ではないと指摘されてきたが、長期のモニタリングに基づく実証データからそのことを論じた研究は少ない。焼畑移動耕作が森林植生に与える影響を論ずるには、まず焼畑の履歴を時間的・空間的に明らかにし、それが休閑期の植生回復にどのように影響しているかを考察する必要がある。本報告では、衛星画像を用いたリモートセンシングにより、ミャンマー・バゴー山地のカレンエリア内で焼畑を営むS村において、焼畑土地利用履歴の再構成と休閑地の植生回復状態の解析を試みることを目的とする。

II 調査地概要

調査地のS村は、ミャンマー中南部のバゴー管区トングー県オクトウィン郡に属し、バゴー
鈴木他：燃焼土地利用の履歴と休閒地の植生回復状況の解析

山地ビュー川源流域のカラメンエリア内に位置する。

S村の世帯数は2006年現在で81世帯であり、ほぼ全ての世帯が毎年燃焼を続け。燃焼には、タケが優占し、太木本が混合する休閒年数12年程度の二次林が好んで伐採されている。これは、タケが伐採容易であり、良好な火入れは燃焼の重要な条件と考えられている。一方、尾根筋は機械が進入できないため、燃焼に使われることは少ない。また、村の集落周辺の森林は、共存の薪炭林、林内放牧地として保全されており、村の水源涵養林としても機能している。

燃焼を避けるためは基本的に各世帯が自由に決めてよく、1月から2月にかけて森林が伐採される。伐採後は、頻発する野火の侵入を防ぐため、防火帯が燃焼の周囲につけられる。特に5月下旬、6月に火入れを行い、雨季が始まる5月頃から農作物が播種される。主な農作物は、陸稲、ゴマ、ワタ、トウガラシ等である。播種から収穫までの間に3度ほど除草を行い、11月から12月にかけて除稲、ゴマ、トウガラシ等が収穫される。また、休閒の終了後から3月にかけては、ワタが収穫される。耕作期間は基本的に最初の1年のみで、休閒期が3年以降は休閒にとどまる。

III調査方法

1. 現地調査

S村における当年の焼畑全経を対象に、一筆ごとの焼畑の境界をGPSを用いて測定した。調査日は2002年11月10日-11日、2003年11月6-10日、2004年11月4-10日、2006年11月16-24日にそれぞれ実施した。GPSはGarmin社のGPS III Plus及びVを使用し、アベレージング機能を用いて位置精度が5m以内になるよう心かけた。なお、2005年に開いた焼畑については、2006年8月7-9日に高解像度の衛星画像（QuickBird、2005年12月5日撮影）を利用した村人の聞き取り調査から境界を画定した。また、焼畑を開いた全世帯に対し、伐採時の植生のおよそ休閒年数を聞き取った。調査方法の詳細については竹田他（2007）を参照のこと。

2. データ解析

1）実測データに基づく焼畑の特徴解析

2002年から2006年までの現地調査によって得られた焼畑位置情報をもとに、5年分の焼畑全経をArcView 9.1上でポリゴン化し、焼畑一筆ごとに面積と円形度を計算して当地域の焼畑の大きさ、形状の特徴を把握した。次いで、焼畑地の植生被覆の状況を把握するため、これらのポリゴンを焼畑伐開年の衛星画像（表1）と重ね合わせ、ポリゴンに内包されるピクセル数

2）4π・面積/（周囲長）²で計算される指数で、円円において1となり、図形が複雑になるほど低い値を示す。
の正規化植被指標（NDVI）を計算した。ただし、2004年と2006年については適切な衛星画像が入手できなかったため、NDVIの計算は行っていない。

NDVIは下式で計算される指標で、植物中のクロロフィル量と正の相関を持つことから、植物活性の指標として広く利用されている。本論文では、森林や草地など植被率の高い場所と焼畑地を区別する指標として用いた。

\[
\text{NDVI} = (\text{Infra Red} - \text{Red}) / (\text{Infra Red} + \text{Red})
\]

2）衛星画像を用いた過去の焼畑地の抽出

焼畑は季節によって地被覆の状況を大きく変えるため、衛星画像から焼畑を抽出する際は適切な時期に撮影された画像を用いる必要がある。NDVIを指標に用いる場合は、焼畑と周辺の森林や草地との植物活性に大きな差がある時期の画像が望ましい。本研究では、焼畑の主な農作物が収穫された11月中旬から森林の落葉が始まる1月上旬までの衛星画像を原則として用いたが、この時期の画像が入手できなかった場合は2月の画像を用いた。解析に用いた衛星画像のセンサー・解像度・撮影時期の情報は表1にまとめた。

