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ABSTRACT—The draft genome sequence and a large quantity of EST and cDNA information are now
available for the ascidian Ciona intestinalis. In the present study, genes involved in pigment synthesis path-
ways were identified in the decoded genome of Ciona, and information about these genes was obtained
from available EST and cDNA sequences. It was found that the Ciona genome contains orthologous genes
for each enzyme of the melanin, pteridine, ommochrome, papiliochrome, and heme synthesis pathways.
Several appear as independent duplications in the Ciona genome. Because cDNA clones for all but two
of these genes have already been isolated by the cDNA project, C. intestinalis will provide an experimental
system to explore molecular mechanisms underlying color patterns, through future genome-wide studies.
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INTRODUCTION

Animals exhibit various colors and color patternings.
The color pattern is not only specific to certain species of
animals but also is altered by season to season, day to day,
or in response to environmental cues. The color patterning
is accomplished by a complex combination of pigments. In
zebrafish, for example, black melanophores, yellow xantho-
phores and iridescent iridophores are involved in the pig-
ment pattern formation (Quigley and Parichy, 2002). Animal
pigments are formed through the melanin synthesis path-
way, pteridine synthesis pathway, ommochrome synthesis
pathway, and papiliochrome synthesis pathway.

Ascidians are marine invertebrate chordates, compris-
ing approximately 2,300 species, and they exhibit various
colors and patterns. For example, Clavelina species in trop-
ical sea are very bright blue, and Halocynthia roretzi adults
are red. Ciona intestinalis and Ciona savignyi are closely
related species, and the presence or absence of red pig-
ment spots in the rim of the sperm duct is used as one of
the diagnostic characters to distinguish between the two
species (Hoshino and Tokioka, 1967). We are interested in
how various color patterns are achieved in ascidians, and
in particular, molecular mechanisms underlying the differ-
ence in pigment pattern between the two Ciona species. So
far, genes for enzymes required for melanin pigment forma-
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tion have been studied in only one ascidian, Halocynthia
roretzi (Sato et al., 1997; Sato et al., 1999). In order to
understand color patterns in ascidians in a genome-wide
sense, genes associated with pigment synthesis pathways
should be completely annotated. The aim of the present
study was to describe how many and what kinds of relevant
genes, with or without redundancy, are encoded in Ciona
intestinalis, whose genome was recently decoded (Dehal et
al., 2002).

MATERIALS AND METHODS

Retrieving sequences from the Ciona intestinalis genome and a
cDNA/EST database

All of the methods used in the present study were as described
by Satou et al. (2003a). The draft genome sequence (Dehal et al.,
2002) and a cDNA/EST database (Satou et al, 2002) of Ciona
intestinalis were TBlastN searched for homologous ascidian protein
sequences using human and Drosophila proteins. At least one
human enzyme protein and all of the known Drosophila enzyme
proteins involved in each pigment synthetic pathway were used for
the search. When the corresponding cDNA sequence was avail-
able, the deduced protein sequence was used for the analyses.
When the cDNA sequence was not available and GrailEXP or
Genewise confidently predicted the gene, the peptide sequence
deduced from the gene model was used (the gene model names
are listed in Table 1). When the predicted gene model was not per-
fect but the ESTs covered the entire region or the region the gene
model lacked, we used the peptide sequence deduced from the
assembled sequences of ESTs, multiple sets of ESTs, or from both
an EST and the gene model.
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Table 1. Genes for enzymes involved in pigment synthesis in the Ciona intestinalis genome

