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Abstract

In the real world, many difficult problems exist in manufacturing and engineering,
including logistics problems and scheduling problems. They are defined as con-
straint satisfaction problems (CSPs) in the operation research and artificial intel-
ligence fields. Even suboptimal solutions to a CSP are difficult to obtain, not only
because of multiple restrictions, but also because of multiple objectives.

Many optimization algorithms, multi-agent-based algorithms or both are avail-
able for solving different kinds of CSPs. But algorithms proposed so far cannot
solve CSPs in the real world because involved restrictions are sometimes self-
contradictory and difficult to satisfy simultaneously. Beyond that, there is never
enough computation time to get an optimal solution. This research focuses on solv-
ing these kinds of CSPs using distributed and cooperative approaches and discusses
the general issue of the container loading problem (CLP) as an example.

When human experts deal with complicated restrictions, they have the know-
how to classify restrictions and relax some of them with the goal of finding a satis-
ficing solution rather than an optimal solution. To simulate this kind of human ex-
pert flexibility, “Theory of Constraints-based Management” (TOCM) is proposed.
In TOCM, restrictions are divided into hard and soft, according to the situations on
site and user requests. Hard restrictions must be satisfied even though solution effec-
tiveness is poor and soft restrictions may be relaxed according to specific situations.
Further, TOCM is based on the distributed Multi-agent System and Theory of Con-
straints. A particular target of TOCM focuses on improving the constrained agent
by striving for integrated improvement of its restrictions and making agents nego-
tiate cooperatively. The goal is to arrive at a final solution that yields the biggest
profit for a system.

Because TOCM cannot guarantee that every soft restriction of an agent is well-
satisfied, an approach called “Three-zone Buffer Management” (TZBM) is intro-
duced and improved. In TZBM, each soft restriction corresponds to a relaxable
variable and the value of the variable reflects the extent to which the soft restriction
is violated. Each agent is divided into one of three zones (Green-zone, Yellow-zone
and Red-zone) according to the worst satisfied situation of its own soft restrictions.
The constrained agent in the Red-zone is improved by striving for trade-offs of its
soft restrictions and making agents negotiate cooperatively. When a system runs
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into a deadlock that prevents the Red-zone from being emptied, soft restrictions are
relaxed and agents are re-divided into three zones. The result is that more opportu-
nities are revealed for constrained agents in the Red-zone to be eliminated. A final
satisficing solution is obtained until the Red-zone is emptied or relaxable variables
reach their maximums. All soft restrictions are violated as seldom as possible.

Once a program is developed, it is seldom flexible or adaptable enough to deal
with similar but differing problems because it has no ability to recognize new situ-
ations or adjust its existing problem-solving strategies. On the other hand, a human
expert has this kind of experience to adapt to diversity. To use the human expert’s
ability and solve the “year-2007 problem” in Japan, an approach called “Interaction-
based Knowledge Acquiring Framework” (IKAF) is proposed. The goal is to make
a program with high flexibility and adaptability and for human expert knowledge to
be retained in that expert’s company. Because much of a human expert’s knowledge
is experience and tacit, it is difficult to implement it explicitly. In IKAF, a human ex-
pert agent is provided opportunities to use individual tacit skills in criticizing a result
obtained using a conventional algorithm as well as to apply the heuristics gained to
that point within a computer agent. From this performance, the computer agent de-
tects knowledge fragments that are commonly lacking in existing knowledge-based
systems, but are actually used in a human expert’s performance. This detection is
accomplished by applying the deductive learning approach of Explanation-based
Learning. The distributed and cooperative procedures for transforming a human ex-
pert’s tacit knowledge into explicit knowledge are presented, and examples of the
knowledge acquisition are demonstrated in this research.
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Chapter 1

Introduction

1.1 Constraint Satisfaction Problem

In the real world, many difficult problems exist in manufacturing and engineering,
including logistics problems and scheduling problems. A constraint satisfaction
problem (CSP) is a mathematical problem in which the states or objects that satisfy
a number of constraints or criteria must be found. A CSP is a subject of intense
research in both the artificial intelligence and operation research fields.

CSPs in reality are very difficult problems. First, they are accompanied by mul-
tiple objectives and multiple restrictions that are difficult to define and evaluate
because practical situations are always complicated and ambiguous. Specifically,
multiple restrictions are usually self-contradictory and difficult to satisfy simultane-
ously. Second, they are usually NP-hard problems according to the computational
complexity theory. Last and very important, traditional methods are always difficult
to adapt to an even small change in an application because of its lack of the flexi-
bility that comes natural to a human expert. For these reasons, it is usually difficult
to obtain even a suboptimal solution to a CSP in the real world within a limited
computation time.

For example, the container loading problem (CLP) is one kind of CSP in the
real world [27]. The CLP holds an important place in logistics and has significant
commercial applications.

A number of CLP categories have been considered [11]. One is based on the
container quantity (single container [7] or multiple containers [30]). Another is
based on the mix of cargo types to be loaded. In this respect, CLPs vary from a
completely homogeneous problem, where cargoes have identical dimensions and
orientations, to the extreme heterogeneous case, where many different sized items
are present. The CLP between these two extremes (with relatively few cargo types)
is often referred to as the weakly heterogeneous case [2]. The other separates CL.Ps
into different loading patterns such as layer-building [12] [35], tower-building [11],
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Figure 1.1: Making and loading modules of two-row pattern of CLP

and block-building [8] [20]. Loading patterns are decided by data properties and
user requests. Generally, different mathematical models are proposed for solving
different loading patterns.

In some cases (for instance, in large motor manufacturers), small parts are
packed into boxes or placed on pallets, which are then loaded into containers; large
parts are loaded into containers directly. Those to be loaded into containers directly
are called cargoes in this research and are weakly heterogeneous. Because these
cargoes are large and their lengths and widths are close to half the width of a con-
tainer, a two-row pattern is used on site as shown in Figure 1.1. This pattern has two
rows of modules lying against the two sidewalls of a container; each module is made
by stacking cargoes vertically. The process for making modules is discussed in an-
other paper [32] and omitted here. Only the process for loading modules, which is
a two-dimensional allocation problem, is discussed in this research to explain our
proposed approaches.

The two-row pattern of a CLP discussed in this research is a multi-destination
delivery and multi-container problem. The difficulties to solve it are as follows:

1) Multiple restrictions are usually self-contradictory and difficult to satisfy si-
multaneously. First, volume and weight capacities of a container are limited. Sec-
ond, a loading sequence for ordinal destinations has to be followed. And third, four
kinds of desirable restrictions should be satisfied to the greatest extent possible. The



first is the gravity center, which needs to be close to the geometrical mid-point of
the container floor. The second is the balance of row lengths. Good balance is pos-
sible by fixing the modules on the tails of two rows. The third is module crossing
packing; similar gap widths between two rows are desirable. The fourth restriction
is module stability. The cargo at the top of a module is best restricted by adjacent
modules.

2) Beyond the basic objective of a minimum number of loaded containers, an
additional objective to satisfy restrictions to the greatest extent possible must be
taken into account.

3) The system goal is to achieve the optimum profit of all loaded containers
rather than parts of them. That means every container should be loaded as efficiently
and stably as possible.

4) The computation time to get a final solution is usually limited.

It is difficult to obtain an optimal solution because of many complicated restric-
tions and limited time.

Algorithms for solving CSPs can be divided into two groups: search algorithms
for solving CSPs and preprocessing algorithms for reducing futile searches; these
are called consistency algorithms. Search algorithms for solving CSPs can be fur-
ther divided into two groups: systematic tree search algorithms (backtracking) and
iterative improvement algorithms (local search) [36].

Abundant literature reports a wide variety of techniques to solve CLPs, ranging
from straightforward single-pass heuristics to local search [10] [15], genetic algo-
rithms [11], tabu search [4], parallel methods [12] [20], linear programming and
combinations of tree-search heuristics and dynamic programming [8] [25]. Two-
dimension packing problems have also been surveyed [19]. In fact, perhaps an
important advance is that literature has moved away from pure knapsacks to var-
ious additional restrictions, such as the gravity center [6] [8] [11], loading stabil-
ity [5] [31], orientation restrictions [12] and loading bearing strength [1].

In particular, distributed Multi-agent Systems (MASs) are gaining more and
more attention in artificial intelligent and operation research and have already
found a home in many practical applications. An important prerequisite for their
success is an ability to flexibly adapt their behavior via intelligent cooperation.
Pawel Kalczynski used an agent-based approach to solve multi-container loading
with grouping goals. But his approach did not consider three-dimensional models
of shipping cargoes and containers; to keep things simple, only volume was taken
into account [17].
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1.2 Motivation of Theory of Constraints-based Man-
agement

The traditional algorithms mentioned above cannot be applied directly to solve com-
plicated CSPs such as the two-row pattern of a CLP. Following is why.

1) Traditional algorithms usually seek an optimal solution to a problem. But
restrictions involved in a really difficult problem are usually self-contradictory and
hard to satisfy simultaneously; there may be no optimal solution to this problem.

2) There is never enough computation time for traditional algorithms to achieve
an optimal solution on site.

A human expert, however, has experience solving conflicts among multiple ob-
jectives and restrictions involved in a CSP. The expert can usually define a problem
in a more reasonable format by focusing on its constrained factors according to on-
site situations. The problem can then be solved. Priorities of multiple objectives
and restrictions can be classified so that a final reasonable solution can be sought
within a reasonable computation time.

To simulate functions and flexibilities that come natural to a human expert,
“Theory of Constraints-based Management” (TOCM) is proposed. With a human
expert, divisions are made into hard and soft restrictions, according to the situations
on site and user requests. Hard restrictions must be satisfied even though solution
effectiveness is poor, and soft restrictions can be relaxed according to specific sit-
uations. This is done to prevent a system from running into a deadlock in which
restrictions of self-contradiction cannot be satisfied simultaneously.

To make TOCM automatically find a final reasonable solution within a limited
computation time, distributed MAS and the idea of Theory of Constraints (TOC)
are introduced.

MAS is a system in which many intelligent agents interact with each other. The
agents are considered autonomous entities. Their interactions can be either coop-
erative or selfish. That is, the agents can share a common goal, or they can pursue
their own interests. In problems discussed in this research, in addition to compet-
ing for its own interest, the agent must also make concessions toward a common
goal. The problems comprise when an agent should compete, when it should make
concessions and to what extent. The answers are obtained from TOC.

TOC is an idea from management science invented by Dr. Eliyahu M. Gol-
dratt [13]. The core idea in TOC is that every real system, such as a profit-making
enterprise, must have at least one constraint, which is sometimes called a bottle-
neck. Because the constraint is a factor that limits the system from getting more
of whatever it strives for, then a business manager who wants more profits must
manage constraints. The techniques illustrated in TOC, such as Drum-Buffer-Rope
(DBR) scheduling and the five-step focusing process for continuous improvement
by focusing on constraints, can be applied to capacity constrained job shops with



high product diversity.

In TOCM, every agent is evaluated through an integrated evaluation function in
order to reflect how much an agent satisfies its restrictions. It then competes while
the value of its evaluation function is improved. The agent with the worst value of
its integrated evaluation function is the constrained agent of a system. To achieve
the common goal of a system, some agents need to make proper concessions for the
common goal. Particular attention is focused on improving the constrained agent by
striving for integrated improvement of its restrictions and making agents negotiate
cooperatively. Ultimately, a final solution having the biggest profit is achieved.

As an example, this research attempts to solve the two-row pattern of a CLP.
The experiment shows that TOCM based on a distributed and cooperative system is
effective to solve CSPs in the real world by classifying restrictions and using TOC
to build a kind of heuristic strategy.

1.3 Motivation of Three-zone Buffer Management

In TOCM, an agent is made better by improving the value of its integrated evalua-
tion function; but one of its restrictions may be significantly violated even though
its evaluation has been improved. Actually, a soft restriction is sometimes prevented
from being relaxed infinitely. The weak point of TOCM is that it cannot guaran-
tee that every soft restriction of an agent is well satisfied. To overcome this weak
point, the “Three-zone Buffer Management” (TZBM) approach is introduced [32]
and improved.

Just as with TOCM, TZBM classifies restrictions into hard and soft. But in
TZBM, each soft restriction corresponds to a relaxable variable and the variable is
given a relaxable range. The value of the relaxable variable can be used to reflect
the extent to which its corresponding soft restriction is satisfied, and the given relax-
able range is set by a human expert according to on-site situations and the expert’s
experience. Once values of relaxable variables are set within their own relaxable
ranges, system agents can be divided into three zones (Green-zone, Yellow-zone
and Red-zone) according to their own violating situations to soft restrictions. The
constrained agent is in the Red-zone and one of its soft restrictions is violated far-
thest in the whole system. Through iterating agent negotiations and variable re-
laxations, a final satisfying solution is obtained until the Red-zone is emptied or
relaxations reach maximum.

An ideal state in which all soft restrictions are violated as seldom as possible can
be achieved through the mechanism with variable-relaxation. Further, the human
expert can adjust the relaxable ranges and relaxation paces so that computation time
can be controlled.

TZBM also attempts to solve the two-row pattern of a CLP. The experiment
shows that TZBM works to eliminate violations to all soft restrictions of system



agents and seeks a satisficing instead of optimal solution with a limited computation
time. It is comparable not only with TOCM, but also other optimization algorithms
(Local search and Tabu search).

1.4 Motivation of Interaction-based Knowledge Ac-
quiring Framework

The first motivation is to improve reusability and adaptability of an existing pro-
gram. With the advancement of current computer technologies, it becomes possible
to use the advantages of high-speed computation and the huge storage capacity of
computers to assist human beings in solving difficult problems. Many researchers
are resorting to varied optimization algorithms guided by heuristic control rules as
feasible approaches. However, results obtained so far do not always satisfy user
requirements, since the heuristic algorithm cannot always fully implement a human
expert’s flexibility and adaptability, which are revealed when the expert encounters
a variety of dynamic or complex situations. That is to say, once a program is deter-
mined, the way to solve the current problem becomes fixed; i.e., strong adaptability
is lost, which is the major characteristic in the way humans solve problems. There-
fore, in developing practical applications, a program must have high reusability or
flexibility and the user must be able to manipulate the program in a more flexible
mode to improve efficiency.

The second motivation is for knowledge succession (i.e., knowledge and skills
embodied in experienced workers are transferred to young workers). The year 2007
is the peak year when Japanese baby-boomers reach retirement age. The “Year-
2007 problem” is upon us and the need for knowledge succession is now widely
recognized. To many companies, the mass retirement of baby boomers will mean
the loss of nearly uncountable highly skilled workers, still indispensable even in
this age of automation and computerization. If legions of skilled workers retire,
vast experience and cultivated know-how disappears.

