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Chapter 1

Introduction

1.1 Fusion energy

The development of an alterative energy resource is a inevitable issue in 21st century.
If the dependence on the fossil energy is kept at the present level, the shortage of the
fossil fuels will happen in the late of this century and then the economic activities will
receive critical damages. The air pollution caused by the exhaust gas from power plants
and automobiles also becomes a critical issue in developing countries. In order to have
the sustainable development of the world, the alternative energy resources should satisfy
the following requirements at least. Firstly the new energy resource should be easily
obtainable almost everywhere on the earth. Secondly a large amount of energy should be
available to replace the present supply of the fossil fuels. Thirdly toxic waste should not
be emitted to the air or the sea. Lastly the safety of the power plant should be assured.

A number of candidates are being studied and developed; solar power, wind power,
biofuel, nuclear energetc. The combined use of these energy resources may be desir-
able, but from the view point of the cost and the amount of the power we can utilize,
the nuclear energy is the most realistic choice as the main energy resource. There are
two kinds of nuclear reactions which can be utilized for the power generator. The nu-
clear fission is already utilized as a major electric power resource and its ratio to the all
power production may increase to the large extent. It will be the most realistic choice
of the alternative energy for the moment. However, the producing nations of the fuel, or
uranium, are restricted. The spreading of the technology required to develop the power
plants potentially raises the risk of thefdision of nuclear weapons.

The other option is the nuclear fusion. It can solve the problems above. The fuel of
the fusion is deuterium and tritium in case of the D-T reactior, D— “He + n, which
has larger nuclear cross section than others such as D-D &k DAlthough the amount
of the tritium is small on earth because of its short radioactive half-life of 12 years, it



Toroidal coils

il Magnetic field lines

Magnetic surfaces

Troidal current

Figure 1.1:Schematic diagram of the torus plasma in a simple tokamak device.

can be bred from the lithium through the following reactionst fLi — T + “He and

n+ Li — T + “He+ n. The neutron in these reactions can be supplied from that of the
D-T reaction. The deuterium and the lithium can be extracted from the sea water. The
absence of the high activity wastes which require the isolation for tens of centuries is also
an advantage over the nuclear fission.

1.2 Confinement of the plasma

For the fusion reactions to take place, the nuclei, i.e. D and T, must have high energy to
overcome the Coulomb barrier and approach each other within a small distance where
the nuclear force dominates. In order to obtain flisent reaction rate, the mixing gas
of deuterium and tritium have to be kept in high temperature, typically 10keV. In this
condition, electrons of the atoms are unbounded from the nuclei and thus the gas is in
the plasma state. Since the electrons and ions, or nuclei, can rapidly escape because of
their high temperature, e.g. approximately h)s for the 10keV ion, magnetic fields are
employed to confine the plasma. The Lorentz force acting on the particles restricts their
perpendicular motion to magnetic fields. Since magnetic fields do not interfere with the
parallel motion, closed magnetic fields are employed to avoid the particle losses from
open ends.

A concept of the confinement device, tokamak is illustrated in [Ei. The mag-
netic fields are generated by the external toroidal coils and the internal plasma currents.
They form nested magnetic surfaces with torus geometry. A magnetic surface is a closed
surface filled with a certain magnetic field line when it is followed from a point on the
surface along the magnetic line. Since the magnetic fields are tangential to the magnetic



surface they belong to, charged particles do not transported across the surface in the ideal
condition. The perpendicular transport, however, exists because of disturbances such as
Coulomb collisions and plasma waves, or oscillatory electriomagnetic fields.

The rate of the energy loss is measured by the energy confinementtiiias factor
represents the characteristic time for the energy generated in the plasma to escape from it
and corresponds to the decay time, i.e. (enesgexp(t/e) if there is no energy input.

A small confinement time corresponds to a large energy transport and then a large addi-
tional heating is required to maintain the plasma temperature. Since the energy inevitably
escapes from the plasma to a greater or lesser extent, the heating is essential factor in the
present confinement devices, but small heating power is desirable from the view point of
capital costs and energy gain. The performance of the fusion reactor is measured by the Q
value, which is defined b = (P,—Py)/Pn. The heating power to maintain the stationary
plasma and the thermal output are denotedPhwndP,, respectively. If the Q value is

unity, the heating power and the fusion powes,— Py, are balanced. Obtaining higher

Q value in long-time discharges is the goal of the fusion studies. In order to reduce the
heating power and obtain the large Q value, a long energy confinement time is required.
To this end, understanding of the transport mechanism in the plasma is a essential issue
in the fusion studies.