Pathway Abbreviations Gene name The best gene model cDNA  Best hit Other supporting
in the version 4 assembly cluster analysis” evidence
melanin synthesis TYR tyrosinase grail.166.38.1 14634 -
TYRP 1/2-a tyrosinase-related protein 1/2-a grail.42.3.1 32248 -
TYRP 1/2-b tyrosinase-related protein 1/2-b grail.13.78.1 14021 -
PO-like-a phenoloxidase-like-a CAD68059 (Scaffold 176) 07503 ¢
PO-like-b phenoloxidase-like-b CAD68058 (Scaffold 12) 11746 —°
pteridine synthesis GCHI GTP cyclohydrolase | grail.884.2.1 05238 -
PTPS 6-pyruvoyl H4pterin synthase grail.6.149.1 11056 has
SPR-a sepiapterin reductase-a grail.62.76.1 03905 -
SPR-b sepiapterin reductase-b genewise.116.150.1 15808 -
XO/XDH-a xanthine oxidase/xanthine dehydrogenase-a grail.613.1.1 06608 - domain composition
XO/XDH-b xanthine oxidase/xanthine dehydrogenase-b genewise8.31.1 14640 - domain composition
clot-a clot-a grail.665.4.1 13855 - CXXC motif
clot-b clot-b genewise.239.39.1 NA? - CXXC motif
PCD/DcoH pterin 4a-carbinolamine genewise.30.367.1 03895 had
dehydratase/dimerization cofactor of
hepatocyte nuclear factor 1
DHPR dihydropteridine reductase genewise.11.378.1 05796 -
ommochrome synthesis TDO2-a tryptophan 2,3-dioxygenase-a grail.124.18.1 13900 -
TDO2-b tryptophan 2,3-dioxygenase-b grail.1428.1.1 16081 -
KF-like kynurenine formamidase-like genewise.103.226.1 07539 g HGG motif, GXSXG
motif
KMO kynurenine 3-monooxygenase grail.171.37.1 03910 -
papiliochrome synthesis DDC/HDC-like-a dopa decarboxylase-like-a genewise.412.21.1 NA —
DDC/HDC-like-b  dopa decarboxylase-like-b genewise.324.101.1 16852 -
heme synthesis ALAS d-aminolevulinate synthase grail.42.37.1 09795 -
ALAD d-aminolevulinate dehydratase grail.145.14.1 31091 -
PBGD porphobilinogen deaminase grail.758.5.1 08121 -
UPG Il S uroporphyrinogen Il synthase genewise.103.196.1 04049 has
UPD uroporphyrinogen decarboxylase grail.755.6.1 06538 -
CPO coproporphyrinogen oxidase grail.126.52.1 01962 -
PPO protoporphyrinogen oxidase grail.268.12.1 36273 -
ferrochelatase ferrochelatase grail.726.2.1 04286 -

2NA, not available

b “«— indicates a bi-directional best-hit relationship between a Ciona gene and a human protein, and “—” indicates a uni-directional best-hit relationship of a Ciona

protein against a human protein.

° The result was obtained using the Drosophila melanogaster proteome, because the human proteome did not appear to contain the most likely protein.

Motif search

Motifs or domains of retrieved protein sequences were exam-
ined using SMART (Schultz et al., 1998) and the PFAM database
(Bateman et al., 2002).

Molecular phylogenetic analysis

Sequences were aligned using the CLUSTAL program (Higgins
and Sharp, 1988) and the alignment was checked by eye. After
removal of gaps, the verified alignments were used to construct
phylogenetic trees. Trees were calculated with the MEGA program
using the neighbor-joining method (Saitou and Nei, 1987; Kumar et
al., 2001). Maximum-likelihood analyses were also performed when
needed, using the Phylip 3.6 package (Felsenstein, 1993). Sequ-
ences included are represented by accession number, abbreviation
of species (see below), and gene name. For example, human
cPKC-b (accession number P05771) is represented as “P05771 HS
cPKC-b”. All sequences used in the present study are available on
request. Abbreviations of species are HS for Homo sapiens, MM for