Drawing out and using human expert knowledge and know-how must be in-
vestigated in depth, but it is a challenging job. When human experts encounter
really difficult problems, they most often focus on critical aspects and neglect oth-
ers. Even when changes occur in a really difficult problem, human experts can still
deal with them flexibly. Experts select restrictions and prioritize objectives based
on problem solving experience, but the know-how employed is difficult to capture.
The expert, however, can demonstrate problem solving without difficulty. The most
fundamental characteristic of a human expert is the interaction revealed when the
expert encounters a novel problem. The problem may stimulate the expert to ex-
plore potential or latent skills, which are not always explicitly recognized by the
expert. This type of knowledge is often called tacit knowledge. As Polanyi’s [21]



definition, this type of knowledge is highly personal, context-specific, and hard to
formalize and communicate. The human being starts to react when faced with par-
ticular problem solving circumstances.

In searching for a methodology to handle expertise using the computer, conven-
tional expert system approaches were attempted from the 1970s to 1980s. These
approaches failed because they concentrated on enlisting all knowledge apart from
particular problem solving circumstances, and once the expertise was acquired and
incorporated as the knowledge base in expert systems, that knowledge became fixed
and could no longer change. On the other hand, the major property of human ex-
pertise is that it evolves and is dynamic. Therefore, once fixed, it may go unused.

The “Interaction-based Knowledge Acquiring Framework” (IKAF) is proposed
in this research to develop an approach with strong adaptability by integrating a
human expert agent with a computer agent. In IKAF, because much of a human
expert’s knowledge is experience-based and tacit, and it is quite difficult for us to
implement that explicitly, the human expert agent is provided an opportunity to
perform tacit skills in criticizing a result obtained using the conventional algorithm
as well as the heuristics gained to that point within the computer agent. Then,
from this performance, the computer agent detects the knowledge fragments that
are commonly lacking in the existing knowledge-based system but are actually used
in a human expert’s performance. This is done by applying the deductive learning
approach of explanation-based learning (EBL). Put simply, problem solving is done
through cooperation between a computer agent and a human expert agent.

The procedures to transform a human expert’s tacit knowledge into explicit
knowledge are presented, and the examples of knowledge acquisition are demon-
strated with respect to CLP general issues.

1.5 Future Research

As discussed in the sections above, the intelligence for solving problems is pro-
moted step by step. But IKAF is still developing. Following are the minimum
topics that remain to be discussed:

1) The transforming mode of tacit knowledge should be more intelligent in
IKAFE. As shown in this research, a control rule based on tacit knowledge and ex-
isting in the knowledge database can be activated at an appropriate moment. But a
control rule based on tacit knowledge and not existing in the database should also
be extracted automatically or semi-automatically by the EBL facility.

2) Computer algorithms embedded in the problem solver of IKAF should be
extended. Experiments shown in this research are based on straightforward single-
pass heuristic algorithms. And an attempt should be made to embed many solution-
space-based algorithms such as Tabu Search, TZBM, to bring IKAF closer to prac-
tical use.



3) Utility problem. ILearned control knowledge should not just be usable; it
should also be useful. IKAF should extend the standard motion of operationality
to include utility. In other words, IKAF not only requires that learned control rules
be executable, but also requires that they actually improve the system’s effective-
ness and efficiency. For instance, the utility of a control rule can be defined as the
cumulative improvement in search time attributable to the rule [22].



Chapter 2

Distributed and Cooperative System
for solving Constraint Satisfaction
Problem

2.1 Introduction

This chapter explains the methodology for solving constraint satisfaction problems
(CSPs) by approaches based on a distributed and cooperative system.

Section 2.2 briefly introduces a basic definition of the CSP, general algorithms
and MAS-based algorithms developed to date for solving CSPs.

Section 2.3 introduces Theory of Constraints and its idea of Drum-Buffer-Rope
as basic knowledge. Our “Theory of Constraints-based Management” (TOCM) is
then proposed and discussed.

Based on TOCM, “Three-zone buffer management” (TZBM) is introduced in
section 2.4. Its contribution is also emphasized.

In the final section 2.5, the illustrations for “Explanation-based Learning” and
our “Interaction-based Knowledge Acquiring Framework™ are discussed.

2.2 Former research

2.2.1 Definition of Constraint Satisfaction Problem

A CSP is a mathematical problem where one must find states or objects that satisfy
a number of constraints (restrictions) or criteria. The CSP is the subject of intense
research in both artificial intelligence and operations research.

As originally defined in artificial intelligence, constraints enumerate the possi-
ble values a set of variables may take. Informally, a finite domain is a finite set of
arbitrary elements. A CSP on such domain contains a set of variables whose values
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can only be taken from the domain, and a set of constraints, each constraint speci-
fying the allowed values for a group of variables. A solution to this problem is an
evaluation of the variables that satisfies all constraints. In other words, a solution
is a way for assigning a value to each variable in such a way all constraints are
satisfied by these values.

Formally, a CSP is defined a triple (X, D, C), where X is a set of variables, D is
a domain of values, and C is a set of constraints. Every constraint is in turn a pair
(t,R), where t is a tuple of variables and R is a set of tuples of values; all these tuples
have the same number of elements; as a result R is a relation. An evaluation of the
variables is a function from variables to v : X — D. Such an evaluation satisfies a
constraint {(xi, ..., x,), R) if (v(xy),...,v(x,)) € R. A solution is an evaluation that
satisfies all constraints.

In reality, some constraints that are often used are expressed in compact form,
rather than enumerating all possible values of the variables. The constraint express-
ing that the values of some variables are all different is one of the most used such
constraints.

Problems that can be expressed as CSPs are the Eight queens puzzle, the Su-
doku solving problem, the Boolean satisfiability problem, scheduling problems and
various problems on graphs such as the graph coloring problem [33].

Given a CSP instance, the goal might usually be as follows:

1) Determine whether the instance has any solutions.

2) Find any solution.

3) Find all solutions.

4) Find solution that maximizes/minimizes some given objective function: com-
binatorial optimization.

2.2.2 Solving Constraint Satisfaction Problem

Algorithms for solving CSPs can be divided into two groups: search algorithms for
finding a solution of CSPs and preprocessing algorithms for reducing futile search,
which are called consistency algorithms. Search algorithms for solving CSPs can
be further divided into two groups: systematic tree search algorithms (backtracking)
and iterative improvement algorithms (local search).

Backtracking is a recursive algorithm. It maintains a partial assignment of the
variables. Initially, all variables are unassigned. At each step, a variable is chosen,
and all possible values are assigned to it in turn. For each value, the consistency of
the partial assignment with the constraints is checked; in case of consistency, a re-
cursive call is performed. When all values have been tried, the algorithm backtracks.
In this basic backtracking algorithm, consistency is defined as the satisfaction of all
constraints whose variables are all assigned. Several variants of backtracking ex-
ist. Backmarking improves the efficiency of checking consistency. Backjumping
allows saving part of the search by backtracking “more than one variable” in some
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cases. Constraint learning infers and saves new constraints that can be later used to
avoid part of the search. Look-ahead is also often used in backtracking to attempt
to foresee the effects of choosing a variable or a value, thus sometimes determining
in advance when a subproblem is satisfiable or unsatisfiable.

Local search methods are incomplete satisfiability algorithms. They may find
a solution to a problem, but they may fail even if the problem is satisfiable. They
work by iteratively improving a complete assignment over the variables. At each
step, values of a small number of variables are changed, with the overall aim of
increasing the number of constraints satisfied by this assignment. In reality, lo-
cal search appears to work well when these changes are also affected by random
choices. Integration of search with local search has been developed, leading to hy-
brid algorithms.

Consistency techniques were first introduced by researchers in artificial intelli-
gence [34] to improve the efficiency of picture recognition programs, by . Picture
recognition involves labelling all the lines in a picture in a consistent way. The
number of possible combinations can be huge, while only very few are consistent.
Consistency techniques effectively rule out many inconsistent labellings at a very
early stage, and thus cut short the search for consistent labellings. These techniques
have since proved to be effective on a wide variety of hard search problems. No-
tice that consistency techniques are deterministic, as opposed to the search, which
is non-deterministic. Thus the deterministic computation is performed as soon as
possible and non-deterministic computation during search is used only when there
is no more propagation to be done. Nevertheless, the consistency techniques are
rarely used alone to solve CSPs completely (but they could be).

2.2.3 Solving Constraint Satisfaction Problem by Distributed Multi-
agent System

The basic concepts of agent and distributed Multi-agent System (MAS) are re-
viewed simply before their application to CSPs.

The notion of agent is found in a wide range of research in Computer Science
and Distributed Artificial Intelligence. According to Russell’s definition, an agent
is anything that can be viewed as perceiving its environment through sensors and
acting upon that environment through actuators. A human agent has eyes, ears, and
other organs for sensors and hands, legs, mouth, and other body parts for actuators.
A software agent receives keystrokes, file contents and network packets as sensory
inputs and acts on the environment by displaying on the screen, writing files, and
sending network packets [26].

MAS comprises of multiple, interacting agents. As a distributed system, the
distributed MAS method for solving problems has the following advantages [14]:

1) can simplify problem solving by splitting the problem into simple tasks.
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2) can tolerate uncertain data and knowledge.

3) offers conceptual clarity and simplicity of design.

4) presents graceful degradation in computational complexity.
5) allows incremental modification of the system boundary.
6) is well suited to distributed problems.

A distributed CSP is always solved by the methods of distributed MAS. A dis-
tributed CSP is a CSP in which the variables and constraints are distributed among
automated agents. Finding a value assignment to variables that satisfies inter-agent
constraints can be viewed as achieving coherence or consistency among agents.
Achieving coherence or consistency is one of the main research topics in MAS.
Therefore, distributed constraint satisfaction techniques can be considered an im-
portant infrastructure for cooperation. Various application problems in MAS can
be formalized as distributed CSPs, by extracting the essential part of the problems
such as recognition problems, resource allocation problems, multi-agent truth main-
tenance tasks, and scheduling /timetabling tasks.

Some search algorithms for solving distributed CSPs are asynchronous back-
tracking algorithm, asynchronous weak-commitment search algorithm and distributed
breakout algorithm. In the asynchronous backtracking algorithm, agents act con-
currently and asynchronously without any global control, while the completeness
of the algorithm is guaranteed. In the asynchronous weak-commitment search al-
gorithm, when an agent cannot find a value consistent with highest priority agents,
the priority order is changed so that the agent has the highest priority. As a result,
when an agent makes a mistake in selecting a value, the priority of another agent
becomes higher; accordingly the agent that made the mistake will not commit to the
bad decision, and the selected value is changed. In the distributed breakout algo-
rithm, neighboring agents exchange values that provide possible improvements so
that only an agent that can maximally improve the evaluation value can change its
variable value, and agents detect quasi-local-minima instead of real-minima.

Distributed-ATMS (assumption-based truth maintenance system) comprises a
kind of distributed consistency algorithms. In this distributed problem-solving model,
each agent has its own ATMS, and these agents communicate hypothetical inference
results and nogoods among themselves [36].

In addition, some traditional CSPs that have been attempted to be solved by non-
MAS methods are also being investigated by the MAS-based methods because of
inherent MAS strengths. For example, David He solved a manufacture scheduling
problem using MAS-based methods [14]. And Pawel Kalczynski solved multi-
container loading with grouping goals using an agent-based approach [17].
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Figure 2.1: Mlustration for Drum-Buffer-Rope of Theory of Constraints

2.3 Theory of Constraints-based Management

2.3.1 Theory of Constraints

Before discussing our proposed approaches, the methodology for Theory of Con-
straints (TOC) is introduced here.

TOC is an idea from management science invented by Dr. Eliyahu M. Goldratt.
The core idea in TOC is that every real system such as a profit-making enterprise
must have at least one constraint, which is sometimes called a bottleneck. Because
the constraint is a factor that limits the system from getting more of whatever is
strives for, then a business manager who wants more profits must manage con-
straints [13].

The techniques illustrated in TOC such as the Drum-Buffer-Rope scheduling
(DBR) and the five-step focusing process for continuous improvement by focusing
on the constraints can be applied to capacity constrained job shops with high product
diversity.

In the DBR scheduling, “Drum” refers to the pace followed, “Buffer” refers to
the safeties used to exploit constraints, and “Rope” refers to interdependent events
that trigger each other’s activities. In details, DBR involves flying a rope between
the leading scout and the slowest scout in a line of hikers (i.e., the constraint) as
shown in Figure 2.1. This solution constrains the scouts in front of the slowest
scout to walk no faster on average than the slowest scout. That is to say, even the
leading scout can walk faster, but for the profit of the whole troop, he must limit his
speed to subordinate the slowest scout, and this behavior is called concession. More
important, the rope prevents the work-in-process inventory in front of the slowest
scout from growing beyond the slack allowed by the length of the rope. By leaving
slack in the rope, a protective buffer will open up just in front of the slowest scout.

A drum is a strategic operation that has limited resources and determines the
flow of work through the system. A system can go only as fast as the slowest or the
most overloaded resource. This is called constrained resource, which sets the pace
of the system. A buffer is a pocket of time represented by work in process that is
reserved ahead of the drum, the constrained resource. The rope is the length of time
needed to accomplish processes ahead of the drum.
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For different practical problems, DBR may implicate different objects, but the
central idea of DBR does not change. How to determine the length of the rope is
always very important and difficult. The length of the rope is the size of the work-
in-process and restricts that from growing indefinitely. Sizing the buffer is difficult
because of the following dilemma. Undersizing the buffer will leave the constrained
capacity resource open to starvation and lost throughput for the entire plant, while
oversizing the buffer will increase operating expenses and cycle time and decrease
inventory turns, resulting in decreased cash flow. The right size of the buffer is
usually determined by monitoring the buffer in practice.

On the other hand, the five-step focusing process provides the foundation for
many of TOC’s generic solutions, which include the management of processes, in-
ventory, supply chains, product development and projects (single and multiple),
personnel and decision-making. It is described as follows [29]:

Stepl, identify the system’s constraint(s).

Step2, decide how to exploit the system’s constraint(s).

Step3, subordinate/synchronize everything else to the above decisions.

Step4, elevate the system’s constraint(s).

Step3, if in the above steps the constraint has shifted, go back to Step1, and do
not allow inertia to become the system’s constraint.

2.3.2 Approach Description

As discussed above, the original idea of TOC is an overall management philosophy
that aims to continually achieve more of a system’s goals. It has been widely used in
all aspects of logistics: operations, finance and measurements, project management
and engineering, distribution and supply-chain. But it has seldom been used in the
optimization algorithm. Our proposed approach in this research is called “Theory
of Constraints-based Management” (TOCM) because it is an extension of TOC.

In TOCM, restrictions are divided into hard and soft to decrease deadlocks and
increase flexibility of the final solutions. Hard restrictions must be satisfied even
though solution effectiveness is poor; soft restrictions may be relaxed according to
specific situations.

An original problem is formatted as distributed MAS. Each agent is evaluated
through an integrated evaluation function. The integrated evaluation function con-
sists of several sub-evaluation functions and each sub-evaluation function corre-
sponds to a concrete soft restriction to be considered. The bigger the violation, the
bigger the value. Further, each sub-evaluation function is set up with a weighted
parameter that shows the importance of the soft restriction. The agent with the
maximum evaluation function is the worst agent.