一般に、多時期の衛星画像による時間的な変化の解析においては放射量の補正が必要となる[Mas 1999; 小泉他 2003]。本論文では、撮影時期や波長帯の異なる衛星画像間でNDVIを比較するため、以下のような補正を行った。まず、植生被覆がほとんどないS村集落の中心地と、薪炭林・水原涵養林として保全されている集落周辺の森林が、調査対象地内では反射特性の経時的変化が最も小さいと想定されたため、この2つのエリアのNDVIを全ての衛星画像で計算した。これらのエリアの反射特性が解析に用いた衛星画像間で等しいと仮定し、便宜上、集落中心地（主に裸地）と集落周辺の森林のNDVIの平均値がそれぞれ0及び0.5となるように衛星画像ごとに補正係数を算出し、NDVIの補正を行った。

次に、表1に示す1989年から2001年までの衛星画像を用い、NDVIを指標に過去の焼畑地を推定した。具体的には、III 2.1）で求めた焼畑内部のNDVIの補正後の値を参考に、衛
鈴木他：焼畑土地利用の履歴と休閑地の植生回復状況の解析

星画像ごとに NDVI の閾値を設定し、閾値以下の NDVI を持つピクセルの集合をポリゴン化し、焼畑推定地とした。Sakai [2002] は、衛星画像から焼畑地を抽出する際、焼畑と同様の分光反射特性を持つ土地利用を区別する有効な要素として、面積・形状・前後の植生被覆の変化を挙げている。本論文では、NDVI が焼畑同様に低いと想定される土地利用（集落、道路、木材伐採地、常畑等）と焼畑地を区分するため、III 2.1）で求めた焼畑の面積・円形度から大きく外れたポリゴンは焼畑推定地から除外した。また、当地域の焼畑耕作期間は通常 1年間であることから、数年間連続して NDVI が閾値を下回っている場所も除外した。解析対象範囲は、2002 年から 2006 年までの S 村の焼畑の 95% 以上が含まれる Pyukun Reserved Forest の第 45-53 林班と第 55-56 林班の計 11 林班とし（図 1），焼畑推定地はこの範囲から抽出した。

![衛星画像解析対象範囲](image1.png)

図 1 衛星画像解析対象範囲
なお、これらの解析に先立ち、GPS測量による境界データがある2002年の焼畑地について、2002年12月撮影の衛星画像を用いて同様の解析を行い、実測による焼畑地と衛星画像より抽出した焼畑推定地との対応をもって手法の妥当性を検証した。

3）焼畑土地利用履歴の解析
1989年から2006年までの焼畑・焼畑推定地の全ポリゴンをArcView9.1上に表示させ、焼畑の時間的・空間的分布の特徴を解析した。異なる年代でポリゴンの重複が認められた場合、この期間に2度焼畑が開かれたことを示しているため、重なり合う焼畑地の伐採年の差をとって休閑年数を計算した。また、聞き取り調査から休閑期間が確認できている焼畑について、計算結果と聞き取り結果の比較を行った。

4）休閑地の植生回復状況の解析
過去に開かれた焼畑地の植生が、2005年現在でどの程度回復しているかを調べるため、衛星画像（QuickBird、2005年12月5日撮影）を用いた教師付分類（最尤法、ERSA IMAGINE 9.1使用）を行い、焼畑推定範囲の土地被覆を木本、タケ、草本、裸地の4タイプに区分した。
なお、QuickBirdのパンクロ画像（解像度0.6m）を用いれば、上記4タイプの土地被覆の違いは目視で確認可能であったため、教師として用いたエリアは主にパンクロ画像から抽出した。
休閑地における、村屯周辺の共有林から木本、2006年に伐採された休閑年数10年以下の焼畑地からタケ、2004年及び2005年に伐採された焼畑地から草本および裸地の典型と思われるエリアをそれぞれ目視判読し、教師として抽出した。
なお、高木や地形の影響による影が分類精度を低下させていたため、影の濃い部分は分類不能エリアとした。
これらの分類結果を1989年から2006年までの焼畑地・焼畑推定地のポリゴンと重ね合わせ、各ポリゴン内に優占する土地被覆から、過去に伐採した焼畑地の2005年現在の植生を①森林、②竹林、③草・竹混生地、④草地、⑤裸地の5タイプに分類した。分類基準は表2に示すとおり。