1.3 Transport in magnetically confined plasmas

There are three types of microscopic transport mechanisms in the torus plasma; classical,
neoclassical and anomalous transports. The classical transport is caused by Coulomb
collisions in the magnetized plasma. When a charged particle experiences a collision with
another particle, the velocity is deflected through the momentum exchange and that causes
a jump of the guiding-center. A guiding-center is a center position of the cyclotron orbit
and given byX = x — B x v/BQ, where the particle position and the cyclotron frequency
are denoted by andQ = gB/m. The statistical average over the series of the collisions
yields the difusion which is characterized by theffdision codficientD, ~ vp?, where
the collision frequency and the thermal Larmor radius are denotedabgp; = mu/qB,
respectively. Here we use the following notations; particle mashargeq, temperature
T, thermal velocity, = +T/mand magnetic field.

The neoclassical transport is also collisional but causedfigrdint dynamics of parti-
cle associated with the toroidicity. In the toroidal magnetic fields, a guiding-center travels
around the toroidal and poloidal directions. Since the magnetic field strength is inversely
proportional to the major radius, a particle with a small parallel velocity is repelled at a
certain poloidal position by the magnetic mirrdfext. Such particles are called trapped
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Figure 1.2:The projection of the trajectories of particles in toroidal magnetic fields on
a poloidal plane. The passing and trapped particles are denoted by the solid and dashed
curves. The dotted circle represents the magnetic surface where the particles started.

particles and the others are called passing particles. An example of each trajectory is
illustrated in Figll.2 When a patrticle travels in toroidal magnetic fields, perpendicular
drifts associated with the geometry of the magnetic fields, i.e. B curvature drift,
causes a deviation from the magnetic surface where the particle originally located. The
deviation for the passing and trapped particle is denoted bgnd A; in the figure. As
shown there, the deviation for the passing particle is smaller than that of the trapped par-
ticle, or A, < A:. Since the formerp,, is still larger than the Larmor radius, they act

as longer step-lengths in the random walk and yield about one order of magnitude larger
transport than the classical one.

The third microscopic transport is the anomalous transport. The origin of its name is
its anomalously large transport dbeient observed in experiments. Since the cause of
the enhanced transport was not identified, it was named anomalous transport. At present
it is widely recognized that turbulence driven by micro-instabilities causes the anomalous
transport. Therefore, it is also called a turbulence transport. Especially drift wave type
micro-instabilities are the most possible candidates for the turbulence transport. The drift
wave is a wave induced in the plasma by gradients of the density and temperature. The
time and spatial scales of the drift wave are characterized by the drift frequeneycs
and the most unstable wave length ~ pi. Here we denote the inverse scale length,
the cold ion sound speed and the ion thermal Larmor radius=av Inn|, cs = VT;/m
andp; = vy/Qi = VmT;/gB, respectively. Since the driving force of the turbulence, or
micro-instabilities, exists even in the collisionless plasma, the turbulence transport also
exists in low collisional regime. This is the most prominerftetence of the turbulence
transport from the classical and neoclassical ones.



Another diference is the dependence on the structure or state of the plasma. Since the
growth rate of the drift wave is roughly proportional to the gradients, the dependence on
the plasma profiles is a natural consequence. The dependence on the dynamical structure,
I.e. global modes or flows, is one of the key issues in the transport study. As mentioned
above, the wave length of the most unstable mode is of the same order as the ion thermal
Larmor radius and is much shorter than the system length characterized by the minor
radius, or the distance from the magnetic axis to the plasma surface. The existence of
nonlinear couplings can, however, excites even the stable modes which has shorter or
longer wave length. These processes are called a cascade (toward modes with shorter
wave length) and an inverse cascade (longer). One of the nonlinearities comes from the
polarization drift, which has been modeled by Hasegawa and Mima [1]. The polarization
drift is a perpendicular drift caused by the variation of the electric field in time and has a
reducing €&ect of the electric field. From studies using their single field model, namely
the Hasegawa-Mima equation or Charney-Hasegawa-Mima equation, or more generalized
models, the importance of the nonlinear couplings are revealed. One of its characteristic
roles is structure formation such as a zonal flow and convection cells which are linearly
stable. The zonal flow is a poloidal flow generated by a nonlinear stress tensor. The self-
suppressionféect of the global flow, or structure, has been found through these studies
and has a large impact on the transport study.