There are three kinds of cooperative negotiation operations among agents. “Self-
adjusting” is to adjust positions of one agent’s resources. “Swapping” is to swap
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resources of two agents. “Inserting” is to remove a resource from one agent and
insert it into another agent.

The solving process of TOCM comprises two stages. The first stage is to gen-
erate an initial solution with only the hard restrictions taken into account, and the
second stage is to improve the initial solution with soft restrictions satisfied to the
greatest extent possible. Specifically, the cooperative negotiation strategy of the im-
proving stage can be described as follows: the worst agent is the constraint whose
capacity is elevated by direct and/or indirect agent negotiations; negotiations be-
tween unconstrained agents are also conducted to eliminate the constraint while
unconstrained agents can be improved simultaneously. This strategy, which is also
a kind of heuristic local search, guarantees that a system bottleneck is always solved
preferentially, which should make negotiations more efficient.

2.4 Three-zone Buffer Management

2.4.1 Approach Description

In TZBM, restrictions are classified as hard and soft, just as with TOCM. But each
soft restriction corresponds to a relaxable variable and the value of the relaxable
variable can be used to reflect the extent to which its corresponding soft restriction
is satisfied.

All agents are divided into three zones: Green-zone, Yellow-zone and Red-zone
according to how well the soft restrictions are satisfied. The agents satisfying the
original restrictions of all soft restrictions are assigned to the Green-zone; the agents
satisfying the relaxed restrictions of all soft restrictions are assigned to the Yellow-
zone; and the agents failing to satisfy even the relaxed restrictions of any restriction
are assigned to the Red-zone. Each agent is still evaluated through an integrated
evaluation function. More important, TZBM makes the evaluation method con-
sistent with the zone dividing criterion. If an agent belongs to the Red-zone and
has the maximum (worst) value of sub-evaluation corresponding to unsatisfied soft
restrictions, then it is called the constrained agent.

In TZBM, agents can do negotiation operations such as “Self-adjusting,” “Swap-
ping” and “Inserting.”

TZBM still includes two stages in its solving process. The cooperative nego-
tiation strategy of the improving stage can be described as follows: in the initial
state, relaxable variables are set to their smallest values and then strict criteria are
set to judge which agents are in the Red-zone. Agents in the Red-zone are then
improved by striving for a trade-off of soft restrictions and making agents negotiate
cooperatively. If agents in the Red-zone cannot be eliminated, soft restrictions are
relaxed by enlarging their corresponding relaxable variables and the three zones are
redivided. In so doing, constrained agents can be eliminated under a looser envi-
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ronment. By iterating the above process, a final satisficing solution is obtained and
an ideal situation is sought in which all soft restrictions are violated as seldom as
possible.

2.4.2 Contribution of Three-zone Buffer Management

Our approaches are constructed with the goal of satisficing! rather than optimiz-
ing [28]. Simon was the first prominent theorist to doubt that people are able to
calculate the optimal choice. He believed that it is impossible for people to consider
all options and all the information about those items that the conventional norma-
tive decision models assume. Simon proposed his own model of decision making as
an alternative to the optimizing approach. He called his proposal the “satisficing”
decision model. It implies that people think of options, one by one, and choose the
first course of action that meets or surpasses some minimum criterion that will sat-
isfy them. Simon believed that decision makers establish a criterion (their “level of
aspiration”) that an alternative must meet in order to be acceptable. People examine
possible options in the order that they think of them. Eventually, they accept the
first option that meets their criterion. Simon pointed out that human beings lack the
cognitive resources to maximize: we usually do not know the relevant probabilities
of outcomes, we can rarely evaluate all outcomes with sufficient precision, and our
memories are weak and unreliable.

A more realistic approach to rationality takes into account these limitations,
which is called bounded rationality. In interviewing the experts on site and observ-
ing their ways of allocating cargoes into containers, we recognized that they are
typically based upon Simon’s sacrificing principle. Just as with Simon’s idea of
level of aspiration, experts on site are apt to reconsider the rigorousness of the re-
strictions of the CSP. Beyond that, they have the flexibility to relax those restrictions
so that they can find satisficing solutions. Their decisionmaking is quite different
from optimizing and deliberating, and depends greatly on what options are avail-
able at hand and on whether or not they meet their relaxed restrictions. This is the
rationale of our proposed algorithm, and we implement this idea using MAS and
DBR.

'The word satisficing was coined by Herbert Simon as a portmanteau of “satisfy” and “suffice.”
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Target concept definition:
SAFE-TO-STACK(x,y) iff NOT (FRAGILE(Y)) or LIGHTER(X,y)
Training example:
ON(OBJ1, OBJR2)
ISA(OBJ1, BOX)
|SA(OBJ2, ENDTABLE) osnn [I]_—"
COLOR(OBJ1L, RED)
COLOR(OBJ2, BLUE) o
VOLUME(OBJL, 1)
DENSITY(OBJL, 0.1)
Domain theory:
VOLUME(p1,v1) and DENSITY (p1,d1) WEIGHT(p1,v1*d1)
WEIGHT(p1,w1) and WEIGHT(p2,w2) and LESS(W1,w2) LIGHTER(p1,p2)
ISA(p1,ENDTABLE) WEIGHT(p1,5) [default]
LESS(1,5)
Operationality criterion:
The learned concept must be expressed in terms of the predic ates used to describe examples.

L earned concept:
VOLUME(x,v1) and DENSITY (x,d1) and LESS(v1*d1, 5) and I1SA(y, ENDTABLE)
SAFE-TO-STACK(X,y)

Figure 2.2: An example of Explanation-based Learning

2.5 Interaction-based Knowledge Acquiring Frame-
work

2.5.1 Explanation-based Learning

Before discussing our proposed approach, the methodology of EBL is introduced in
this section.

Explanation-based learning (EBL) is a technique by which an intelligent system
can learn by observing examples. EBL systems are characterized by the ability to
create justified generalizations from single training instances. They are also dis-
tinguished by their reliance on background knowledge of the domain under study.
Although EBL is usually viewed as a method for performing generalization, it can
be viewed in other ways as well. In particular, EBL can be seen as a method that
performs four different learning tasks: generalization, chunking, operationalization,
and analogy [9].

Let us explain the functions of the EBL using an original example illustrated
in Mitchell’s book “Machine Learning” [23] so as to make it easy to compre-
hend “EBL Facility” well. Mitchell et al. consider the target concept SAFE-TO-
STACK(x, y), that is, the set of object pairs < x, y > such that x can be safely stacked
on y. The target concept definition, training instance, theory, and operationality cri-
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Explanation specific to the training example:

SAFE-TO-STACK(OBJ1, OBJ2)
LIGHTER(OBJ1, OBJ2)

WEIGHT(OBJ1, 0.1) LESS(0.1, 5) WEIGHT(OBJ2, 5)

VOLUME(OBJ1,1) DENSITY(OBJL,0.1) ISA(OBJ2, ENDTABLE)
Generalized explanation:
SAFE-TO-STACK(x, y)
LIGHTER(x, y)

WEIGHT(x, 0.1) LESS(0.1, 5) WEIGHT(y, 5)

VOLUME(x, 1) DENSITY (x, 0.1) ISA(y, ENDTABLE)

Figure 2.3: Explanation Tree in the example of Explanation-based Learning

terion are given in Figure 2.2.

The definition of SAFE-TO-STACK specifies that an object can be safely stacked
on a second object if the second object is not fragile or the first object is lighter than
the second. The domain theory encapsulates the system’s knowledge about objects,
weight, etc. The training example illustrates an instance of two objects, OBJ1 and
OBJ2, that can be safely stacked on top of each other. Finally, the system’s opera-
tionality criterion specifies that the explanation must be expressed in terms of easily
evaluated predicates.

The following covers how explanation-based generalization (EBG) learns from
this example. EBG proves that OBJ1 is SAFE-TO-STACK on OBJ2 (see Figure
2.3). The proof is then generalized by regressing the target concept through the
proof structure. The regression process replaces constants with variables while pre-
serving the structure of the proof. The purpose of regression is to find the weakest
conditions under which the proof structure will hold. In this manner EBG produces
the following sufficient conditions for describing the concept SAFE-TO-STACK:
VOLUME(x,v,)and DENSITY(x,d,) and LES S (viXd;,5) and ISA(y, ENDTABLE).
These conditions specify that x can be safely stacked on y if y is an endtable and the
volume times the density of x is less than 5. Notice that the domain theory specifies
that all endtables weigh 5 1bs by default. This description satisfies the operationality
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criterion and is justified by the proof.

2.5.2 Approach Description

Here we would like to insist that the purpose of a knowledge system should shift
from encoding knowledge to preserving human expertise as well as distributing
knowledge from experts to others. Preferably, we think opportunities for experts to
apply their knowledge should be offered by the system and the methodology should
assist the knowledge elicitation process by stimulating the expert’s proactive and
voluntary problem solving efforts. In this way, it is most important that a platform
should help an expert derive and transform tacit knowledge into explicit knowledge.
In other words, this is a shift from aiming at automated knowledge extraction to
designing a work environment where knowledge is not only visualized but used
by experts and others. Appropriate assistance is provided by the system using its
evolvable knowledge.

Another important issue for designing such a computer platform is how to inte-
grate human expertise produced through practice. It must encompass the abilities
of machine intelligence of optimization techniques that can handle and formulate
various heuristic algorithms. A possible solution is to abstract the expert’s practice
into some form of knowledge and then incorporate it into the heuristic algorithm to
improve flexibility of the general algorithm.

Based on the above considerations, in this research, we propose a framework
called Interaction-based Knowledge Acquiring Framework (IKAF) and we intro-
duce EBL as a core learning function embedded within the system. EBL interacts
with a human expert and acquires the expert’s tacit knowledge.

EBL is a deductive machine learning method that uses domain theory as do-
main specific knowledge. EBL can generalize a specific explanation formed for a
particular training example and derive generalized knowledge from that by analyz-
ing why that example is an instance of a concept to be learned. The methodology
of EBL yields a feasible and flexible way to abstract the expert’s knowledge. In our
framework, the expert is allowed to revise the result calculated by the conventional
optimization techniques and to take this revision as an example for EBL. Through
the analysis of this training example, the expert’s tacit control knowledge is learned
and can be used in the next calculation based on the revised knowledge base, to
which the acquired fragment of an expert’s tacit knowledge is added incrementally.

The computer agent and the human expert agent cooperate to solve difficult
problems. The computer agent undertakes the heavy computation tasks. The human
agent undertakes the softening and adjusting tasks.






Chapter 3

Theory of Constraints-based
Management

3.1 Introduction

“Theory of Constraints-based Management” (TOCM) can be used to solve many
difficult problems such as the container loading problem (CLP), which comes from
the centers of physical distributions, manufactories and warehouses. The two-row
pattern of a CLLP mentioned in the introduction chapter (Chapter 1) will be solved
in this chapter for demonstrating how TOCM solves a complicated constraint sat-
isfaction problem (CSP).

In section 3.2, the definition of the two-row pattern and its evaluation functions
are introduced.

Then the loading process of the two-row pattern is discussed in detail in the
section 3.3.

The computation experiment is shown in the section 3.4, and finally the conclu-
sion in the section 3.5.

3.2 Definition of Container Loading Problem

In the two-row pattern of a CLP, all cargoes are rectangular parallelepipeds of
known sizes and weights. Each cargo is positioned parallel to the side walls of
a container. We assume origins of containers and cargoes are their innermost points
respectively from the perspective shown in Figure 1.1. The length/width/height of
a container is with respect to x-axis/y-axis/z-axis, respectively.

The two-row pattern of a CLP is a multiple destination delivering problem.
There are N, (N, > 1) packing orders to be allocated into modules then contain-
ers, and then those are delivered to the destinations on a trip. Consequently all
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cargoes are grouped into N, groups. These packing orders should obey the rule of
“first-in-last-out” (FILO) according to the delivering destinations and routes.

A container is defined as C = {L, W, H, CC}, where these included parameters
are the length, width, height and carrying capacity of a container, respectively. In
this research, only one container type is used for each data and the container number
is not limited.

N,.(N,, > 1) indicates the module number in a loaded container and it is decided
by the algorithm.

Let m; = {mly, mwy, mhy, mg,, mx;, my;} represents the k-th module in a con-
tainer (ml;: length, mwy: width, mhy: height, mg,: weight, mx;/my,: the position
along x-axis/y-axis in the container). The ml/mwy is the maximum length/width of
all included cargoes of my. The mh, and mg; are calculated by summing the height
and weight of each included cargo respectively. The mx; and my; are set and ad-
justed in the algorithm. And by default the side ml; of my is allocated along the W
direction of the container.

Hard Restrictions:

e H;: The packing orders must obey FILO.

e H,: The total weight of modules loaded in a container cannot exceed the
carrying capacity of the container, i.e.

Nm
Z mg, < CC (3.1)
k=1

e H;: Each module lies completely within a container.
Soft Restrictions:

e S;: From the viewpoint of transporting and handling a loaded container -
such as lifting it onto a ship - it is desirable that the gravity centre of a loaded
container is close to the geometrical mid-point of its floor (if the weight is
distributed very unevenly, certain handing operations may be impossible to
carry out).

When the gravity center of a container floor (X,., Y,.) is defined as

T [(maxg+mwi /2)xmgy ]

X,
* o b 8 3.2)
Y. = 2oy [my+mli [2)xmgy]
ge ZNm m
k=1"M8k

, the sub-evaluation for the gravity center Eg, can be evaluated as:

Eg, (C) = E5 (C) + E?l(C) (3.3)
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\ 4

T
L f t\r
Figure 3.1: Inside seven kinds of gaps (topview)
where
EY (C) = 0, |Xee = L/2| < (@ X L) (3.4)
S1 B —ng‘ZL/Zl , otherwise '
0,  |Yee—W/2I<(BXW)
E}’ — _ & 3.5
5O { T W21 WW/2| , otherwise 3-5)

( @ and B are defined according to the user’s command. In this research,
a «— 0.05and B8 <« 0.05.)

S,:  For making good use of container space, the floor occupied ratio Eg, is

evaluated as:
N

E(C) = 1 o (ml X mwy)
So - -

LxW

(3.6)

S;: The good balance between the left and right rows is for fixing the mod-
ules on the tails of two rows. The sub-evaluation for the balance is defined
as | |
Lieri — Lyign
Es (C) = ———2 (3.7)
MWpin
where Ly, f,/Lyion 1s the total length of the left/right row as shown in Figure 3.1
and mw,,;, 1s the minimum width of all modules.

S,: Module crossing packing (MCP) is shown in Figure 3.1 (there are seven
gaps in this sample), which means the wide module is corresponding to the
narrow one and the gap is left in the middle. It is desired that the gap widths
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Figure 3.2: Unstable module (left-hand sideview)

of are close to regular widths because of the easiness of filling cushions into
gaps. The sub-evaluation for MCP is defined as:

Ng ‘ng_gWreg‘
2t "o ¥ 8k

Es,(C) =
4 2151 8l

(3.8)

where gw; is the width of the k-th gap between two modules, g/, is the length
of the k-th gap, N, is the total number of gaps, gw,., is a regular distance
between two rows required by the user (in this research, gw,., < 30cm) , and
ml,y,;, 1s the minimum length of all modules.