<table>
<thead>
<tr>
<th>表2 休閑地植生の分類基準</th>
</tr>
</thead>
<tbody>
<tr>
<td>植生区分</td>
</tr>
<tr>
<td>森林</td>
</tr>
<tr>
<td>竹林</td>
</tr>
<tr>
<td>草・竹混生地</td>
</tr>
<tr>
<td>草地</td>
</tr>
<tr>
<td>裸地</td>
</tr>
</tbody>
</table>

注: この分類基準にも当てはまらない休閑地が全体の約2%あったが、これらの休閑地は優占する土地被覆を考慮しながら最も近いと思われる植生に区分した。
IV 結果と考察

1. S 村の焼畑の概要

表3に，2002年から2006年までのS村の世帯数，焼畑面積，焼畑の総面積，焼畑一筆の面積・円形度，および平均休閑年数を示す。焼畑一筆あたりの面積は平均1.7−2.7 ha であり，全体の90%以上の焼畑は面積0.9−7.0 haの範囲にあった。円形度は平均0.69−0.80で，ほぼ全ての焼畑が0.4以上の値を示した。

また，聞き取り調査結果から，この5年間で休閑年数の減少傾向が認められるものの，平均12年程度の休閑期間は確保されていることが確認された。

2. 当年焼畑のNDVI

表4に2002年，2003年，2005年に開かれた焼畑の農作物収穫期のNDVIを示す。ここで示したNDVIは，前述のように集落中心部と集落周辺の森林でそれぞれ0及び0.5となるように補正された数値である。収穫後の焼畑は植生被覆が少ないのでNDVIは0に近づくことが予測され，実際の平均値は0.32−0.33と比較的高かった。また焼畑間でのばらつきも大きかった。

表3 S村の世帯数，焼畑面積，焼畑の総面積，焼畑一筆の面積・円形度，平均休閑年数（2002-06年）

<table>
<thead>
<tr>
<th>世帯数</th>
<th>焼畑面積（ha）</th>
<th>焼畑の総面積（ha）</th>
<th>焼畑一筆の面積・円形度の平均値</th>
<th>平均休閑年数</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002年</td>
<td>64</td>
<td>60</td>
<td>161.5</td>
<td>2.7（1.5）</td>
</tr>
<tr>
<td>2003年</td>
<td>68</td>
<td>66</td>
<td>141.2</td>
<td>2.1（1.1）</td>
</tr>
<tr>
<td>2004年</td>
<td>74</td>
<td>75</td>
<td>179.9</td>
<td>2.4（1.2）</td>
</tr>
<tr>
<td>2005年</td>
<td>79</td>
<td>73</td>
<td>196.9</td>
<td>2.7（1.2）</td>
</tr>
<tr>
<td>2006年</td>
<td>81</td>
<td>56</td>
<td>96.1</td>
<td>1.7（1.0）</td>
</tr>
</tbody>
</table>

出所：本表は，竹田他（2007）のデータを元に作成したものである。
注：平均休閑年数は，Σ(焼畑一筆の面積×休閑期間)/焼畑の総面積により計算した。

表4 当年焼畑の農作物収穫期のNDVI

<table>
<thead>
<tr>
<th>焼畑伐採年</th>
<th>解析に用いた衛星画像</th>
<th>焼畑のNDVI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002年</td>
<td>ASTER（2002年12月22日撮影）</td>
<td>平均値 0.33，標準偏差 0.08，最大値 0.49，最小値 0.15</td>
</tr>
<tr>
<td>2003年</td>
<td>IKONOS（2004年1月11日撮影）</td>
<td>平均値 0.32，標準偏差 0.05，最大値 0.47，最小値 0.18</td>
</tr>
<tr>
<td>2005年</td>
<td>QuickBird（2005年12月5日撮影）</td>
<td>平均値 0.33，標準偏差 0.07，最大値 0.49，最小値 0.19</td>
</tr>
</tbody>
</table>
NDVIが高いものは集落周辺の森林のものとほとんど変わらない。一方、衛星画像間での差は小さく、平均値・最大値・最小値とも同じような傾向を示した。