Mus musculus, RN for Rattus norvegicus, GG for Gallus gallus, XL
for Xenopus laevis, TN for Tetraodon nigroviridis, TR for Takifugu
rubripes, DR for Danio rerio, HR for Halocynthia roretzi, BF for
Branchiostoma floridae, CE for Caenorhabditis elegans, DM for
Drosophila melanogaster, AG for Anopheles gambiae, AT for Ara-
bidopsis thaliana, PC for Petroselinum crispum, PS for Papaver
somniferum, SC for Saccharomyces cerevisiae, SP for Schizosac-
charomyces pombe, EC for Escherichia coli, DD for Dictyostelium
discoideum, BC for Bacillus cereus, BA for Bacillus anthracis, HP
for Helicobacter pylori J99, LM for Leishmania major, DR for Deino-
coccus radiodurans, and ML for Mesorhizobium loti. Abbreviations
of species shown in Fig. 2 are PL for Pacifastacus leniusculus
(crustacean), PS for Penaeus semisulcatus (crustacean), MJ for
Marsupenaeus japonicus (crustacean), PV for Penaeus vannamei
(crustacean), PM for Penaeus monodon (crustacean), Pl for Panu-
lirus interruptus (crustacean), PL for Pontastacus leptodactylus
(crustacean), SP for Spirostreptus sp. BT-2000 (myriapod), SC for
Scutigera coleoptrata (myriapod), NI for Nephila inaurata madagas-
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cariensis (myriapod), CS for Cupiennius salei (myriapod), and EP
for Epiperipatus sp. TB-2001 (onychophoran).

Best-hit analysis

To confirm the results of the molecular phylogenetic analyses,
we compared the indicated Ciona proteins with the human and
Drosophila SWISS-PROT/TrEMBL proteome sets released on 17
and 24 Aug. 2002, respectively. Identified proteins were first com-
pared using the BlastP program (Altschul et al., 1997). The best-hit
protein in each proteome was then TBlastN searched against the
Ciona genome without the option of gapped alignment. When the
best-hit sequence of the human or Drosophila protein corresponded
to the region encoding the starting Ciona protein, the relationship
between the two proteins was called the “bi-directional best-hit rela-
tionship”, and supported the orthology of the two proteins. Other-
wise, it was called a “uni-directional best-hit relationship”.

EST counts

A large scale EST analysis was conducted for transcripts
expressed in Ciona intestinalis. The cDNA libraries examined were
from fertilized eggs, cleaving embryos, gastrulae/neurulae, tailbud
embryos, larvae and whole young adults, and the gonad (ovary and
testis), endostyle, neural complex, heart, and blood cells of the
adult. Because the libraries were not normalized or amplified, the
occurrence of cDNA clones or EST counts in each library may
reflect the quantity of transcripts of the corresponding genes. Thus,
comparison of the EST counts of a certain gene at the six develop-
mental stages listed above may reflect the temporal expression pat-
tern of the gene, while the comparison of EST counts in different
tissues of the adult may reflect the spatial expression pattern of the
gene (Satou et al., 2003b).

A
Tyrosine

TYR

\ 4

DOPA
TYR

DOPAE]uinone

v

LeucoDOPAchrome
\TYRPZ / Det
DHI DHICA
TYR TYRP1 .
/ DHICA oxidase
Indole- Indole-5,6-quinone
5,6-quinone  carboxylic acid

Melanin

RESULTS AND DISCUSSION

Melanin synthesis pathways

Melanin is found in both plants and animals, although
its structural features differ between the two taxa. The
present study dealt with only eumelanin, not allomelanin,
which is found in plants, fungi and bacteria, nor pheomela-
nin, which is only found in birds and mammals. Fig. 1A
shows the synthesis pathway of melanin and enzymes
involved in the pathway (reviewed by Hearing and Tsuka-
moto, 1991; del Marmol and Beermann, 1996). The key
enzymes are tyrosinase (TYR) and tyrosinase-related pro-
tein (TYRP). In mice, some mutations in the tyrosinase
gene result in an albino phenotype that lacks melanin, and
those in TYRP1 and/or TYRP2 alter coat color. Ascidian
genes for TYR and TYRP have been isolated and charac-
terized in Halocynthia roretzi (Sato et al., 1997; Sato et al.,
1999).