Ss: Inorder to keep the stability of the module, the cargo at the top of the
module should be restricted by adjacent cargoes against cargo movements.
For example the cargo surrounded by the dot line in Figure 3.2 is an unsta-
ble cargo because it is easy sliding backward (positive direction of x-axis as
shown in Figure 3.2) and falling down from the left row. The stability evalu-
ation of two adjacent modules my_; and my is expressed as

mhy_1—" [2-mhy,

, (mhy_y — h:)_Pl/ 2) > mhy

mhgy
’ - =P [2—miy,
Ess(mk—lymk) = %, (mhy, — h:’P/Q) > mhy_, (3.9)
0, otherwise

where mh,, is the average height of all cargoes, ;" /i’ is the height of the
top cargo of my_;/my. The sub-evaluation for the stability of the modules is:

righf [V;;;" ’
er:leﬂ k=2 Ess(mk—l, m)

Es (C) = (3.10)

N N 2
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where N“/'/N7%" is the module number of the left/right row (N.</" + NJE" >
2).

Based on these sub-evaluation functions, the integrated evaluation function for
a container can be described as:

5

E(C) = Zu,- X Es,(C) (3.11)

i=1

where u;(i = 1,2,...,5) are the weighted parameters, which depend on how much
the user prioritizes in relation with others !.

3.3 Solving by TOCM

The loading process is divided to two parts, the first part is to generate the initial
solution and the second part is to improve the initial solution.

3.3.1 Generating initial solution

The basic loading procedure is considered as a 2-dimension allocating problem and
it is difficult to obtain a minimum container number because of properties of mod-
ules and complicated restrictions. To get the minimum container number is not the
purpose in this research, but the main purpose is to improve the constrained agents
and to avoid the solving process from falling down a deadlock situation. So a con-
cision but practical algorithm is utilized here.

The initial solution of the two-row pattern of a CLP is generated as follows
(Note: it is assumed that the length of a module is longer than its width initially and
its ml;, side is allocated along the y-axis of a container) :

e Stepl: (Arrange packing orders) Arrange all given modules according to

their packing orders and heights in a series M = { m| , m} , ... ,m,, , ... ,m] ,
S AR (/SR mllv" s e mijo}, where N, is the total number of packing

orders (there are n; modules in the j-th order group). Let r « 1.

e Step2: (Choose a container) Choose an empty one C,(L,, W,, H,,CC,) and
let Llefl — O’ Lrighl « 0.

UIf the floor occupied ratio of the last container is low (e.g., less than 50%), all of its weighted
parameters are set to be zero and it proposes no negotiation. Otherwise its #; and u; (corresponding
to the gravity center and the floor occupied ratio) are set to be zero for that the last container is not
always identified as the system constraint.
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e Step3: (Choose a module in the case of Ly = L,,) If there is no module
satisfying packing condition(1) and (2) in the front order group, go to Step5,
else choose the first module ml’ , place it into the left row and let L <
Lieyy + mw;, C, — C, + {m{}, M M- {m{}).

e Step4: (Choose a module in the case of Ly # Lyign) Let Lgyor/Lione be the
shorter/longer of L;.s, and Ly
If there is a set of modules satisfying packing condition(1)-(3) in the front
order group (considering the rotation states of modules), choose a module
m] from the set with a good use of the space, place it in the shorter row, let
Lore — Loy + mw;, C,. — C, + {m{ b M — M — {m{ }) and go back to Step3.
Else if there is a set of module satisfying packing condition(1) and (4) in the
front order group, choose the first module m/, place it in the shorter row after
a small gap (e.g., the gap [gl3,gw3] in Figure3.1), let Loy < Lijpng + mw,
C,—C,+ {m{}, M« M- {m{} and go back to Step4. Else no module can be
loaded in the current container, go to Step5.

e StepS: (Judge the end condition) If M = @, the initial solution is generated
and end the generating procedure, else let C « C + {C,}, r < r + 1 and go
back to Step?2.

packing condition: There is a module ml’ so that:

1) its weight satisfies mg; < CC, — Zkal mgy

2) its width satisfies mw; < L, — min{Li.¢,, Lyion}
3) its length satisfies ml; < W, — ml;., where ml;. is the most length of modules located
at the opposite row
4) its width satisfies mw; < L, — max{Lf;, Lyign}

According to the above generating procedure, the initial solution is obtained and
described as C = {C, Cy, ..., Cy,}.

3.3.2 Adjusting heights of modules

Sometimes, because weights of the cargoes are too heavy, the occupied ratios of
most of loaded containers are quite low, which makes the container stability be
worse. In this case, parts of modules need to be adjusted.

Generally, it is to decrease the heights of the modules by calling on the first
process of making modules [32] and how much high to be decreased depends on
the requirement of the floor occupied ratio. The criterion of the floor occupied ratio
is given by the expert on site.

3.3.3 Improving initial solution

First, some key variables of the negotiation procedure are listed as follows:
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Before

After

Figure 3.3: Improving solution by self-adjusting operation (topview)

t: the current iteration number;
e ¢*: the maximum iteration number (depending on the given computation time);
e C,: the constrained container;

e (': the container proposing the negotiation conditions;

= =

e Cj: the cooperative container, which responds to the negotiation conditions
proposed by C';

e Cs: all containers that are possible to be Cg for current C,’7;

e Tc: the tabu list whose element was selected as C,’7 ever but could not be
adjusted;

e Tiy: all modules having been attempted in Cy;

After C) being identified, three kinds of negotiation operations can be attempted
in order to improve C,.

After C, being identified, three kinds of negotiation operations can be attempted.

“Self-adjusting”: to change the positions of its resources (modules) as shown in
Figure 3.3.

“Swapping”: to exchange its resources with other cooperative containers as
shown in Figure 3.4.

“Inserting”: to insert resources from other cooperative containers as shown in
Figure 3.5.

All negotiation operations are carried out in the same order group.

At the initial status, let t « 0, Cs «— @, T¢ « ® and Ty; <« ®. If all modules
of C, are put into Ty (i.e. C, = Ty) after even all negotiation operations having
been attempted, C; should be added into Tc. If C) = C, and C; is improved, T¢
needs to be cleaned up at once. If there is a successful negotiation between two
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Figure 3.4: Improving solution by swapping operation (topview)
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Figure 3.5: Improving solution by inserting operation (topview)
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unconstrained containers, C, should be released from T¢ in order to attempt to
elevate the constraint once again.
Second, core steps of the negotiation are described as follows:

Stepl: (Identify the system’s constraint) Choose a container C, with the
maximum value of the evaluation function from C as the current system’s
constraint.

Step2: (Decide the negotiation proposer) In the case of C = T¢, go to Step$.
In the case of C # T¢, (a) if C, ¢ T¢, let C; « C,, else choose a container
randomly from C — T as C’, and (b) if C5 = @, let C5 « C — T — C;.

Step3: (Decide the negotiation operation) Decide one kind of unattempted
negotiation operations randomly for the current C,. If it is “self-adjusting”,
go to Step4, else if it is “swapping”, go to Step5, else it is “inserting” and
go to Step6. If there was no successful negotiation in the above three kinds of
negotiation, let Te < Te + {C}}, Cs < @ and go back to Step2.

Step4: (Improve by self-adjusting) If t > t*, go to Step8, else if C} = Ty,
let Ty < @ and go back to Step3, else choose a module m, randomly from
C; — T and let t « 7+ 1. In the case that there exists a module m, (m, € Cﬁl -
T, m, # m,) satisfying evaluation criteria(1) by exchanging the positions
of m, and m,, update C;, let Tyy < @ and go to Step7. In the case that there
does not exist m, satisfying evaluation criteria(1), let Tyy < Ty + {m,} and
go back to Step4.

Step5: (Improve by swapping) If t > t*, go to Step8, else if C; = Ty, let
Tw < @ and go back to Step3; else choose a module m, randomly from
C,’7 — Tw and let t « ¢ + 1. In the case that there exists a module m, (m, € Cj
and Cj € Cy) satistying evaluation criteria(1) and (2) (when C,’Y‘1 = C,) or
evaluation criteria(2)-(4) (When C;‘l # C,) by swapping m,, and m,, let C;I —
G, +{my}—{m,} and C§ « Cj+{m,} —{m,}, and let Ty; < @ and go to Step?7.
In the case of that there does not exist such a module satisfying evaluation
criteria(1) and (2) or evaluation criteria(2)-(4), let Ty < Ty + {m,} and go
back to Step5.

Step6: (Improve by inserting) If t > 17, go to Step$, else if C; = Ty, let
Ty < © and go back to Step3; else choose a module m, randomly from
C, — Ty and let 7 « £+ 1. In the case that there exists a module m, (m, € C§
and C; € C,) satisfying evaluation criteria(1) and (2) (when C;‘l = C,)
or evaluation criteria(2)-(4) (when C:Y‘l # C,) by inserting m, in the back
position of m,, let C, « C, + {m,} and Cj « C§ — {m,}, and let Ty; < @
and go to Step7. In the case that there does not exist such a module satisfying
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evaluation criteria(1) and (2) or evaluation criteria(2)-(4), let Tyy «— Ty +
{m,} and go back to Step6.

o Step7: (Reset local variable) Let Cs5 « @. In the case of C;‘l = C,, let
Te « ® and go back to Stepl. In the case of C;‘l # C,, (a) if the successful
negotiation is derived by self-adjusting, let Cs «— {C,}, else let Cs « {C}} +

{C5), (b) Te « Te - {C,}, and (c) go back to Step2.

e Step8: (Judge end conditions) In the case of C = T¢ or t > t*, end the
negotiation procedure.

Evaluation criterion:

1) E(Cy) < E(C;Y)

2) E(Cg‘l) = E(C,) && E(C}) < E(C,) || E(Cg‘l) # E(C,) && E(C}) < E(C,)
3) E(C;7") = E(Cy) && E(C}) < E(Cy) | E(C;Y) # E(C,) && E(C}) < E(C,)
4) E(C:Y) + E(C)) < E(C,’;l) + E(Cg‘l)

Thus, C is the final solution. And the algorithm strategy is consistent with the
five step focusing process of TOC as shown in Figure 3.6.

Finally, we summarize the essential correspondences between DBR and our
proposing approach for managing activities occurring in general MAS.

If C, = C,, the system constraint is attempted to be exploited directly; else
C, # C,, it is attempted to subordinate/synchronize everything else in order to
exploit the system constraint indirectly later. While analogizing DBR discussed in
the section 2.3.1 (pp.13),

1) C, is just the drum.

2) When C; = C,, containers in Cs are ready to improve the constraint directly,
so it is alike a rope tying from them to the constraint (Especially Cs is dynamic and
intelligent because it only includes containers that can do cooperative negotiations
with C; most possibly at present).

3) To a CLP, the buffer is managed through controlling values of evaluation
functions of all containers.

In particular, the essential in a CLP is to elevate the constraint by reducing
the value of the constraint’s evaluation function and subordinating else containers,
while the buffer being curtailed.

As we mentioned, the core property of MAS might be its self-organized and/or
distributed problem solving, but in the real world purely bottom-up management
would be difficult. Thus, if we let MAS work in a coordinated fashion, minimum
management technique that can allow and preserve the agent’s autonomous abilities
will be required. For this purpose, we introduce DBR in MAS for a CLP.

The original idea of DBR and/or TOC was proposed as a technique for manag-
ing chained activities such as sequential manufacturing processes and more general
supply chains. With respect to this, a CLLP formalized in MAS can be also regarded
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Figure 3.6: Corresponding between TOCM and Five-step Focusing Process
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as an activity that consists of many negotiations among agents and those negotia-
tions should be performed in some coordinated orders, i.e., not in a random order.
Thus an idea of DBR can work for managing activities in MAS.

In the initial solution, the container C, having the maximum evaluation value
is the constraint in DBR and activities of the other unconstrained containers should
be synchronized with this constraint (i.e., a function of drum). In our approach, all
negotiations are to elevate the constraint directly or indirectly and the evaluation
criteria are decided by the situation of the constraint. In this sense, the difference of
evaluation values between the best and the worst container in the initial solution can
be regarded as the length of a “rope” that restricts the activities of unconstrained
agents and let them synchronized with the constraint by allowing them to negotiate
with each other for the trade of modules. As a result of this concessive negotiation,
MAS may lead to finding another solution satisfying a more global optimality.

Herein, the expected difficulty those agents may encounter is to reach their con-
sensus of exchanging the modules sacrificing the preservation of their evaluation
value. If all possible negotiations are not successful, the problem solving will be
stuck in the deadlock. In our approach, to avoid this deadlock situation, the idea of
relaxation is introduced in the approach, which means the soft restrictions can be
relaxed in a certain of extent. Through this relaxation, it becomes more possible for
a constraint agent to find more partners of successful negotiations, thus the solution
may be improved more. In this sense, this activity of relaxing soft restrictions for
the constraint agent corresponds to a buffer management. The more the restrictions
are relaxed, the more the buffer is increased, but this situation does not always lead
to finding the global optimal solution, i.e., the bottleneck will be apt to move to
other agent except the current constraint agent. On the other hand, if the restrictions
are less to be relaxed, the buffer turns out to be small, and this may bring about the
occurrences of deadlocks more frequently. Therefore, the buffer management for
a constraint agent would be of importance for the management of MAS, which is
included in the above approach.

3.4 Computation experiments

Some typical problems are listed in this research for examining its validity.

In Table 1, some basic properties of these problems are listed. These prob-
lems have large differences in packing order, cargo type, cargo dimension and cargo
weight.

In this experiment,

1) t* is initialized with 2 x 10%,

Du; —1.0(1 <i<5).

3) In Problem1, the 40FT container (length: 11.9(m), width: 2.35(m), height:
2.35(m), carrying capacity: 26.67(¢)) is used. And in other problems, the 20FT



Table 3.1: Statistic properties of four problems

Problem1 Problem?2 Problem3 Problem4
N, 1 1 5 5
N, 30 142 34 133
N, 1003 910 1078 845
N, 310 267 269 250
L,,(mm) 9.72x 10> | 1.04x10°| 1.10x10* | 1.04x10°
Ly 512x 107" [ 6.35%x 1072 | 208 x 107" | 6.75 x 1072
Lyin(mm) 870 870 970 870
Lo (mm) 1070 1144 1140 1140
W, (mm) 8.47x 10> | 874x 10> | 9.23x10%> | 8.74 x 10?
W 8.33x 1072 | 4.69x 1072 | 3.32x 107" | 491 x 1072
W in(mm) 800 800 860 800
Wnax(mm) 954 990 984 984
H,,(mm) 6.37 x 10> | 6.02x 10> | 5.21x 10> | 6.19x 107
Hy, 3.39 1.77 1.92 1.88
H,,;,(mm) 166 166 186 166
H,..(mm) 700 700 700 700
Wg..(kg) 1.84x 10> | 2.46x 10> | 2.80x 10> | 2.29 x 10?
Wga 563x 10" | 391x 10" | 821x10' | 3.84x 10
Wg,in(kg) 51 51 202 51
Wgax(kg) 425 768 550 550

N,: total number of packing orders;
number of cargoes;

N, total number of cargo types;
N,,: total number of modules;
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N,: total
LaVa Lsd > Lmin and Lmax: aver-

age, standard deviation, minimum and maximum of cargo lengths; else items are of
cargo widths, cargo heights and cargo weights, respectively

container (length: 5.898(m), width: 2.35(m), height: 2.25(m), carrying capacity:
17.95(1)) is used.