S村の焼きでは、これらの画像撮影時期の12月から1月の時点で主要な農作物は収穫されているものの、多くの焼き内で2月から3月に収穫されるウサが残存しており、農作物の収穫が終わった場所では雑草も繁茂している。そのため、焼きのNDVIの平均値が予想よりも押し上げられたものと思われる。また、残存する農作物や雑草の生育状況は焼きごとに異なっており、これが焼き間でのNDVIのばらつきを生む要因であると考えられる。

3. 衛星画像を用いた過去の焼き地の抽出

衛星画像を用いた過去の焼き地の抽出に先立ち、GPS測量による境界データがある2002年の焼き地については、2002年12月22日撮影の衛星画像（ASTER、解像度15m）を用いた抽出を行い、III2-2に示した抽出手法の妥当性の検証を試みた。この手法では、関値をいかに設定するかポイントとなる。図2aに示すように、関値を下げすぎると多くの焼きが抽出できなくなるが、関値を上げすぎると図2bのように植物活動の低い森林や草地の一部等が細かなピクセル集合（ここでは、このようなピクセル集合を森林ノイズと呼ぶ）となって多数出現するよう、焼きの境界も不明瞭となる。このため、まず表4に示す2002-05年の焼き地のNDVIの値を参考に、NDVIの関値を0.32-0.33を中心に小刻みに変化させ、関値以下のピクセルの集合を焼き推定地として抽出した。なお、S村の9割以上の焼きは0.9-7.0haの範囲にあったため、この面積範囲外のものは焼き推定地から除外した。また、焼きのように焼きとは明らかに形状が異なるものを区別するため、円形度が0.4未満のものも除外した。表5に抽出した焼き推定地

![図2 NDVIの閾値で再分類した衛星画像（ASTER 2002年12月撮影）と実際の焼き地](image)
表 5 降水値にみた焼畑抽出と GPS 測量による焼畑との対応関係

<table>
<thead>
<tr>
<th>NDVI の値</th>
<th>ノイズ面積率（%）</th>
<th>衛星画像から抽出した焼畑推定面積の数</th>
<th>GPS 測量による焼畑と一致した数</th>
<th>GPS 測量による焼畑と一致しなかった数</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.29</td>
<td>15</td>
<td>34</td>
<td>33</td>
<td>1</td>
</tr>
<tr>
<td>0.31</td>
<td>20</td>
<td>34</td>
<td>33</td>
<td>1</td>
</tr>
<tr>
<td>0.33</td>
<td>20</td>
<td>43</td>
<td>40</td>
<td>3</td>
</tr>
<tr>
<td>0.35</td>
<td>25</td>
<td>47</td>
<td>41</td>
<td>6</td>
</tr>
<tr>
<td>0.37</td>
<td>33</td>
<td>57</td>
<td>44</td>
<td>13</td>
</tr>
</tbody>
</table>

注: ノイズ面積率: 抽出可能な焼畑面積に対する森林ノイズ面積の割合
JERS では 0.1-0.3 ha, LANDSAT では 0.2-0.4 ha の面積範囲にあるピクセル集合を森林ノイズとした。

図 3 2002年における焼畑一筆の面積の頻度分布と衛星画像による焼畑地の抽出状況

と GPS 測量による焼畑との対応関係を関値別にまとめた。また、抽出した焼畑面積に対する森林ノイズ面積の割合（以下、ノイズ面積率と呼ぶ）を関値別に示した。関値を上げると抽出できる焼畑は増えていくものの、ノイズ面積率も上昇して焼畑に誤認されるピクセルの割合も増加する。極力多くの焼畑を抽出しつつ誤認を減らすため、ここでは最適な関値を 0.33（ノイズ面積率 20%）と判断した。

この結果、43 筆・132.6 ha の焼畑が抽出できた。このうち 3 筆・7.1 ha は GPS による境界データのないものであったため、実際には 2002 年の焼畑 60 筆・161.5 ha 中、40 筆・125.6 ha の焼畑が抽出され、面積比では 77.8% の焼畑が抽出できたことになる。また、2002年における焼畑一筆の面積の頻度分布と、本手法による焼畑の抽出状況を図3に示す。抽出できなかった焼畑は全て 3 ha 以下のものであり、小面積の焼畑ほど抽出率が低くなる傾向にあることがわかる。このように、小面積の焼畑の抽出に難はあるものの、3 ha 以上の焼畑は全て抽出できた。
おり，本手法によって比較的多くの面積の焼畑が抽出できることが確認された。