The present survey of the Ciona intestinalis genome
revealed the presence of a single gene for tyrosinase (TYR)
and two genes (TYRP1/2-a and TYRP1/2-b) for TYRP (Fig.
1B; Table 1). The EST counts suggest that both TYR and
TYRP are expressed in tailbud-stage embryos and larvae
(Table 2). Since melanin is a component of the otolith and
ocellus in the sensory vesicle of larvae, the gene expression
is associated with the pigment formation.
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Fig. 1. (A) Melanin biosynthesis pathway based on description by Hearing and Tsukamoto (1991) and del Marmol and Beermann (1996). Dct,
dopachrome tautomerase; DHI, 5,6-dihydroxyindole; DHICA, 5,6-dihydroxyindole-2-carboxylic acid; DOPA, 3,4-dihydroxyphenylalanine; TYR,
tyrosinase; and TYRP, tyrosinase-related protein. (B) Phylogenetic tree of enzymes (TYR, TYRP1 and TYRP2) used for melanin synthesis,
generated by the neighbor joining method. Ciona intestinalis proteins are shown by large black dots. The number beside each branch indicates
the percentage of times that a node was supported in 1000 bootstrap pseudoreplications. Protein names are explained in the Methods section.
The unrooted tree is shown as a rooted tree for simplicity. The scale bar indicates an evolutionary distance of 0.1 amino acid substitutions per

position.
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Table 2. EST counts of genes of enzymes used for melanin syn-
thesis in Ciona intestinalis

Gene EG CL GN B LV~ cDNA cluster

TYR 0 0 0 7 4 14634
TYRP 1/2-a 0 0 2 0 7 32248
TYRP 1/2-b 0 0 0 3 0 14021

EG, eggs; CL, cleaving embryos; GN, gastrulae and neurulae; TB,
tailbud embryos; LV, larvae.
TYR, tyrosinase; TYRP, tyrosinase-related protein.

In  vertebrates, TYRP1 and TYRP2 show different
enzymatic activities. TYRP1 has the activity of dihydroxyin-
dole carboxylic acid oxidase (DHICA oxidase), while
TYRP2 has the activity of dopachrome tautomerase (Dct,
EC 5.3.3.12) and is therefore generally called Dct. In addi-
tion, copper binds to the active site of tyrosinase, whereas

99

51
76

zinc binds to that of TYRP2, but what binds to that of
TYRP1 is still unknown (Garcia-Borrén and Solano, 2002).
Molecular phylogenetic analysis showed that TYRP1/2-a
and TYRP1/2-b resulted from an independent duplication in
the lineage of this ascidian (Fig. 1B), suggesting that both
TYRP1/2-aand TYRP1/2-b are an ancestral form of the two
TYRPs of vertebrates, which were duplicated in the lineage
leading to vertebrates. Therefore, the manner of melanin
synthesis in Ciona is likely the ancestral form of that in ver-
tebrates.

In the melanin synthesis pathway in insects, phenolox-
idase (PO, EC 1.10.3.1) acts in place of tyrosinase, and
dopachrome isomerase in place of TYRP2 (dopachrome
tautomerase). Insect dopachrome isomerase catalyses the
conversion of dopachrome to 5,6-dihydroxyindole. TYRP1
appears to be lacking in the insect genome (reviewed by
Sugumaran, 2002). The Ciona intestinalis genome contains
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Fig. 2. Phylogenetic tree of phenoloxidase (PO) used for melanin synthesis, generated by the neighbor joining method. Ciona intestinalis pro-
teins are shown by large black dots. The number beside each branch indicates the percentage of times that a node was supported in 1000
bootstrap pseudoreplications. Protein names are explained in the Methods section. The unrooted tree is shown as a rooted tree for simplicity.
The scale bar indicates an evolutionary distance of 0.1 amino acid substitutions per position. DPO, diphenoloxidase; HC, hemocyanin; LSP,

larval serum protein; and PPO, prophenoloxidase.
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two PO-like genes of the arthropod hemocyanin superfamily
(Fig. 2) (Burmester, 2002; Immesberger and Burmester,
2004). On the other hand, the Ciona genome appears to
lack a gene encoding the dopachrome conversion enzyme.
As a result, although Ciona differs from vertebrates in that
Ciona has PO-like genes, Ciona does not synthesize mela-
nin in the same manner as insects.