4) The experiment is carried out on Microsoft Window XP. The CPU and mem-
ory of the used desktop computer is Intel Pentium-4 2.8 GH, and 1.0 G., respec-
tively. And the algorithm code is implemented with Visual C++.

The result of the negotiation is shown in Table 2. As discussed above, TOC
is utilized in the proposed approach. The objective of the proposed approach as
well as TOC is to elevate the system’s constraint and get the biggest profit of the
whole system. The achievement of the two objectives can be incarnated completely
through statistics in Table 2. First, E,,, has been reduced by 58%, 44%, 53%
and 70% respectively and this means that the worst container has been improved
greatly. Second, E,, has been reduced by 31%, 33%, 40% and 49% respectively and
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Table 3.2: Situation of evaluations

Problem1 Problem2 Problem3 Problem4
Neon 12 22 23 21
N, 116 198 208 185
nax 11935 11233 7952 8844
Time(s) 189 54 8 5
E? 479% 107" | 354x 107" | 298 x 107! | 4.72x 107!
Elne 331x 107" | 236 % 107" | 1.78 x 107! | 2.39 x 107!
E(s)d 473x 107" | 323x 107" | 3.11x 107! | 5.37x 107!
EQ;}"-‘ 3.22x 107" | 2.13x 107" | 1.38 x 107" | 1.86 x 107!
E° . 1.35 1.01 | 8.50 x 107! 1.34
Elmex 5.68x 107! [ 5.62x 107! [ 4.02x 107! | 4.03x 107!
Egiff 1.21852x 107" | 7.16 x 107! 1.34
Ezh‘}*f 537x 107! | 4.42x 107! [ 2.73x 107! | 4.03 x 107!

N,.,,: total container number;

iteration number;

N,: number of successful iterations;
Time(s): Computation time;
dard derivation and maximum of evaluation functions;

the minimum and maximum of evaluation functions

toax: total
E,., Ey and E,,,: average, stan-
Egifs: difference between

this means that the solution has been improved greatly from the whole perspective.
Anyway, the effectiveness of the final solution has been improved greatly.

Another special characteristics derived from TOC is to make agents of a system
as synchronous as possible. This can be reflected through E,; and E4/f and the
smaller the value is, the more synchronous it is. In this experiment, Ey; has been
reduced by 32%, 34%, 56% and 65% respectively and Eg;¢r has been reduced by
55%, 48%, 61% and 70% respectively.

In additional, the evaluation variation of Problem3 is drawn in Figure 3.7 by
recording successful negotiations and Figure 3.7(b) is the front part of Figure 3.7(a).
Then some details of the proposed approach can be introduced as follows:

1) The basic trend of the evaluation of the constraint is decreasing. But the
variations of the proposer and cooperator are random.

2) At the initial stage, generally the constraint of the system is easy to be im-
proved and new one is identified iteratively.

3) If the constraint is fixed, which means the system runs into a deadlock sit-
uation, the average of evaluations is reduced and the whole system can also be
improved because of successful negotiations of unconstrained agent.

4) The system deadlock situation is possible to be improved after successful
negotiations of unconstrained agents (for example, it is at t=1765).
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Based upon the observation shown in Figure 3.7(b), we describe the dynamical
characteristics of finding solutions that our approach realizes according to the TOC
process. At first, the constraint is identified that has the worst evaluation function.
In the graph, this is illustrated by the most lefthand plot initiating the entire iter-
ations. In the following steps, MAS attempts to find better solution by individual
agents’ autonomous efforts without being supervised by any. However, such an au-
tonomous problem solving without any control may sometimes go wrong failing in
finding better global solutions. Therefore, we introduce an idea of rope that restricts
the agents who are allowed to negotiate with others so that they could improve the
solution as a whole. In other words, the negotiating activities of the unconstrained
agents are controlled by the evaluation function value of the constraint agent, so
the constraint plays a role of a pace-maker for other agents (i.e., in this sense, the
constraint agent is regarded as a drum in TOC). During the initial stage of the iter-
ation, this constraint agent is apt to change from one particular container agent to
another. That is, a constraint agent is not fixed to a particular agent, but other agents
may alternate a role of the constraint agent. This is observed during the initial 211
iterations of Figure 3.7(b), where the constraint agent plays a role of proposer at
the same time, and if the negotiation is successful, the constraint agent move to
another agent. What is characteristic here is that a constraint agent plays a role of
pace-maker for all other unconstrained agents, and those latter agents attempt to
make successful negotiations being constrained by the pace of the former as well as
attaining the improvement of the total quality. From the 240th iteration, a constraint
agent is fixed to a particular one without being alternated by the others. Even at this
phase, the quality of the total solutions continue to be improved till the constraint is
improved at t=1765. During this deadlock situation, one hand all negotiating activ-
ities among unconstrained agents are still supervised by the constraint; on the other
hand, these negotiation activities are also to improve the constraint so the constraint
is attempted to improve as soon as a successful negotiation among unconstrained
agents. After some a suitable negotiation between unconstrained agents the con-
straint has a change to be improved at t=1765 and the system run out the current
deadlock.

As mentioned at the end of the previous section, this control of relation corre-
sponds to a buffer management, which affects on the frequency of occurrences of
deadlocks in the following negotiation sessions. In the current approach, this buffer
management is not done precisely, but is only done quite roughly (this is the reason
that there are few changes to improve the constraint such as the right-hand of Figure
3.7(a)). The quality of solutions may be improved if we develop more precise ways
of buffer managements.
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3.5 Conclusion

The proposed TOCM is based on DBR and the five-step focusing process of TOC.
It has been applied to dealing with the two-row pattern of a CLP and the process of
loading container has been discussed in this research.

In TOCM, the restrictions required by users have been divided into hard and
soft. Because it includes the cooperative negotiation strategy of autonomous agents,
the real constraints of the system can be eliminated as fast as possible and agents
are made more equilibrious after the cooperative negotiation. And it is easy to run
out of a deadlock situation because of its negotiation strategy and the effect of an
intelligent rope.

It has been proved that the two-row pattern of a CLP can be solved well by the
proposed approach.






Chapter 4

Three-zone Buffer Management

4.1 Introduction

“Three-zone Buffer Management” (TZBM) is proposed for impoving “Theory of
Constraints-based Management” (TOCM). And the two-row pattern of a container
loading problem (CLP) will be discussed again in this chapter.

In section 4.2, the new problem definition and evaluation functions of the two-
row pattern are introduced. Particularly, the new way is for adapting to the relax-
ation mechanism of TZBM.

Then the loading process is mentioned in the section 4.3.

The computation experiment is shown in the section 4.4. Especially, TZBM is
compared with not only TOCM, but also two traditional optimization algorithms.

And finally the conclusion is in the section 4.5.

4.2 Definition of Container Loading Problem

Basic definitions and assumptions of the two-row pattern of a CLP in this chapter
is same with ones in the previous chapter, please reference to paragraph 1-5 of the
section 3.2 (pp. 21-22).

Restrictions and corresponding evaluation functions in this problem are repeated
or redefined as follows:

Hard Restrictions:

e H;: The packing orders must obey FILO.

e H,: The total weight of modules loaded in a container cannot exceed the
carrying capacity of the container, i.e.

NHI
Z mg, < CC 4.1)
k=1
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k4

Figure 4.1: Soft restriction of gravity center (topview)

Hj;: Each module must be included completely within a container.

Soft Restrictions:

Si:  If the gravity center of the container floor is (X,., Y,.) and 0 is the angle
between x-axis and a radial linking the geometry center and the gravity center
(seeing Figure 4.1), (X,., Y,.) should be satisfied as :

(ch_%)z'i'(ygc_% ZS(XC_% 2+(Yc_%)2
X, =L/2+¢&.XLXcos8 4.2)
Y.=W/2+ e, x W X sind

where €. is a relaxation parameter related to the gravity center and &, €
[Ecos Ecpad (&, — 0.125 and g, < 0.25 in this research according to the
user’s request).

S,:  The balance between the left and right row is important for a two-row
pattern of a CLP. The length of the left and right row as shown in Figure 4.2
should be satisfied as:

|Lle_ft - Lrighl| < Ep X MWy (43)
where mw,,;, 1s the minimum width of all modules. g, is a relaxation param-

eter related to the balance and ¢, € [, €5, ] (€p, < 0.1 and g;,,,, < 0.3 in
this research).
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Figure 4.2: Inside six gaps (topview)

e S;:  atwo-row pattern of a CLP requires to leave a certain distance between
the two rows, which is called the regular gap written as gw,e, (§Wree < 20cm
in this research). The average wide of the gaps (seeing Figure 4.2) between
the corresponding two modules belonging to different rows is defined as:

N,
2 8wk — gWregl X 81
- N,
Zk:g1 glk

where gli/gwy is the length/width of the k-th gap, N, is the total number of
gaps in the current container. GW should be satisfied as:

GW 4.4)

GW < g5 X gWreg 4.5)

where &, is a relaxation parameter related to the gap wide and g, € [g,, &,,..]
(g4, < 0.25 and g, < 0.5 in this research).

e S4: It should be avoided that the top cargo falls off from the higher module
such as shown in Figure 4.3. The average of height differences of neighbor
modules is defined as:

Zﬁfi’ﬁe i ZkNZZ Imhy—y — mhy|

Hb = N N 2

(4.6)

where N/ /NI#" is the module number of the left/right row (N/" + NJ&" >
2). HD should be satisfied as:

HD < Ep X hmin (47)
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Figure 4.3: Unstable module (sideview)

where h,,;, is the minimum height of all cargoes, g, is a relaxation parameter
related to the cargo stability and &, € [&y,, &5, ] (€p, < 0.1 and g, < 0.3
in this research).

Evaluation Functions:
According to above discussions, the sub-evaluation functions are defined as follows:

e E;: The sub-evaluation function for the gravity center is:

— Ly — Wy
Esl(C)z\/(ch 3P+ e —3) 4.8)

(Xc - %)2 + (Yc,,,ax - %)2

max

(Xepa> Yenae) 18 @n intersection as shown in Figure 4.1 while &, being relaxed
to the maximum.

e E,: The sub-evaluation function for the balance of the left and right row is:

Le _Lri
E,(C) = |’f’—g’” (4.9)

8bmax X MWpin

e E;:  The sub-evaluation function for the gap width is:

E(C) = _oW (4.10)
8gmax X gwreg

e E,4: The sub-evaluation function for the cargo stability is defined as :

HD
E, (C)= —"" 4.11
54(C) o X 4.11)
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e Es:  The sub-evaluation function for the floor occupied ratio is:

,}(V:'l ml, X mwy,
E, (C)=1- T W 4.12)

Based on these five sub-evaluation functions, the integrated evaluation function
for a container can be described as:

EC) =

1

5
u; X Eg,(C) (4.13)

=1

where u;(i = 1,2,...,5) are weighted parameters, which depend on how much the

user prioritizes in relation with others.

Note that the bigger the E is the worse the loading situation is and the empty
container does not join the negotiation.

4.3 Solving by TZBM

The loading process is divided into two parts.

The first part including “generating initial solution” and its addition “adjusting
the heights of modules” is same with the one of TOCM, please reference to discus-
sions of section 3.3.1 (pp. 25) and section 3.3.2 (pp. 26).

The second part is to improve the initial solution and introduced in the following
sections.

4.3.1 Defining three zones

As mentioned above, loaded containers should satisfy many restrictions, which are
usually interdependent and difficult to be satisfied simultaneously. In order to avoid
the occurrence of violating situations as far as possible, an effective and feasible
method called restriction relaxation is used in practice. For obtaining the optimal
values of relaxed parameters and decreasing the useless relaxation, the approach
TZBM is utilized.

In this two-row pattern of a CLP, four relaxing parameters &., &, &, and g, as
shown in soft restrictions are defined to express the extent of relaxations. In the
approach TZBM, all containers in C can be divided into three groups as follows:

e Green-zone (GZ): if an agent (container) satisfies all non-relaxed restriction
equations, i.e., & = &;, (i = {c, b, g, h}), it is assigned to GZ.

e Yellow-zone (YZ): if an agent (container) satisfies all relaxed restrictions
equations, i.e., g;, < & < g, (i = {c,b, g, h}), it is assigned to YZ.
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e Red-zone (RZ): the rest agents (containers) violate even the relaxed restric-
tions and they are assigned to RZ.

A particular attention is focused on RZ. Because agents in this zone violate
the relaxed restrictions, one purpose of this research is to make RZ empty. The
number of agents violating restrictions depends on the values of relaxed parameters.
Usually, the minimum and maximum values of relaxed parameters are given by
users. But the initial values of them can be set according to the computing time and
the optimal values of them can be obtained by the algorithm. The large initial value
can decrease the initial number of violating agents and decrease the computing time.
In addition, the zones to be improved can be set to be RZ or RZ U YZ, which also
depends on the computing time. If there is no enough time, the zones to be improved
is set to be RZ. In this research, the zones to be improved is set to be RZ.

4.3.2 Improving initial solution

First, how to decide the weighted parameters defining the evaluation function is
very significant. In order to allow the negotiation to all containers, the last loaded
container Cy, is dealt with differently from others. If its floor occupied ratio is low,
all of its weighted parameters are set to be zero and it proposes no negotiation; else
its #; and us (corresponding to the gravity center and the floor occupied ratio) are
set to be zero by default.

Second, some key variables of the negotiation procedure are listed as follows:

e 1: the current iteration number;
e 1*: the maximum iteration number (depending on the given computing time);

° C;: the constrained container, which is from RZ with the maximum violation
and proposes the negotiation conditions;

e C}: the cooperative container, which responds to the negotiation conditions
proposed by C;

e Ty;: all modules having been tried in C’;

e Tc: the container list whose element was identified as C; ever but could not
be elevated.

After C) being identified, three kinds of negotiation operations can be attempted
in order to improve C,.

“Self-adjusting”: the constrained container can be improved by changing the
positions of its resources (modules).

“Swapping”: the constrained container can be improved by exchanging its re-
sources (modules) with other cooperative containers.
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“Inserting”: the constrained container can be improved by inserting resources
(modules) from other cooperative containers.

If C!, cannot be improved by any of the negotiations, which means that C}, cannot
be improved in the current situation, then it is added into T¢. If there is a successful
negotiation carried out between C’y and Cj, C; and Cj are assigned to their suitable
zone(s) again according to their characteristics.