次に，本手法を用いて 1989 年から 2001 年までの衛星画像から過去の焼畑地の抽出を試みた。表 4 に示すように，収穫後の焼畑の NDVI には大きなからつきがあり，いかなる閾値を設定しても当年の焼畑地だけを完全に抽出することは困難と思われる。本論文では焼畑と誤認されるピクセルの割合を極力減らすため，2002 年の画像解析で焼畑誤認が急増し始めた 0.35（表 5）を NDVI の閾値の上限とし，5-6 割程度の焼畑地を抽出することを目指す衛星画像ごとに最適閾値を目視判断した。なお，閾値が 0.35 を大きく下回っていても，ノイズ面積率が高ければ焼畑の境界が不明瞭となって抽出が困難となったことから，JERS では 20％，LANDSAT では 25％をノイズ面積率の上限とした。

この結果，24-35 筆，41.5-122.8 ha の焼畑地が抽出できた。使用した衛星画像，設定した NDVI の閾値，ノイズ面積率，抽出した焼畑推定地に関する情報は表 6 にまとめた。S 村の農事暦から判断して，11 月から 1 月上旬までの衛星画像では農作物収穫期の焼畑が見えているものと思われるが，2 月の衛星画像では収穫後の焼畑に加えて伐採直後の新しい焼畑も見えている可能性が高い。1993 年 2 月撮影の画像からは，前の収穫後の焼畑と当年の伐採直後の焼畑の識別は不可能であったことから，1992-93 年の焼畑として抽出した。一方，1997 年 2 月撮影の画像については，直前の 1996 年 11-12 月の画像より抽出した焼畑との重複部分を除いたものを，1997 年伐採の焼畑として抽出した。

表 6 衛星画像から抽出した焼畑地

<table>
<thead>
<tr>
<th>焼畑伐採年</th>
<th>解析に用いた衛星画像（撮影年月日）</th>
<th>NDVI の閾値</th>
<th>ノイズ面積率（％）</th>
<th>抽出した焼畑推定地の積数</th>
<th>総面積（ha）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
<td>LANDSAT（1989.1.16）</td>
<td>0.25</td>
<td>25</td>
<td>25</td>
<td>56.9</td>
</tr>
<tr>
<td>1992-93</td>
<td>JERS（1993.2.17）</td>
<td>0.17</td>
<td>20</td>
<td>30</td>
<td>67.5</td>
</tr>
<tr>
<td>1994</td>
<td>JERS（1994.12.9）</td>
<td>0.35</td>
<td>10</td>
<td>35</td>
<td>122.8</td>
</tr>
<tr>
<td>1995</td>
<td>JERS（1996.1.9）</td>
<td>0.35</td>
<td>13</td>
<td>28</td>
<td>108.0</td>
</tr>
<tr>
<td>1996</td>
<td>JERS（1996.11.12）</td>
<td>0.32</td>
<td>19</td>
<td>35</td>
<td>105.1</td>
</tr>
<tr>
<td>1997</td>
<td>JERS（1997.2.8）</td>
<td>0.19</td>
<td>15</td>
<td>28</td>
<td>46.9</td>
</tr>
<tr>
<td>2000</td>
<td>LANDSAT（2000.11.14）</td>
<td>0.30</td>
<td>17</td>
<td>34</td>
<td>86.6</td>
</tr>
<tr>
<td>2001</td>
<td>LANDSAT（2001.11.17）</td>
<td>0.23</td>
<td>25</td>
<td>24</td>
<td>41.5</td>
</tr>
<tr>
<td>2002</td>
<td>ASTER（2002.12.22）</td>
<td>0.33</td>
<td>20</td>
<td>40</td>
<td>125.6</td>
</tr>
</tbody>
</table>
と森林ノイズが急増するため、11-1月に比べて閾値を低く設定せざるを得なかったことに起因する。

11月から1月上旬までに撮影されたJERSに対定ースペクトル105.1-122.8 haの焼畑が抽出できており、仮に2002年と同程度の規模の焼畑が開かれていたとすると、単純計算法で65-75%程度の面積の焼畑が抽出できたことになる。以上のことから、適切な時期に撮影されたJERS程度の解像度の衛星画像が入手できれば、比較的多くの面積の焼畑地が抽出可能であると思われる。