1.4 Simulation in the turbulence transport study

In turbulence studies, simulations have played a significant role in elucidating the nonlin-
ear characteristics existing in the plasma dynamics associated with the micro-instabilities.
A simulation provides physical insights on a complicated system such as the plasma in
turbulent or highly structured state and promote the modeling of the turbulence trans-
port. With regard to the rigorousness and the extent of reductions, there are several set of
equations employed in the turbulence simulations. The most fundamental one is a kinetic
simulation solving the Newton’s equations,

dx dv
— =V, m— =qgvxB+dgE, 11

ar g =@ q (1.1)
or its continuum expression known as the Vlasov equation,

df of of of

- - Rl B+gE)-— =0 1.2

dt 6t+v aer(qV>< +GE) ov (1.2)
where the distribution functiori represents the number density in the six dimensional
phase spacex(v) at timet. The simulation using the equations of motion to calculate



the motion of individual particles is called a particle simulation. The force acting on
each patrticle is calculated from the velocities and positions of the other particles. A
more simplified simulation using Maxwell’s equation is called a particle-in-cell (PIC)
simulation and frequently used for plasma simulations. Another commonly used one is
called a Vlasov simulation or an Eulerian simulation, which solves the Vlasov equation
and Maxwell’s equations self-consistently. Maxwell’s equations are given by

p oB . 10E
V-E=L£, vxE=-Z, V.B=0, VxB= =
o  VXETHIT GG

T (1.3)

where the charge and current dengitgndj, are calculated from the distribution function

as
o= Y, farcudn =3 [aviendn a9

specie: specie

The simplified expressions of Maxwell's equations are usually employed in the plasma

simulations;
1 62 I 1 92 .
2 — 2 -
(V - __)¢ -£, (V - ??)A = —uoj, (1.5)

where the scalar potentigland the vector potenti# are related to the electromagnetic
fields as oA

E:—V¢—§, B=VxA. (1.6)
Here the potentialphi andA have to satisfy the Lorentz condition,
1o¢

V-A+—=—=0. 1.7
+028t (1.7)

Another type of simulation employs fluid equations. They are derived from the kinetic
equation by taking the velocity moments. The zeroth order moment yields the continu-
ity equation, or conservation of the density. The first, second and third moments yield
balance equations with respect to the momentum, the pressure and the thermal flux, re-
spectively. Since the Vlasov equation includes the velocity in the fowif, the equation
for a certain moment contains one order higher moment. The fluid equations are, there-
fore, composed of the infinite series of hierarchy equations. In order to obtain equations
using only the finite number of moments, the hierarchy is usually truncated at a certain
order moment by introducing an appropriate closure model. If the second moment is trun-
cated, for instance, the pressure in the equation of state is substituted into the equation of
the momentum balance. Therefore, the fluid equations discard the detailed information of
the distribution function. Paying the cost of the truncation and the approximation model
of higher moment, they have a great advantage in its moderate requirements for the com-
putational resources, especially the memory consumption, because they do not need the



velocity space, while the kinetic equation needs a number of particles for the particle sim-
ulations and a number of grids in velocity space for the Vlasov simulations. The fluid
model is, therefore, employed for global simulations and the long-time simulations such
as an equilibrium, a transport calculation for given or modelddision codicients, and
magnetohydrodynamics phenomena.

In the turbulence simulations related to the anomalous transport, however, the sim-
ulations are mostly based on the kinetic equation because the kiffetitsesuch as the
Landau damping, the finite-Larmor-radius (FLR)eets and the particle trapping strongly
affect the growth rate of the micro-instabilities and also the turbulence. Some advanced
fluid models have been constructed to include the kindfeces but the calculation based
on the first principle is widely recognized as an essential element for the quantitative
prediction of the anomalous transport ffa@ent. As mentioned above, the kinetic equa-
tion, or Vlasov equation, involves all the particle dynamics except the Coulomb collision,
which can be included as additional terms in the Vlasov equation. Although the kinetic
equation can describe the accurate dynamics of the plasma, it requires a vast amount of
computational resources and may be an unrealistic choice of a method for the global tur-
bulent simulations. In order to overcomes thiidulty, a reduced but still accurate kinetic
equation, namely the gyrokinetics, has been developed.

1.5 Gyrokinetics in the turbulence simulation

The gyrokinetic equations is simplified equations under the condition that the gyration due
to the Lorentz force is the fast and dominant motion of charged particles in the plasma.
While the kinetic equations, which are now called full-kinetic equations to be distin-
guished from the gyrokinetic equations, follow the trajectory of a particle, the gyrokinetic
equations follow that of the gyrocenter, which is a generalized or ‘optimized’ position of
the guiding-center given b = x — B x v/BQ. The fundamental concept of the gyroki-
netics is the determination of the gyrocenter coordinate system where the equations of
motion are reduced to simple equations without gyration. This idea resembles the intro-
duction of an amplitude and a phase into the harmonic oscillator given+y?x = 0. It

can be reduced t& = 0 andé = w through the coordinate transformatian= Acosg).

The amplitude and the phase correspond to the magnetic moment givast /8B and

the phase of the cyclotron motion.