Finally the core steps of TZBM are described as follows:

e Stepl: (Initialize parameters) Let &; « &;,, Ag; < % (i={c,b, g, h}),
t — 0, Te « ®and Ty « O.

e Step2: (Divide into three zones) Divide all containers into three zones, GZ,
YZ and RZ. If RZ = @, go to Step9.

e Step3: (Identify the system’s constraint) If RZ = T¢, go to Step8; else
choose a container with the maximum value of sub-evaluation corresponding
to unsatisfied soft restrictions from RZ — T as the constraint to be improved.

e Step4: (Decide the negotiation operation) Decide one kind of unattempted
negotiation operations randomly for the current C.,. If it is “self-adjusting”,
go to Step5; else if it is “swapping”, go to Step6; else it is “inserting”, go to
Step7. If these three kinds of negotiation operations have been attempted but
C,, can not be improved, let Tc « Tc + {C}} and go back to Step3.

e StepS: (Improve by “self-adjusting”) If C}, = Ty, let Tyy < @ and go back
to Step4. Otherwise, choose a module m, randomly from Cﬁ/ — Ty and let
te—t+1.

If there exists a module m, (m, € C, — Ty, m; # m,) satistying evaluation
criteria (1)(2) by exchanging the positions of m, and m,, update C', and put
it into the suitable zone. If < ¢*, let Ty; « ® and go back to Step3; else go
to Step9.

Otherwise in the case of that there does not exist such a module satisfying
evaluation criteria (1)(2), let Ty < T + {m,} and go back to Step5.

e Step6: (Improve by “swapping”) If C}, = Ty, let Tyy < @ and go back
to Step4. Otherwise, choose a module m, randomly from C; — Ty and let
te—t+1.

If there exists a module m, (m, € C}, 6 # 7y, and belonging to the same group
with m,,) satisfying evaluation criteria (1)(3)(4) by swapping m,, and m,, let
C, « C, +{my} —{m,} and Cj «— C{ +{m,} —{m,} and put C’, and Cj into the
suitable zone(s) respectively. If t < ¢*, let Ty; < ® and go back to Step3; else
go to Step9.

Otherwise in the case of that there does not exist such a module satisfying
evaluation criteria (1)(3)(4), let Ty < Ty + {m,} and go back to Step6.
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e Step7: (Improve by “inserting”) If C, = Ty, let Tyy « @ and go back
to Step4. Otherwise, choose a module m, randomly from Ci/ — Ty and let
te—t+1.

If there exists a module m, (m, € Cj, § # v, and belonging to the same group
with m),) satisfying evaluation criteria (1)(3)(4) by inserting m, in the back
position of m,,, let C, « C., + {m,} and C§ « C; — {m,} and put C}, and Cj
into the suitable zone(s) respectively. If ¢t < t*, let Ty « @ and go to Step3;
else go to Step9.

Otherwise in the case of that there does not exist such a module satisfying
evaluation criteria (1)(3)(4), let Ty < Ty + {m,} and go back to Step7.

e Step8: (Relax parameters) If e, < g, let &; « & + Ag; (i = {c,b, g, h}),
T « @ and go back to Step2. Otherwise, go to Step9.

e Step9: (Judge the end condition) In the case of no agent is in RZ or g, >
Ec,ae OF 1 > 1*, end the negotiation procedure.

evaluation criteria:

1): no hard restriction is violated

2): max{u; X E(C)} < max{u; X Esl.(C;‘l)}; Or max{u; X Eg(C))} = max{u; X
Es,.(Ci/‘l)} and E(C)) < E(C;‘l)(i =1,2,..,4)

3): the size of RZ cannot be increased

4): max{u,-xEsi(C;)} < max{u,-xEsi(C;‘l)}; Or max{uixEsi(C;)} = max{uixEsi(C;.‘l)}
and E(C") < E(C;.‘l)(i =1,2,...,4,j=7,9)

Finally, GZ U YZ U RZ is the final solution.

In analogizing DBR discussed in the section 2.3.1 (pp. 13),

1) The constrained container C;, takes a drum and proposes the negotiation con-
ditions.

2) All cooperative containers obey the negotiation conditions and try to join the
negotiations with C}, so it is alike a rope tying from C, to them.

3) For a CLP, the buffer is managed through controlling the parameters of relax-
ation and cooperative negotiations among agents.

In particular, it is essential in a CLP to elevate the constrained container by the
cooperating behaviors in the relaxed situations. By doing so, the size of the Red-
zone is reduced and the buffer is curtailed.

Here we summarize the essential correspondences again between DBR and our
proposing approach for managing activities occurring in general MAS in detail
again.

In the initial solution, the container C), violating the soft restrictions most strongly
is the constraint in DBR and activities of the other cooperative containers should
be synchronized with this constraint (i.e., a function of drum). In the proposed ap-
proach, the negotiation is carried out between the constrained agent and cooperative
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agents. In this sense, the difference of how much soft restrictions being satisfied be-
tween the best and the worst container in the initial solution can be regarded as a
rope that restricts the activities of cooperative agents and lets them synchronized
with the constraint by allowing them to negotiate with each other for the trade of
modules. If a negotiation is successful, i.e., both agents accept this trade in refer-
ring to their own evaluation functions, the violation degree of the constrained agent
would be improved, while the change of the violation situation of the other is ac-
ceptable. As a result of this cooperative negotiation, MAS may find another solution
satisfying a more global optimality.

Herein, the expected difficulty that those agents may encounter is to reach their
consensus of exchanging the modules while sacrificing the preservation of their
evaluation values. If all negotiations with the constrained agent are not successful,
the problem solving will be stuck in the deadlock. In order to avoid the solving pro-
cess falling down deadlock situations, a method called restriction relaxation used
in practice is embedded in the proposed approach. By relaxing some a restriction,
the solving process is changed to be flexible, more successful negotiations can be
obtained and the constrained agents can be improved again. With the more restric-
tions being relaxed, deadlock situations are decreased in the solving process and
the size of buffer is reduced gradually. However, the cooperative negotiation strat-
egy can improve agents’ violating states and reduce the size of buffer by adjusting
constantly their evaluation.

4.4 Computation experiments

Some experiments are carried out for testify the validity of TZBM.

These experiments are carried out on Microsoft Window XP. The CPU and
memory of the used desktop computer is Intel Pentium-4 2.8 GH; and 1.0 G, re-
spectively. And the algorithm code is implemented with Visual C++.

4.4.1 Comparing with traditional algorithms

Two kinds of optimization algorithms, “Algorithm LS based on Local Search and
“Algorithm TS” based on Tabu Search, are used to compare with TZBM. For com-
paring easily, three approaches use the same initial solution, the same definition of
the searching technology (all containers can participate in the negotiation if they
satisfy negotiation conditions proposed by C), and the same judging criterion of
successful negotiations (the first improved solution will be accepted) [24].

The core of “Algorithm LLS™ is to improve the current solution through searching
a better solution from its neighborhood. The negotiation process can stop when the
iteration reaches its maximum value. It is easy to run into a local optimum.
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Table 4.1: Statistic properties of nine problems

Problem1 Problem?2 Problem3 Problem4 Problem5 Problem6 Problem?7 Problem8 Problem9
N, 1 1 3 5 1 1 3 2 1
N, 28 142 33 133 34 37 61 37 31
N, 916 705 1908 1533 2662 4268 649 8391 1536
N, 296 206 465 456 533 913 209 1015 385
L,,(mm) 1.00x10° | 1.04x10° | 1.10x10° | 1.04x10°| 1.02x10°| 1.08x10°| 1.08x10* | 1.08x10*| 1.05x 10°
Ly 3.44x 107" | 458 x 1072 | 4.09x 1072 | 6.75x 1072 | 1.40x 107" | 229x 107" | 6.53x 1072 | 2.28 x 107! | 6.45 x 1073
Lyin(mm) 870 870 970 870 870 980 870 980 870
Ly (mm) 1070 1144 1140 1140 1150 1150 1140 1150 1150
W, (mm) 856x 10> | 8.75x10* | 9.27x 10> | 874x 10> | 8.89x 10> | 9.79x 10> | 857x 10> | 9.79x 10*> | 8.96 x 10?
Wia 6.17x 107" | 3.92x 1072 | 457x 107" | 4.69%x 1072 | 1.96x 107" | 2.74x 107! | 341 x 1073 | 2.75x 107! | 434 x 1072
W in(mm) 800 800 860 800 800 800 800 800 800
Wnax(mm) 954 990 984 984 1150 1150 984 1150 1150
H,,(mm) 6.72x 10> | 598x10% | 5.09x 10> | 621 x10>| 437x10> | 449%x 10> | 6.72x 10> | 450%x10*> | 5.18x 107
Hg, 2.78 1.33 3.25 1.87 |1 676 x 107" | 6.21 x 107! | 5.15x 107" | 6.28 x 107! | 5.58 x 107!
H,,;,(mm) 280 166 206 166 206 230 206 230 166
H,,..(mm) 700 700 700 700 900 700 700 700 900
Wg.(kg) 1.92x 10> | 251x10% | 2.79x 10> | 229x 10> | 2.56x 10> | 1.80x 10> | 1.76 x 10> | 1.79x 10> | 2.42 x 10?
Wgsa 4.05%x 10" | 3.01x10' | 1.62x10' | 3.80x 10 1.40 513 | 2.79 x 10! 495 | 140x10!
Wgnin(kg) 114 51 202 51 104 107 59 107 51
Wgnax(kg) 425 768 550 550 658 292 520 292 658

N,: total number of packing orders

modules

N, total number of cargo types
Loy /Leg{Lyin/ Linax} 1s the average, standard deviation, minimum and maximum of cargo lengths, etc.

N,: total number of cargoes

N,,: total number of
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“Algorithm TS” is proposed to improve the disadvantage of “Algorithm LS”. A
tabu list I'c storing searched solutions is defined to avoid repeating searches. When
the iteration reaches its maximum value or T equals with C, the solving process is
stopped.

The details of “Algorithm LS” and “Algorithm TS” are in the appendix of this
chapter.

In this experiment, ¢* is initialized with 5 x 10* and u; < 1.0 (1 < i < 5) for
TZBM.

In Table 4.1, some basic properties of some typical problems are listed. These
problems have large differences in packing order, cargo type, cargo dimension and
cargo weight.

Table 4.2 and Table 4.3 shows the number variations of containers in the Green-
zone and in the Red-zone, respectively. The number is at different times during the
problem solving process such as initial time, middle time (time=70 sec) and final
time. It is found from Table 4.2 that in both the middle solution (at the middle time)
and the final solution (at the final time), the number of containers in the Green-
zone for TZBM is much more than those for “Algorithm L.S” and “Algorithm TS”
particularly in the final solution. Table 4.3 shows that in both the middle solution
and the final solution, the number of containers in the Red-zone for TZBM is much
less than those for other algorithms.

These results indicate that TZBM can not only improve containers violating re-
strictions but also make more containers satisfy the original restrictions. So TZBM
is more effective for improving constrained containers violating restrictions and
makes the whole system reach its goal faster than others.

Another important superiority of TZBM to other two algorithms is its “anytime-
ness”. This idea was originally developed by Dean and Bobby [3], who referred to
this idea as anytime computations, and Horvitz [16], who referred to this as flexible
computations. In the flexible computation, the object-related value of the result (i.e.,
the value of the evaluation function of the solution) returned by the algorithm is a
continuous function of the time spent in computation. The object-related value of a
result is to be contrasted with the comprehensive value of a system’s response to a
given state. This means that the ideal algorithm should find a satisfactory solution
as early as possible in computation, and should find an answer whose objective-
related value increases as it is allocated additional computation time. Computation
can be interrupted at any point, hence we should take account both of how good
the solution is good enough with respect to its object-related value and of when that
solution is obtained. This is the definition of comprehensive value. For the logistics
problem, this characteristic of flexible computation is of great importance. The sit-
uation surrounding the real logistics problem may be changeable and dynamic due
to the drifting market conditions, arrivals of unexpected express jobs, etc. Thus, a
CLP should be flexible. Even though the algorithm found the better solution with
greater object-related value, that would not be “bounded rational” if it takes longer
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Table 4.2: Number of containers in Green-zone

Total | Cont. number | Cont. number at time=70 sec Cont. number at final time
Problem || number | atinitial time | TZBM LS TS Time(sec) | TZBM LS TS
1 24 0 15 3 1 86 12 3 2
2 17 0 8 0 2 88 9 0 2
3 41 1 2 2 2 91 2 2 2
4 37 0 9 0 0 82 9 0 0
5 46 2 9 8 3 156 33 15 12
6 84 1 70 6 10 159 77 10 22
7 17 0 2 2 1 100 2 2 1
8 101 1 94 1 11 82 99 1 11
9 32 0 7 10 9 131 16 14 12

Cont. : container
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Table 4.4: Maximum value and Difference of evaluation function

Initial Final max. evaluation Initial Final difference
Problem || max. evaluation | TZBM LS TS difference | TZBM LS TS
1 4.067 1.666 1988 2.113 2.982 0957 1219 1.191
2 6.333 3.328 4.154 4.154 5.005 2.361 3.310 3.304
3 6.344 3.306 3.781 3.390 5.604 2368 3.314 2924
4 7.598 3.233  5.286 3.302 6.392 2.524 4440 2.462
5 6.876 3.181 3.524 3.334 6.137 2949 3292 3.103
6 6.687 2.862 3.319 2.988 5.748 2274 27731 2.400
7 7.520 2764 2998 2.773 6.149 2.009 2931 2.040
8 5.938 2302 2922 2.391 5.938 2.302 2922 2.391
9 7.424 2931 3.708 3.255 6.179 2.183 2977 3.670

Maximum value of evaluation function means the one of the worst container
Difference of evaluation function means the one between the worst and best container
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Figure 4.4: Maximum value of evaluation function of containers in problem 3

time to derive the solution. With respect to this, TZBM is superior to the other two
algorithms as explicated in the results shown in Table II and Table III.

Table 4.4 shows the maximum value of evaluation functions of all containers
and difference of evaluation functions between the worst and best containers. It is
found from Table 4.4 that by comparing the initial solution, these three approaches
have large improvement in the evaluation function of the worst container and the
difference between the worst and best container. Particularly, TZBM is better than
others.

For more details, the variation of the evaluation function of the worst agent is
shown in Figure 4.4 and the difference of evaluation functions between the worst
and best agents is shown in Figure 4.5 for problem 3. It is found from both Figure
4.4 and Figure 4.5 that the results of TZBM is better than others, which indicates
that TZBM does not only focus its attention on the constrained agent but also reduce
the difference among agent so that all agents in the system cooperate each other to
reach their goals, i.e., TZBM is good at synchronizing agents.

The variation of zone sizes in problem 3 is shown in Figure 4.6. At the initial
period, the agents in the Red-zone are difficult to be improved under the strict re-
strictions. After parameters being relaxed step by step, since the restrictions are re-
laxed and the solving space is changed, more successful negotiations among agents
are obtained and zone sizes vary a lot. The size of the Red-zone decreases quickly,
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Table 4.5: Number distribution of three zones of TZBM and TOCM

TZBM TOCM
Problem || (g; —&;,)/Ag; | Green  Yellow Red | Green Yellow Red
1 7 0 12 0 2 0 10
2 10 10 11 1 0 7 15
3 10 3 18 2 0 5 18
4 10 3 16 2 1 4 16

the size of the Yellow-zone increases accordingly and the Green-zone changes ran-
domly.