Pteridine synthesis pathway

A well-known pteridine in plants and animals is
Hsbiopterin, which is utilized as a cofactor of enzymes. Pte-
ridine is also used in pigmentation in animals including
arthropods, teleost fishes, and amphibians. The pteridine
synthesis pathway and enzymes involved in the pathway
are shown in Fig. 3A (reviewed by Ziegler, 2003). This com-
plex pathway is composed of three component pathways.
The first is associated with the production of Hgbiopterin

from GTP, and involves three enzymes, GTP cyclohydro-
lase | (GCHI, EC 3.5.4.16), 6-pyruvoyl Hgapterin synthase
(PTPS, EC 4.2.3.12), and sepiapterin reductase (SPR, EC
1.1.1.153). Mutations in mammalian genes encoding these
enzymes result in the failure of Hsbiopterin production,
which causes various diseases such as hyperphenylalanine-
mia (reviewed by Thony et al., 2000). The second compo-
nent pathway is the production of pigments such as drosop-
terin and sepiapterin from the middle products of the first
pathway. The enzymes involved in this pathway are sepiap-
terin reductase, xanthine oxidase (XO, EC 1.1.3.22)/dehy-
drogenase (XDH, EC 1.1.1.204), and the clot gene product
in Drosophila, whose mutations cause changes of eye color
(Wiederrecht et al., 1984). The third component pathway is
associated with regeneration after Hsbiopterin acts as cofac-
tor. Pterin 4a-carbinolamine dehydratase (PCD, EC 4.2.1.96)
and dihydropteridine reductase (DHPR, EC 1.5.1.34) are
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Fig. 3. (A) Pteridine biosynthesis pathway (Ziegler, 2003) and (B—-D) phylogenetic tree of enzymes used for pteridine synthesis. The phyloge-
netic trees of (B) sepiapterin reductase (SPR), (C) xanthine oxidase (XO)/xanthine dehydrogenase (XDH) and (D) clot were generated by the
neighbor joining method. Ciona intestinalis proteins are shown by large black dots. The number beside each branch indicates the percentage
of times that a node was supported in 1000 bootstrap pseudoreplications. Protein names are explained in the Methods section. Each unrooted
tree is shown as a rooted tree for simplicity. The scale bar indicates an evolutionary distance of 0.2 (B) or 0.1 (C, D) amino acid substitutions
per position. AO, aldehyde oxidase; DHPR, dihydropteridine reductase; GCHI, GTP cyclohydrolase |; 17-beta-HSD8, estradiol 17-beta-dehy-
drogenase 8; PCD, pterin 4a-carbinolamine dehydratase; and PTPS, 6-pyruvoyl-Hapterin synthase.
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Fig. 4. Phylogenetic trees of enzymes used for pteridine synthesis. Phylogenetic trees of (A) GTP cyclohydrolase | (GCHI), (B) 6-pyruvoyl-
Hgpterin synthase (PTPS), (C) pterin 4a-carbinolamine dehydratase (PCD)/dimerization cofactor of hepatocyte nuclear factor 1(DcoH) and (D)
dihydropteridine reductase (DHPR) were generated by the neighbor joining method. Ciona intestinalis proteins are shown by large black dots.
The number beside each branch indicates the percentage of times that a node was supported in 1000 bootstrap pseudoreplications. Protein
names are explained in the Methods section. Each unrooted tree is shown as a rooted tree for simplicity. The scale bar indicates an evolution-
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ary distance of 0.05 (A), 0.1 (B, C) or 0.2 (D) amino acid substitutions per position. SPR, sepiapterin reductase.
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Table 3. EST counts of genes of enzymes used for pteridine synthesis in Ciona intestinalis

Gene EG CL GN TB LV AD GD TS ES NC HT BD cDNA cluster
GCHI 0 2 0 0 0 0 0 0 0 0 0 0 05238
PTPS 1 0 0 0 1 0 0 0 0 0 0 11056
SPR-a 0 2 0 0 0 1 1 0 0 0 0 0 03905
SPR-b 0 0 0 0 0 3 0 0 0 0 1 0 15808
XO/XDH-a 0 0 1 0 1 1 2 0 0 0 0 1 06608
XO/XDH-b 0 0 0 0 1 0 0 0 0 0 0 0 14640
clot-a 1 1 0 0 0 2 1 0 1 1 1 0 13855
clot-b 0 0 0 0 0 0 0 0 0 0 0 0 not available
PCD/DcoH 0 3 1 1 2 0 1 0 0 1 1 3 03895
DHPR 2 2 4 3 0 6 1 0 0 3 3 1 05796

EG, eggs; CL, cleaving embryos; GN, gastrulae and neurulae; TB, tailbud embryos; LV, larvae; AD, Young adults; GD,
gonad; TS, testis; ES, endostyle; NC, neural complex; HT, heart; BD, blood cells.