4. 焼畑地の土地利用履歴

図4に、1989年から2001年までの衛星画像から抽出した焼畑推定地及び2002年から2006年までの現地調査で確認した焼畑地を示す。過去の全ての焼畑が抽出できたわけではないが、集落周辺ではほとんどの焼畑が行われずに森林が保全されていることが読み取れ、聞き取りによる土地利用の情報を衛星画像からも確認できた。また、聞き取りや現地観察結果から、尾根筋はあまり焼畑に使われないことがわかっている。その他にも、S村では川沿いや蛇行する川の内岸、水源、森の中の沼やぬかるみのあるところでの焼畑はタブーとされており【速水2007】、焼畑地の土地利用の履歴を解析する上では、このような焼畑地の土地認識についても十分に理解しておくことが重要である。

また、解析対象とした1989年から2006年までの範囲では、異なる年に開かれた焼畑が重なり合う場所は少なく、位置の重なりが認められた焼畑は全体の約1割程度となる34組であった。位置の重複する焼畑地の休閑年の組み合わせと筆数を表7に、休閑年の差から求めた休閑期間を図5に示す。これらの焼畑地は休閑期間9-12年もののが最も多く、次に多かった休閑年数13-16年の焼畑をあわせると全体の7割を占めていた。休閑年数5年未満の焼畑も1割程度認められたものの、これらの結果は聞き取り調査によって確認した休閑年数の傾向とはほぼ一致している【竹田他2007：図2参照】。このように、S村においては多くの焼畑地9-12年以上の長期の休閑期間が確保されている様子が、衛星画像解析からも確認できた。これは、村人が最も好むタケの優先する植生の回復に必要な期間にほぼ相当する。

<table>
<thead>
<tr>
<th>表7 位置の重複する焼畑地の仮定年数の組み合わせと筆数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
</tr>
<tr>
<td>1992</td>
</tr>
<tr>
<td>1994</td>
</tr>
<tr>
<td>1995</td>
</tr>
<tr>
<td>1996</td>
</tr>
<tr>
<td>1997</td>
</tr>
</tbody>
</table>

353
図4 S村の焼畑地（2002-06年）および焼畑推定地（1988-2001年）
5. 休閒地の植生回復状況の推定

焼畑の持続性を検討する上で、休閒期の植生回復過程を調査することは非常に重要である。長澤他（1998）は、NDVI値の時系列変化から休閒期の植生回復を論じたが、NDVIを指標とした解析では植被率の推移は推定できても、回復していく植生の種類は判別できない。筆者らも当地域の衛星画像を用いて休閒地のNDVIの時系列変化を解析したが、伐間翌年にNDVIが大きく上昇し、その後はNDVIの値に大きな変化は認められなかったため、休閒期の植生回復の解析に有用な情報は得られなかった。このような焼畑伐間翌年のNDVIの急上昇は、長澤他（同上論文）も報告している。NDVIは地形表面の植被率の推計には有効な指標であるが、植
被率が同程度であれば、被移初期の草本群落と被移後期の木本群落を識別することは難しい。このため、本論文では過去に伐採された焼成地の 2005 年現在の植生を教師付分類によって区分し、それらを時間的連続軸（chronosequence）に沿って解析することで休耕地の植生回復過程を考察した。

2005 年の衛星画像を用いた植生分類結果を図 7 に示す。2005 年時点で休耕地 1 年目となる 2004 年の焼成地では 87% の休耕地が草地であったが、休耕地 2 年目となる 2003 年の焼成地では、草地に代わって草・竹混生地の割合が最も高くなり、竹林を 25% 程度の休耕地で認められる。休耕地 3 年目となる 2002 年の焼成地では竹林の割合がさらに増え、休耕地 5 年目では竹林の割合が約 90% を占めるようになる。竹林は休耕地 13 年目頃からやや減少して 70% 台となり、休耕地 17 年目となる 1988 年焼成の焼成地では 64% となる。一方、森林の割合は休耕地年数が増えても 5-10% 程度を推移し、大きく増加することもなかった。また、休耕地 8 年目となる 1997 年から再び裸地や草地の割合が増加していく。このような裸地・草地は計 14 筆確認されたが、このうち 10 筆は 2004-05 年に再び伐採された焼成地であった。これが、休耕地 8 年目以降に再び裸地・草地が出現していく主な要因である。これらの休耕地は再伐採されていなければ 2005 年時点で竹林や森林になっていたと考えられ、自然の植生遷移に任せていれば、休耕地期間の増加と共に森林や竹林の割合は増加していったものと思われる。また、2006 年に開いた焼成地の 2005 年現在の植生、すなわち伐採直前植生は約 10% が森林、約 90% が竹林であった（図 7）。教師付分類の結果、図 1 に示す解析対象範囲内の 2005 年現在の土地被覆は木本が 32%、タケが