As a matter of fact, TZBM can reduce restriction violations greatly and syn-
chronize all agents as much as possible. And TZBM including the idea TZBM is of
flexibility that a human being originally has.

4.4.2 Comparing with TOCM

In this experiment, used problems are same with ones in the section 3.4 (pp. 32).
And ¢* is initialized with 5 x 10* and #; < 1.0 (1 < i < 5) in both TOCM and
TZBM.

The computed results are shown in Table 4.5 (using zone dividing rule of TZBM).
It is obvious that TZBM is better than TOCM at reducing the size of the Red-zone
and violations to soft restrictions.

4.5 Conclusion

The proposed approach TZBM in this research is based on DBR and the five-step
focusing process of TOC. It has been applied to solve the two-row pattern of a CLP
and the process of loading container has been discussed in this research. The re-
strictions required by users have been divided into hard and soft, and the relaxing
parameters have been defined for controlling the relaxing extent of the soft restric-
tions simultaneously. Because it includes the cooperative negotiation strategy of
autonomous agents and the restriction relaxation used by the human being, it can
eliminate the real constraints of the system and has the flexibility like a human be-
ing.

As discussed in above sections, the proposed approach is good at improving the
system’s constraints and increasing the system efficiency because of the cooperating
behaviors done by other autonomous agents. It is less frequent to trap in a deadlock
because of the appropriating relaxation strategy. It can obtain a better solution at
any stopping computing time because it focuses its attention on always solving the
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constrained agents. It has a high degree of flexibility and diversity based on its
searching technology and negotiating strategy. It has been proved that the two-row
pattern of a CLP can be solved well by the proposed approach.

In the real world, there are other complicated problems whose characteristics
are alike to the ones of the CLP. That is, they are of multiple objectives and of
multiple restrictions. These restrictions are always self-contradictory and difficult
to be satisfied simultaneously. And it is necessary to get the goal of the whole
system. Our proposing TZBM can be used to solve this kind of problems.
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APPENDIX I

Local Search
Variables:
t: the current iteration number;
r*: the maximum iteration number;
C,: the proposing container of the negotiation operation;
C}: the cooperative container.
Algorithm LS is as follows:

e Stepl: (Identify the proposing agent) Select a container randomly from C
as C!.
Y

e Step2: (Decide the negotiation operation) Decide one kind of negotiation
operations randomly for C,. If it is “self-adjusting”, go to Step3; else if it is
“swapping”, go to Step4; else if it is “inserting”, go to Step5.

e Step3: (Improve by “self-adjusting”) Choose a module m, randomly from
C; and let r « ¢+ 1. If there exists a module m, (m, € C; and m, # my)
satisfying evaluation criteria (1)(5) by exchanging the positions of m, and
my, update C’y. If t > 1", go to Step6; else go back to Stepl.

e Step4: (Improve by “swapping”) Choose a module m, randomly from C’7
and let t « ¢ + 1. If there exists a module m, (m, € C§, 6 # 1 and belonging
to the same group with m,) satisfying evaluation criteria (1)(6) by swapping
my, and m, let C, « C,, + {m,} — {m,} and C§ « C§ + {mp} — {m,}. If t > 1*,
go to Step6; else go back to Stepl.

e StepS: (Improve by “inserting”) Choose a module m,, randomly from C,
and let t « ¢ + 1. If there exists a module m, (m, € C§, 6 # 1 and belonging
to the same group with m,,) satistying evaluation criteria (1)(6) by inserting
my in the back position of m,,, let C, « C, + {m,} and Cj « C§ — {m,}. If
t > t*, go to Step6; else go back to Stepl.

e Step6: (Judge the end condition) In the case ¢ > ¢*, end the negotiation
procedure.

evaluation criteria:
5): E(C,) < E(CSY)
6): E(C;) + E(C’5) < E(C;‘l) + E(Cg‘l)
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APPENDIX II

Tabu Search
Variables:
t: the current iteration number;
r*: the maximum iteration number;
C: the proposing container of the negotiation operation;
C}: the cooperative container;
Tys: all modules having been tried in C';
Tc: the container list whose element was identified as Cﬁ/ ever but could not be ele-
vated;
['c: the tabu list for saving last s moves (s = 1 x 10? in this research) ;
v: the experiential value to prevent too much deterioration (v « 0.03 in this re-
search)
Algorithm TS is as follows:

e Stepl: (Identify the proposing agent) If C = T¢, go to Step6; else select a
container randomly from C — T¢ as C,.

e Step2: (Decide the negotiation operation.) Decide one kind of unattempted
negotiation operations randomly for the current C,,. If it is “self-adjusting”,
go to Step3; else if it is “swapping”, go to Step4; else if it is “inserting”, go
to Step5. If these three kinds of negotiation operation have been attempted
but C}, can not be improved, let Tc « Tc + {C}} and go back to Step.

e Step3: (Improve by “self-adjusting”) If C, = Ty, let Tyy < @ and go
back to Step2. Otherwise, choose a module m, randomly from C; — Ty and
let t « ¢+ 1. If there exists a module m, (m, € C, — Ty, m, # m,) sat-
isfying evaluation criteria (1)(5)(7) by exchanging the positions of m, and
my, update C; Else if there is a set of modules satisfying evaluation criteria
(I)(7)(8), choose m,, that can make Ci/ having the minimum value of the eval-
uation function in the set and then update C,.

In the case that there exists such a module satisfying evaluation criteria (1)(7)(8)
at least, let Ty «— ® and I'c « I'c + C. If < ¢*, go back to StepI; else go to
Step6. On the contrary (in the case of no module satisfying evaluation criteria
(D(7)(8)), let Ty « T + {m,} and go back to Step3.

e Stepd: (Improve by “swapping”) If C’7 = Ty, let Tyy « @ and go back
to Step2. Otherwise, choose a module m, randomly from Cﬁ/ — Ty and let
te—1+1.

If there exists a module m, satisfying evaluation criteria (1)(6)(7) and by
swapping m, and m,, update C', and C§; Else if there is a set of modules sat-
isfying evaluation criteria (1)(7)(9), choose m, that can make C|, and Cj have
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the minimum sum value of evaluation functions in the set and then update C,,
and C5.

In the case that there exists such a module satisfying evaluation criteria (1)(7)(9)
at least, let Tyy «~ ® and I'c « I'c + C. If ¢ < #*, go back to StepI; else go to
Step6. On the contrary (in the case of no module satisfying evaluation criteria
(1)(7)(9)), let Ty < Tar + {m,} and go back to Step4.

e StepS: (Improve by “inserting”) If C,, = Ty, let Tyy « @ and go back
to Step2. Otherwise, choose a module m, randomly from (Cﬁ/ — Ty) and let
te—t+1.

If there exists a module m,, satisfying evaluation criteria (1)(6)(7) by insert-
ing m, in the back of m,, update C}, and C§; Else if there is a set modules
satisfying evaluation criteria (1)(7)(9), choose m, that can make C', and Cj
have the minimum sum value of evaluation functions in the set and then up-
date C}, and Cj.

In the case that there exists such a module satisfying evaluation criteria (1)(7)(9)
at least, let Tyy « ® and I'c « I'c + C. If < ", go back to StepI; else go to
Step6. On the contrary (in the case of no module satisfying evaluation criteria
(1)(7)(9)), let Ty < T + {m,} and go back to Step5.

e Step6: (Judge the end condition) In the case of C = T¢ or ¢t > ¢, the nego-
tiation process ends.

evaluation criteria:

7): C¢ F(C

8): E(C;) - E(C;‘l) <vX E(C;‘l)

9): E(Cﬁ/) + E(C)) - E(C;‘l) - E(Cg‘l) < yX (E(Cﬁ/‘l) + E(Cg‘l))

Finally, one solution in I'c, which is with the minimum sum value of evaluation
functions of all containers, is the final solution.






Chapter 5

Interaction-based Knowledge
Acquiring Framework

5.1 Introduction

Both “Theory of Constraints-based Management” (TOCM) and “Three-zone Buffer
Management” (TZBM) are approaches based on distributed and cooperative sys-
tems, but only computer agents are embedded in them. In this chapter, an approach
including a human expert agent is discussed for improving the intelligence of solv-
ing constraint satisfaction problems (CSPs) in the real world.

In the next section 5.2, the architecture of the proposed approach called “Interaction-
based Knowledge Acquiring Framework™ (IKAF) is presented in details. Then, it
is applied to solve another general issue of the container loading problem (CLP),
block-building pattern, in which cargoes are extreme heterogeneous, to illustrate
how the framework does work.

Both the problem definition and concrete solution will be presented in the sec-
tion 5.3.

In the section 5.4, the solving process of the block-building pattern is demon-
strated as the validation of the application.

In the last section 5.5, conclusions are discussed.

5.2 Architecture

The architecture of IKAF is shown in Figure 5.1. Wherein, “Expert” is a human
expert of the involved domain. “Problem” is an instance to be solved of the domain.
“Result” is a result of “Problem” computed by the problem solver. “Example” is
revised “Result” by the expert and can be analyzed by the EBL. mechanism.

The Problem-Solver produces a heuristic search tree, encapsulating all child
branching decisions as well as the final result. In order to solve problems in a
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Figure 5.1: Interaction-based Knowledge Acquiring Framework
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particular domain, the system must be given a specification of that domain, which
consists of a set of operators and inference rules. Operators correspond to external
actions with consequences in the world. Each operator has a precondition expres-
sion that must be satisfied before the operator can be applied, and a list of effects that
describes how the application of the operator changes the current state of the world.
Inference rules simply increase explicit knowledge about the current state [22].

The knowledge base stores the domain knowledge and control rules. The do-
main knowledge describes the relevant aspect of the problem solver in addition to a
theory of the domain, which includes operators and inference rules mentioned in the
above. In our framework, controls rules describe how to solve problems in the do-
main. According to Dorothy Leonard’s discussion knowledge exists on a spectrum;
at one extreme it is almost completely tacit and at the other end knowledge is al-
most completely explicit. Most knowledge exists in between the extremes [18]. So,
control rules are expressed in the same formation but are divided into three types:
Gcr are general control rules, which are common ones to all instances without spe-
cial preconditions and need not be revised over time. Their definitions are logically
rigorous and derived as the expert’s common expertise. Scr are soft control rules,
which are description of tacit knowledge and used in a more flexible way than the
former. Different from the former, they cannot be guaranteed to be logically rigor-
ous, and may include incomplete or contradictory rules. Rcr are reinforced control
rule, which are converted from Scr through the EBL. mechanism or added directly
by “Expert” in our system (Rcr are always generalized as Rcr’ by the function of
EBL).

The EBL component has the key function in our system for preserving participa-
tion in the problem solving and interactions of an expert user with the system. This
function for acquiring Rcr from Scr through analyzing and explaining the expert’s
demonstrating example of modification. The explanation is constructed from an
axiomatized theory taking account both of knowledge base and relevant aspects of
the problem solver’s architecture. Moreover, this component also takes on the work
to check the validation of control rules and to manage to preserve the consistency
of the collection of evolvable and accumulated knowledge. In this way, the core
functions of the EBL. component is to check the consistency of the human experts’
demonstrations in terms of the knowledge preserved within the system so far, and
to give the appropriate advice to the human user when the system detects what is
not consistent.

The other important function of the EBL. component in our system is to distin-
guish between what is particular in a specific problem and what could be general-
ized and reusable in other problems as well. This function contributes with a great
deal to distributing knowledge from one user to the others in managing and control-
ling the translation processes among three different knowledge sources of general
control rules, soft control rules and reinforced control rules.

The working process of our system is as follows:
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Stepl, after getting a batch of instances the system tries to solve them only using
Gcer. And initial results of all instances are recorded.

Step2, investigating into the whole obtained results, the system identifies a sub-
set of results, which have common dissatisfying points.

Step3, the expert selects one from this subset and revises it into a more idealized
one (i.e., an expert’s demonstration of his/her tacit knowledge). At this time, the
revised result also needs to be analyzed and confirmed by the expert in order to
guarantee that it can be interpretable by the EBL. mechanism.

Step4, the EBL. component attempts to construct search trees recursively using
not only Gcer but also Scr while parts of Scr identified as useful are converted to
more generalized ones Rer’ and added into knowledge base. If there are not enough
rules to explain any child node of the search tree (i.e., sub-problem needed to be
resolved for completing a search), the expert must supply new ones into Scr and
restart the analysis procedure. This is very significant and feasible because as for
the tacit knowledge it is quite difficult for the expert to verbalize and to mention
explicitly and exhaustively. However, if the problem is focused to a particular point
and given, the expert can show a solution without much difficulty by imagining the
problem with its surrounding reality. At this time, the EBL. component can check
validity of any newly added control rule by testing in old related nodes because all
calculated nodes are recorded in the system.

Step3, in this way, the system can get better results of the first subset computed
by the problem solver using Ger plus Rer’ again.

Through iterating the above steps from Step2 to Step5 recursively, the system
can get all satisfying results of the whole instances step by step. At this time, dif-
ferent Rcr may be derived in each loop. We think that different subsets should be
classified into to respective classes, each of which has respective Rcr to guarantee
both efficiency and effectiveness of the problem solving in the consequent problem
solving sessions.

The core of our system is to be able to manage the evolvable knowledge dynam-
ically. This is the major departure from the conventional knowledge-based system
like expert systems, in which knowledge does not change once it was built in the
knowledge base. In our system, this is realized by maintaining the control-rule set
consistent among the variations of problems that belong to the same domain. Ac-
tually, the system is trying to avoid the following three undesired situations when
encountering instances of the same domain:

1)“Incompletion”: the system cannot build explanations of the problem because
of missing knowledge.

2)“Intractable”: the system have enough knowledge to make an explanation of
this, but not enough computing time is available.

3)“Inconsistence”: the system derives inconsistent results based upon a current
theory (e.g., caused by the existence of some default rules).

If the system encounters some of the above cases, it will ask a human expert to
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Figure 5.2: Difficulties of CLP with extreme heterogeneous cargoes

commit to resolve this conflict situations and to construct a robust knowledge base
by redefining operationality criterion, that is a criteria for evaluating the acceptance
of the knowledge to be captured by the system. This is done through a friendly
human-machine interface.

5.3 Solution to Container Loading Problem

Let’s review the situation of CLPs in the real world. In recent years, the software
with artificial intelligence on allocating a truck or a container becomes very impor-
tant and popular. The reasons are considered as follows: one reason is to decrease
loading cost and the other is to increase loading speed. The skilled workers usu-
ally can allocate various large cargoes to a container effectively and fast, while
an unskilled worker cannot do that. Moreover, companies usually make matters
worse that the skilled workers are absent from work because of illness or some
other things. When there are more than decades kinds of cargoes with small sizes,
even the skilled workers cannot handle them under a limited time and the result is
not satisfactory sometimes.