GCHI, GTP cyclohydrolase I; PTPS, 6-pyruvoyl-Hgpterin synthase; SPR, sepiapterin reductase; XO, xanthine oxidase;
XDH, xanthine dehydrogenase; PCD, pterin 4a-carbinolamine dehydratase; DcoH, dimerization cofactor of hepatocyte
nuclear factor 1; DHPR, dihydropteridine reductase.
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Fig. 5. (A) Ommochrome biosynthesis pathway (Han et al., 2003) and (B, C) phylogenetic tree of enzymes used for ommochrome synthesis.
The phylogenetic tree of (B) tryptophan 2,3-dioxygenase (TDO2) and (C) kynurenine 3-monooxygenase (KMO) were generated by the neigh-
bor joining method. Ciona intestinalis proteins are shown by large black dots. The number beside each branch indicates the percentage of
times that a node was supported in 1000 bootstrap pseudoreplications. Protein names are explained in the Methods sections. Each unrooted
tree is shown as a rooted tree for simplicity. The scale bar indicates an evolutionary distance of 0.1 (B) or 0.2 (C) amino acid substitutions per
position. COQ6, Ubiquinone biosynthesis monooxygenase; and SE, squalene epoxidase.
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responsible for the pathway (Thony et al., 2000; Ziegler,
2003). Several mutations of the enzymes mentioned above
cause changes in the pigmentation pattern of animals. For
example, lemon is a mutant in the gene for SPR of the silk-
worm Bombyx mori (Matsubara et al., 1963). A Drosophila
eye color mutant, rosy, and Bombyx skin color mutants, oq
and og, occur in genes encoding xanthine dehydrogenase
(Reaume et al., 1991; Tamura, 1983). In addition, three
Drosophila eye-color mutants, purple, clot and sepia, are
known (Wiederrecht et al., 1984). purple involves a mutation
in the gene for 6-pyruvoyl Hapterin synthase, and clot a
mutation in the gene for thioredoxin-like protein (Giordano et
al., 2003). sepia is thought to encode PDA synthase, but its
nucleotide sequence has not fully been determined (Wied-
errecht and Brown, 1984).

The search against the Ciona intestinalis genome
revealed seven genes in the component pathways, each
corresponding to the one of the enzymes mentioned above.
In the first pathway, that of Hsbiopterin biosynthesis, one
gene for GTP cyclohydrolase | (GCHI) (Fig. 4A), one for 6-
pyruvoyl Hgpterin synthase (PTPS) (Fig. 4B), and two for

sepiapterin reductase (SPR) (Fig. 3B) were detected (Table
1). The EST counts suggest that all these genes are expres-
sed zygotically in embryos at the cleavage stage. In the sec-
ond pathway, that for production of drosopterin, two genes
for XO/XDH (Fig. 3C) and two clot homologs (Fig. 3D) were
found in the Ciona genome. The EST counts suggested that
these genes are expressed mainly in young adults after
metamorphosis of tadpole larvae (Table 3). In the third path-
way, that for regeneration of Hsbiopterin, one gene for pterin
4a-carbinolamine dehydratase (PCD) (Fig. 4C) and one for
dihydropteridine reductase (DHPR) (Fig. 4D) were found in
the Ciona genome (Table 1). The Ciona PCD gene appea-
red to be an ancestral form of a gene that is duplicated in
the vertebrate lineage (Fig. 4C). Ciona has two homologs
each of SPR, XO/HDH, and clot in the genome. All of these
genes appear to have been duplicated in the lineage of this
ascidian, judging from the molecular phylogenetic analyses.
Such lineage-specific duplications may be important for pig-
mentation in Ciona intestinalis, since all of them are involved
in the second component pathway of pteridine synthesis.
Therefore, it is highly likely that the pteridine synthesis path-
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Fig. 6. (A) Papiliochrome biosynthesis pathway (Sugumaran et al., 1990; Koch et al., 2000) and (B) phylogenetic tree of enzymes used for
papiliochrome synthesis. The phylogenetic tree of (B) dopa decarboxylase (DDC) was generated by the neighbor joining method. Ciona intes-
tinalis proteins are shown by large black dots. The number beside each branch indicates the percentage of times that a node was supported in
1000 bootstrap pseudoreplications. Protein names are explained in the Methods section. The unrooted tree is shown as a rooted tree for sim-
plicity. The scale bar indicates an evolutionary distance of 0.2 amino acid substitutions per position. AAAD, aromatic amino-acid decarboxy-
lase; CSD, cysteine sulfinic acid decarboxylase; DOPA, 3,4-dihydroxyphenylalanine; GAD, galutamic acid decarboxylase; HDC, histidine
decarboxylase; NBAD, N-beta-alanyldopamine; PO, phenoloxidase; and TYD, tyrosine decarboxylase.
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way is functional in Ciona intestinalis.