図 7 過去の焼成地・焼成推定地の 2005 年現在の植生を伐採した年

注：2006 年のデータは伐採前の状態を示す。
鈴木他：焼畑土地利用の履歴と休閒地の植生回復状況の解析

44％、草本が14％、裸地が5％、分類不能エリアが5％であり、このデータからは2006年に木本の優占する森林を伐開する余地は十分にあったと考えられるが、実際には約9割の世帯が竹林を伐開していた。Takeda et al. [2006] が指摘しているように、S村では20年以上の長期の休閒期間を確保する余地があるにもかかわらず、伐採が容易で良好な火入れをもたらすという理由から、タケが優占し少量の木本が混生する二次林を好んで焼き畑に伐開していることが、衛星画像解析結果からも確認された。このように、当地域では竹林に木本が侵入し始めた頃の休閒地が再び焼畑として伐採されることが多いため、休閒地に占める森林の割合が一定以上には増えていかないものと思われる。

Fukushima et al. [2007] によれば、S村の焼畑休閒地では1年目はChromolaena odoratum等が優占する草本群落、2年目にはC. odoratumに加えてイネ科の草本であるThysanolaena maximaが生育する群落、5年目でBambusa polymorpha等のタケが優占する群落となり、その後はXylopyta xylocarpa等の木本が徐々に増加していくことが報告されている。本文文でも、ほぼこれに沿った結果が認められたが、休閒2年目ですでに草・竹混生地が54％を占めており、タケの侵入がやや早いかに思われる。現地観察から、本調査地域の休閒期に生育するT. maximaは高さ3-4m程度の群落を形成していることが確認されており、これがタケに誤分類され、草・竹混生地の高い割合に反映された可能性が考えられる。今後は現地調査に基づく、より精度の高い教師の抽出が必要といえる。

なお、図7に示すように、休閒年数の等しい焼畑地でも植生の回復状況は様々であり、特に休閒初期には筆ごとのばらつきが大きい。この一因と考えられるのが伐採前の植生の違いである。タケが優占する休閒年数10年程度の植生を伐開した焼畑は、木本が優占する休閒年数25年以上の植生を伐開した焼畑よりも休閒初期の植生回復が早いか傾向にあることが予備調査によって確認されており、伐採・火入れ後のタケの旺盛な再生が休閒期の植生回復を早めている可能性が考えられる。このように、主に竹林を伐採して行う当地域の焼畑は、休閒期の早期の植生回復の観点からも合理的である可能性が示唆された。

V ま と め

本論文では、現地調査に基づく5年間のモニタリングデータと衛星画像解析を組み合わせ、S村の焼畑土地利用の履歴と休閒期の植生回復状況の解析を試みた。NDVIを指標に過去の焼畑地の抽出を試みた結果、適切な時期に撮影されたJERS-1の衛星画像が得られれば、65-75％程度の焼畑地が抽出可能なことが確認された。また、抽出した過去の焼畑地の位置の重なりから、9-12年以上の休閒期間が確保されていることも確認できた。これは聞き取り調査結果にほぼ一致する。
また、休閒地の植生回復過程を論ずるため、教師付分類によって区分した過去の焼畑地の2005年に現在の植生を時間的連続軸に沿って解析した結果、休閒5年目程度で竹林が回復し、竹林に木木が侵入していく頃の休閒地が再び伐採されていく様子が確認できた。現地観察や聞き取り調査から、S村の焼畑は竹林を中心に回っていることが確認されているが、そのような特徴が衛星画像を用いた解析によって裏付けられ、S村の焼畑の持続性を考察する上で重要なタケ伐採・再生のサイクルが定量的に把握できたといえる。

引用文献

速水洋子, 2007。「家と家をつなぐ——バゴー山地カレン焼畑村から」『東南アジア研究』45(3): 359-381.

小泉俊雄: 荻原圭一; 山下幹夫; 國分修一. 2003. 「衛星画像による環境評価手法に関する研究 (1)——多時期データ間の放射量補正」『写真測量とリモートセンシング』42(4): 6-17.

358