The CLP described in this chapter is the block-building pattern, in which many
kinds of cargoes with different sizes, weights and numbers into containers need to
be loaded and allocated with many complicated restrictions as shown in Figure 5.2.
Moreover, multiple objectives and dynamic and variable characteristics are making
the CLP as NP-hard problems.

According to the characteristics of problems, solving the block-building pattern
of a CLP is generally divided into two operations. The first operation is to allocate
cargoes into a series of blocks under satisfying the restrictions of loading blocks.
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Figure 5.3: Block and Space split of block-building pattern of CLLP

The second operation is to allocate the blocks into containers subject to the restric-
tions of allocating containers. In the followings, to simplify the procedure of the
above CLP and to highlight the core functions of our proposing framework, we deal
with this problem with the following assumptions.

5.3.1 Problem and Assumption
In our three-dimension container-loading problem, the following issues are assumed:

¢ Only single containers are considered. The container and cargos are rectan-
gular and of known dimensions and weight.

e Cargos are loaded from left to right, from bottom to top and from front to
back in the container (Especially the door side is regarded as the back). And
on the three-dimension points a relation <, is defined so that for two points
Py(x1,y1,z1) and P,(x,, y,, z2) the following conditions hold:

P, <p Py, if x; < xp;
or if x; == x; and y; < y,;
ofif x; == x; and y; ==y, and 71 < 25.

e Each cargo is positioned parallel to the side walls of the container.

e Each cargo lies completely within the container. Cargo cannot be rotated
vertically nor horizontally.
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e (Cargos can be loaded in any location in the container and with any other
cargo.

e (Cargo with weaker packing strength cannot be placed below the cargo with
stronger packing strength.

e Container weight balance is not strict. The weight of a complete cargo must
not exceed a given weight limit.

Formulation of the block-building pattern requires the introduction of two con-
cepts. First, a special structure named “block”, that is solid and cuboid, consists
of same cargos. We load the cargo block instead of the individual single cargo one
after another during the loading process. Sometimes one block includes only one
cargo. Second, “space split” is also cited on how spaces are utilized. If one space is
decided to match with one block, the block is placed at the left-bottom-front corner
of the space, and then three new valid spaces, the above, the side and the front, are
generated. “Block” and “Space split” are illustrated in Figure 5.3. This loading
pattern is intuitive and easy to use. Although there is also another operation “space
merge” which is to merge or recombine adjacent spaces to utilize space efficiently,
we do not consider the space merging in this research.

Multiple capacity constraints are considered in this problem. First, no cargo is
outside of the container or straddled the edges of the container. Second, the weight
capacity of the container is abided strictly. Finally, the rotation and packing strength
of the cargo must be considered.

Our goal is to load more cargos into the container to reduce the transport cost.
Additionally, we must consider not only the volume ratio but also the weight ratio
of the container. As a secondary criterion, we aim to make the operation of loading
and unloading as easy as possible.

5.3.2 Computational Procedure

According to the description in section 5.3.1, the loading procedure shown in Fig-
ure 5.5 is developed to determine the container loading patterns that consist of the
loading orientation (i.e. the x-y-z dimensions) of each cargo and its corresponding
location (i.e. the reference point of loading space).

The pre-stored data for the system are the following two sets of data: the set S
containing all usable spaces and the set C including all cargos to be loaded. More-
over, the data set C’ is the subset of C and store the filtered elements of C which are
possible to be used to make blocks (for example, when the packing strength of the
block below the active space is weak, elements of C with strong packing strength
are not possible to match with the active space and not included in C’). The blocks
made by elements of C’ are stored in the set B.
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End conditions:

1. In stepl, “usablerooms” isempty;
2. In step2, “usable goods” is empty;
3. Instep3, “usableblocks” isempty

Start (initial operation: ...)
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Figure 5.4: Four core decisions during single container loading

In stepl, in starting a problem solving of a container-loading, the original infor-
mation of the container and cargos are read from the above data sets. There stored
an initial space in S, whose size is the same with the inner size of the container
initially. In step2, one space is selected from S, which is called “the active space”
because it is the only space to be deal with right now and the rest decisions are
related with it. In step3, reset C’ through filtering C by exact restrictions. In step4,
blocks made so far by assembling suitable cargos of C’ according to the active space
are stored into the set B. In step5, blocks of B are tried for matching with the active
space, and the best block is determined. In step6, an operation of the space split
is performed. In step7, all the data stored in S and C is updated after a block is
determined to be loaded once. When there is no valid space in S in step2 or no
valid block available in step5, the loading procedure is terminated. Summarizing in
brief, the procedure mirrors one type of actual container loading and in fact it is the
greedy algorithm.

5.3.3 Details of the System Modules

Based on these assumptions and ideas mentioned so far, we designed and imple-
mented the software using a number of programming languages in combination. A
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Figure 5.5: Single container loading procedure
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Figure 5.6: Example of the search tree in “Problem Solver”

knowledge part of the system is implemented using PROLOG, and the other parts
are by Visual C++. There are five sub modules, “Data Input”, “Problem Solver”,
“Modifying Tool”, “Knowledge Base” and “EBL Facility”, all of which cooperate
well in our software.

A module of “Data Input” reads the basic information on the container and the
cargos from a data file (e.g., catalog01.txt).

A module of “Problem Solver” constructs a search tree and identifies the key
parts of the tree corresponding to branching decisions such as

1) Which space is to be selected as the active space.

2) How to make blocks using usable cargos.

3) Which block is to be chosen to match with the active space, and so on.

One fragment of a simple running instance in which two kinds of cargos are
loaded is presented in Figure 5.6 so as to show how the “Problem Solver” does
work. The search process is to extend the leaves of the tree continually until the halt
condition is reached.
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A module of “Modifying Tool” is used to build an example by the expert through
revising the computed result. In the software, it deals with recombining some blocks
and changing the locations of the assigned blocks by moving it to more appropriate
locations. What’s more, the system can analyze the revised result and patterns of
blocks and their loading sequences are found. The expert needs to confirm the new
result.

A module of “Knowledge Base” stores all fragments of knowledge obtained
from the expert. All of the knowledge is described by PROLOG.

5.3.4 System Implementation

To implement the program, first necessary predicates for state descriptions are de-
fined. They are data structures such as container (the full information of the loaded
container), usable_cargos (the set C), usable_spaces (the set S), and so on. There-
fore, the state of any node of the search tree can be recorded exactly and the loading
process is reflected in the search tree over time.

Second operators and inference rules of the domain knowledge are set up. For
instance, the state transition from Node4.1 to Node5 in Figure 5.6 includes the
operator “space split” that is defined by a predicate “space split” meaning to divide
the active space into new smaller spaces (in this sample, the space “s0” is divided
and three new spaces “s1, s2, s3” are generated). The sample of the inference rules
is defined by a predicate block_volume which can compute the volume value of
the block from its length, width and height being multiplied in turn. A predicate
of block_volume plays a key role in the selection among the elements of the set B.
Acceptation and/or rejection of the tree extension at Node4.1 and Node4.2 of Figure
5.6 is the result affected by the block volume of the block “b0” and the block “b1”.

Third, control rules are illustrated as follows. There would be many control
rules on one branching decision, which prescribes how to select the element among
the set. They are grouped into two types “filtering control rules” and “preference
control rules”. Filtering ones are to decide which element of the set should not be
selected, while preference ones must be set to show that this should be executed
prior to others because other elements’ execution leads to different results. In fact
the logical form of a preference control rule is alike “if..., then...; elseif..., then...;
elseif...,then...”. The selection out of the set is implemented by the filtering con-
trol rules as well as the preference ones being executed in turn. The size of the
set affected by filtering ones would be reduced. The final answer of the selection
operation will be got after preference ones are executed.

Filtering control rules may exist either in Gcer or Scr. At least one preference
control rule with the lowest execution priority must be in Gcr, which is the most
general selection strategy. Then, it can be guaranteed that the normal motion of
the corresponding child decision. Other preference ones are stored either in Ger or
Scr. For example, the branching decision at NodeO of Figure 5.6 is how to select
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the active space from the set S. The corresponding preference control rule is the
predicate select_active_sapce whose meaning is the space with the smallest start
point should be selected from the set S (the relation <, is referenced to compare).
And a filtering control rule named of disable_space means that if the space along
the right side of the container is flat it will be filtered out from the set S is stored in
Scr.

The final module is “EBL Facility”. In order to acquire valid control rules, it also
needs to trace and guide the search tree with the assist of “Problem Solver”. Note
that “Problem Solver” is used not only to solve a new problem but also to analyze
an example using knowledge stored within “Knowledge base”. When solving a new
problem, it only uses a stable set of “control rules” of “Knowledge base”. When
analyzing an example, it has to consider how to set up a stable set of “control rules”
of “Knowledge base”. If the learned control rule belongs to “filtering control rules”,
its executing priority would be calculated and the “if/then/else” structure described
in the preceding paragraph is maintained. Furthermore, this module has necessary
functions to check the existence of any exceptions and functions as a friendly and
interactive interface for the expert.

5.4 Experiments

Some fragments of real examples output by the system are presented in Figure 5.7
and Figure 5.8.

5.4.1 Experiment I

This sample is to generalize tact knowledge about the branching decision on how to
select an active space from whole usable spaces.

In Figure 5.7, four loading results shown on the left are generated by “Prob-
lem Solver” using only Ger. They can be thought as a subset of solutions that are
commonly sharing unsatisfactory aspects, because they have the same disadvantage
on utilizing the right flat space. Tacit knowledge provided by the expert to exclude
these disadvantage is that if the right flat space is only available to load a few cargos
it should not be used because it is not easily managed during loading and unloading
processes.

The result provided by the expert using “Modifying Tool” is shown in the right-
top of Figure 5.7. Then, this result is regarded as a successful example and is to
be analyzed by “EBL Facility”. In our software, the knowledge mentioned in the
above is the “filtering” one and has been additionally stored in Scr.

Atlast “EBL Facility” forms an explanation on why this example is satisfactory
and this knowledge is confirmed to be valid to the current subset as mentioned at the
end of the previous chapter. What is more, a control rule with more vigorous and
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Figure 5.7: Example One for capturing knowledge
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succinct formation is added into Rer’ because the regressing of the explanation tree
can find the weakest conditions under which the proof will hold. The real predicate
expressed in PROLOG is:

disable_space(S pc) : —space(position(_, Posys, ), size(_, Ws, _)), 5.1)
container(size(_, Wc, _), _), (Posys + Ws) =:= W¢, Ws =< 450. '

In the expression 5.1 “space” and “container” are predicates of data structures
and variables including upper characters are affiliated with these two data structures.
Here a constant 450 is the experiential value defined by the expert and points out
that only the space whose width value is less or equal 450 is regarded as the flat
space.

After getting Rcr’, the problem solver calculates others of the subset again and
it should use not only Gcer but also Rer’. The final results of the subset are the right
ones of Figure 5.7, in which all cargos are easier for the warehouse operators to
manage.

5.4.2 Experiment II

The generalized tacit knowledge about the branching decision on how to select the
most suitable block from the set B that matches with the active space is illustrated
as follows.

Concerning with the branching decision of the block selection, the default con-
trol rule is that the block with the largest volume should be chosen. However, there
is another preference control rule stored in Scr: if the space is a strip of the container
(i.e., the width and the height of the space are equal with the width and the height of
the container, respectively) and there is at least one block whose Y-Z area ratio (i.e.
Y-Z surface area of the block is divided by Y-Z surface area of the container) is not
less than 95% (experiential value), the block with the largest Y-Z area ratio should
be picked up from the set B. In this case, the loading can become more stable.

The initial control rule in Scr is:

select_block(U sblBlcks, ABIck) : —active_space(S pc), strip_space(S pc),
yz_biggest_block(U sblBlcks, ABIck), get_block_yz(ABlck, YZAreal),
get_space_yz(S pc, YZAreal),(YZAreal | YZArea2) >= 0.95.
(5.2)
In expression 5.2, a predicate of active_space is for the data structure of the
active space, and a predicate of strip_space is used to judge whether one space is the
strip of the container or not. A predicate of yz_bigest_block is an atomic inference
rule for finding out the block with largest Y-Z area among the set B. Predicates of
get_blcok_yz and get_space_yz are used to calculate the Y-Z area of the block and
the space, respectively.
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Figure 5.8: Example Two for capturing knowledge
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Finally the learned control rule stored in Rer’ is:

select_block(U sblBlcks,ABlck) : —
active_space(space(pos(_, Pys, Pzs), size(_, Ws, Hs))),
Pys =:= 0, Pzs =:= 0, container(size(_, Wc, Hc), _),
Ws =:= Wc,Hs =:= Hc, yz_biggest_block(U sblBlcks, ABIck),
ABlck = block(_, _, sub_size(_,S Wb, S Hb), _, _, num(_, Nw, Nh)),
SWb« Nw«SHb+Nh)/(Wc = Hc)) >= 0.95.

(5.3)

5.5 Conclusion

In this research, we presented some experiments of container loading using our
IKAF, and showed that this is a feasible methodology to learn the expert’s tacit
knowledge through analyzing and explaining the expert’s providing examples. The
tacit knowledge of the expert on how to use his/her knowledge (i.e., a meta-knowledge)
was captured by organizing and prioritizing control rules through auto analysis and
valid verification. We showed advantages realized by combining the general heuris-
tic algorithm with the expert’s knowledge. It should be noticed that IKAF provides

a platform for the expert to express his/her experiential knowledge. In addition, the
system is open and the method to solve one hard problem is dynamic. This is the
biggest difference between IKAF and other traditional algorithms.



Chapter 6

Conclusion

This research discusses how to solve the constraint satisfaction problem in the real
world using approaches based on distributed and cooperative systems. Three ap-
proaches are proposed: TOCM, TZBM and IKAF in the order of low-flexibility to
high-flexibility.

In the optimization approach based on distributed and cooperative systems, an
original problem is solved by decomposing it into multiple agents. Proposed ap-
proaches TOCM and TZBM can solve complicated problems in a flexible mode
because they use a relaxation mechanism and highly-efficient negotiation strategy.
TOCM can classify restrictions and prioritize them. It improves a solution by elim-
inating the constraint agent of the system. Further, TZBM is used to eliminate all
violations on restrictions to the greatest extent possible. Put simply, the proposed
approaches do not seek an optimal solution, but find a satisficing solution within
a limited computation time. One complex loading pattern of the container loading
problem, the two-row pattern, is discussed and solved by the proposed approaches.
Results show that the approaches succeed.

In the machine learning approach based on distributed and cooperative systems,
a human expert agent is embedded in a solving process to further improve flexibility
and adaptability. In the proposed IKAF approach, a human expert can improve the
solving quality by criticizing an initial solution computed by a computer agent. This
is possible because a human expert has intelligence to recognize complicated situa-
tions and then to employ the best solving strategy. In practice, IKAF is an available
platform to augment the expert’s tacit knowledge. Therefore, knowledge obtained
from a human expert agent can be shared with other human agents, especially un-
skilled human agents. The approach is validated by solving the container learning
problem, which includes extreme heterogeneous cargoes. IKAF is still immature
and future research is needed to strengthen it.
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