Ommochrome synthesis pathway

Ommochrome is well known as a pigment found in
insect eyes, but it is also contained in eyes, hypostomes,
wings, gonads, and ovaries of other arthropods, and mol-
luscs as well. As shown in Fig. 5A, ommochrome is synthe-
sized from 3-hydroxykynurenine, an intermediate product of
the kynurenine pathway (Han et al., 2003). The kynurenine
pathway involves tryptophan metabolism, and 3-hydrox-
ykynurenine is synthesized from L-tryptophan. However,
how ommochrome is synthesized from 3-hydroxykynurenine
is not yet fully understood. Here we examined the kynure-
nine pathway, which involves three enzymes, tryptophan
2,3-dioxygenase (TDO2, EC 1.13.11.11), kynurenine forma-
midase (KF, EC 3.5.1.9), and kynurenine 3-monooxygenase
(KMO, EC 1.14.13.9) (Allegri et al., 2003). In vertebrates,
indoleamine 2,3-deoxygenase is used instead of TDO2,
except in the liver. Although 3-hydroxykynurenine is usually
used for biosynthesis other than pigment synthesis, some
mutations that cause deficiency of 3-hydroxykynurenine
change pigment patterns in insects, e.g., vermilion, a muta-
tion in TDO2 of Drosophila (Searles and Voelker, 1986) and
Tribolium (Lorenzen et al., 2002). Mutations in KMO are also
known to cause abnormalities in eye pigmentation, e.g., cin-
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nabar in Drosophila (Warren et al., 1996), and similar muta-
tions occur in Aedes aegypti (Han et al., 2003) and Tribo-
lium (Lorenzen et al., 2002).

The present genomewide survey revealed two Ciona
genes encoding tryptophan 2,3-dioxygenase (TDO2) (Fig.
5B) and one encoding kynurenine 3-monooxygenase (KMO)
(Fig. 5C). The TDO2 genes appear to have been duplicated
independently in the ascidian lineage. The mouse gene for
kynurenine formamidase (KF) has been fully sequenced
(Pabarcus and Casida, 2002), and the Ciona genome has a
candidate gene for KF. A molecular phylogenetic analysis
as well as structural features of the Ciona protein revealed
that the GHSAG motif found in the mouse KF was replaced
by GHSSG, and neither the catalytic unit nor the HGG motif
was found in the protein. Therefore, we have termed this a
KF-like gene. The two Ciona genes encoding TDO2 and the
one encoding KMO are well conserved, suggesting that the
kynurenine pathway functions in Ciona, but it is unclear
whether this pathway is used for pigmentation in this genus.

Papiliochrome synthesis pathway

Papiliochrome is a yellow pigment characteristic of
wings of butterflies belonging to the family Papilionidae. The
synthesis pathway is shown in Fig. 6A. Papiliochrome syn-
thesis requires N-beta-alanyldopamine (NBAD) and kynure-
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(A) Heme biosynthesis pathway (Ferreira, 1995) and (B) phylogenetic tree of enzymes used for heme synthesis. The phylogenetic

tree of (B) d-aminolevulinate synthase (ALAS) was generated by the neighbor joining method. Ciona intestinalis proteins are shown by large
black dots. The number beside each branch indicates the percentage of times that a node was supported in 1000 bootstrap pseudoreplica-
tions. Protein names are explained in the Methods section. The unrooted tree is shown as a rooted tree for simplicity. The scale bar indicates
an evolutionary distance of 0.2 amino acid substitutions per position. ALAD, d-aminolevulinate dehydratase; CPO, coproporphyrinogen oxi-
dase; KBL, 2-amino-3-ketobutyrate coenzyme A ligase; PBGD, porphobilinogen deaminase; PPO, protoporphyrinogen oxidase; SPT, serine
palmitoyltransferase, long chain base subunit 2; UPD, uroporphyrinogen decarboxylase; and UPG Ill S, uroporphyrinogen Ill synthase.
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nine. NBAD is transformed by phenoloxidase (PO) to NBAD
quinone methide, from which papiliochrome and kynurenine
are formed through non-enzymatic processes (Sugumaran
et al., 1990). Kynurenine is an intermediate product of the
ommochrome synthesis pathway, as mentioned above. On
the other hand,NBAD is synthesized from tyrosine through
dopamine. This pathway is partially shared with the melanin
synthesis pathway and requires the enzymatic activity of
dopa decarboxylase (DDC, EC 4.1.1.28). Synthesis of
NBAD requires NBAD synthase, but the gene for this
enzyme has not been fully sequenced.

A genome-wide survey of Ciona intestinalis genes for
the enzymes in this pathway found two dopa decarboxylase
(DDC)/histidine decarboxylase (HDC)-like genes (Fig. 6B).
Molecular phylogenetic analysis indicated the duplication of
this gene in the lineage leading to ascidians. However, the
analysis did not provide evidence about whether these are
true DDC or histidine decarboxylase genes (HDC, EC
4.1.1.22), or genes having other functions. Drosophila has
both DDC and HDC, and thus the Ciona DDC/HDC-like
genes do not appear to be ancestral forms of DDC and
HDC. Therefore, it is not certain whether papiliochrome is
synthesized in Ciona.

Heme synthesis pathway

Heme is not directly associated with pigment pattern,
but many pigment proteins contain heme, and are thus
associated indirectly with animal color patterns. The heme
synthesis pathway and enzymes involved in the pathway
are summarized in Fig. 7A. Components and enzymes of
this pathway have been well conserved in prokaryotes and
eukaryotes (reviewed by Ferreira, 1995). The heme synthe-
sis pathway requires eight enzymes, starting from &-ami-
nolevulinate synthase (ALAS, EC 2.3.1.37) which catalyses
the first step of the pathway and thus acts as a rate-limiting
factor. Heme is synthesized as the final product of the
sequence of steps carried out by each of the eight enzymes.

Search of the Ciona intestinalis genome revealed eight
genes that encode d-aminolevulinate synthase (ALAS) (Fig.
7B), d-aminolevulinate dehydratase (ALAD, EC 4.2.1.24)
(Fig. 8A), porphobilinogen deaminase (PBGD, EC 2.5.1.61)
(Fig. 8B), uroporphyrinogen-lll synthase (UPG Ill S, EC
4.2.1.75) (Fig. 8C), uroporphyrinogen decarboxylase (UPD,
EC 4.1.1.37) (Fig. 8D), coproporphyrinogen oxidase (CPO,
EC 1.3.3.3) (Fig. 8E), protoprophyrinogen oxidase (PPO,
EC 1.3.3.4) (Fig. 8F), and ferrochelatase (EC 4.99.1.1) (Fig.
8G). Thus, Ciona has all the components for the heme syn-
thesis pathway.

CONCLUSIONS

Our study revealed that the Ciona intestinalis genome
contains genes for each enzyme of the melanin, pteridine,
ommochrome, papiliochrome, and heme synthesis path-
ways. This is basic information for future studies of molecu-
lar mechanisms underlying the pigmentation of ascidians.

The present results are also useful to compare the relevant
homologous genes between Ciona intestinalis and Ciona
savignyi to investigate the presence or absence of red pig-
ment spots in the rim of the sperm duct, a diagnostic char-
acter that distinguishes between the two species.
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