Since the gyration and other motions such as the drift and the parallel motion are
completely decoupled in the gyrokinetic equations, one can reduce the dimension of the
velocity space to two, i.e. the parallel and perpendicular velocities. In other words, the
phase of the gyration can be discarded. It contributes to the large reduction of the com-
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Figure 1.3:Schematic diagram of the poloidal cross section of a tokamak device.

putational resources because the elimination of the gyrating motion enables one to use
larger time-steps than the gyration period and also to ignore the velocity space variable
corresponding to the phase of the gyration. Another advantage is reduction of the nu-
merical noise in the simulation. The patrticle is treated as an imaginary ring instead of a
point, or the particle itself. The force acting on the patrticle is calculated from the potential
averaged over the ring, or the trajectory of the gyration. Short-scale noise characterized
by the Larmor radius and the cyclotron frequency is much reduced compared with the
full-kinetic calculation.

The gyrokinetics was first developed for theoretical modelings of the micro-instabilities
in the late 1960s [2, 3] and its application to simulation started in the early 1980s [4, 5].
The basis of the modern gyrokinetic equation widely used at present appeared around
1980 [6, 7]. The simulation studies requiring more general and accurate reduced equa-
tions of motion has motivated the development of the modern derivation employing an-
alytical mechanics. The establishment of the mathematically unambiguous and rigorous
gyrokinetic equation and the rapid progress of high performance computing made the ki-
netic simulation a realistic choice for the global turbulence study and indeed global, or
toroidal, simulations using the gyrokinetic equations has started in the late 1990s [8—10].
The gyrokinetic simulation is now believed to be an essential tool for the study of the
turbulent transport driven by the micro-instabilities.



1.6 Peripheral plasmas

We described the plasma confinement and the transport study in the preceding sections.
In addition to the core plasma which is confined in the magnetic surfaces, the external,
surrounding region also has important role in the fusion devices. A poloidal magnetic
configuration of a standard tokamak device is illustrated in[E@. In the core region,

the magnetic fields are closed and the hot and dense plasma is confined. In the outer
region called scrapefiblayer (SOL), the magnetic fields are open to the divertor plate
and a relatively cold and thin plasma exists. The boundary between the closed and open
magnetic fields is called separatrix. The objectives of separatrix and open magnetic field
are the determination of the hot plasma surface and exhaustion of the heat and the alpha
particles generated by the fusion reactions. The plasma expelled from the core region is
subjected to rapid parallel transport and the main part of the energy flux flows into the the
divertor plate.

On the surface contacting with a plasma, various phenomena are observed; large po-
tential formation called sheath, generation of neutral atoms, formation of small particles
called dust, secondary electron emission, sputtering of the sudtcelThe sheath is a
boundary layer formed in front of a surface and has a large electric field. The cause of
the electric field is a dierence of the thermal velocity between ions and electrons. For
instance, a deuterium is approximately sixty times faster than a electron if they have the
same energy. Since a particle flux is roughly a product of the density and thermal velocity,
an imbalance of the fluxes, or electric current, occurs if a return flux from the surface does
not exist. To compensate it, a large electric field is formed in front of the wall surface and
the electron return flux is generated.

The behavior of impurity atoms and particles are important issues for the plasma con-
finement because they may penetrate into the hot plasma. The impurity atoms are excited
and cause a considerable energy loss through radiations, especially in case of high atomic
number. In order to predict their generation rate and their behavior, the state of the plasma
such as the potential profile, energy flux and velocity distribution near the wall are re-
quired. Therefore, understanding of the plasma in the divertor region is an essential and
fundamental issues in fusion research.

1.7 Outline of this thesis

One of the objectives of this thesis is a new formulation of the gyrokinetic equations appli-
cable to the plasma with strong electric field and the numerical verification. The equation
derived here aims at being applied mainly to gyrokinetic simulations of the fusion plasma



in the turbulent state accompanied with global and fast flows. The other objective is to
understand the physics of sheath formation in a magnetic field. To this end, a kinetic
modeling of the sheath plasma in magnetic fields is provided by using the gyrokinetic
equations derived here.

In Chap. 2, a general derivation of the gyrokinetic equation is presented. Comparing
previous works, a straightforward way to derive the equation is adopted. After obtaining
the general forms, the specific set of gyrokinetic equations are formulated on the assump-
tions usually employed in the analysis of the micro-instabilities. In Chap. 3, introducing
a reference frame in the formulation procedure, improved gyrokinetic equation still valid
for large equilibrium electric fields is presented. The criterion for the appropriate choice
of the reference frame is discussed and a practically most suitable one is obtained. The
validity of the resulting equations is confirmed by numerical comparisons with the full-
kinetic equations of motion, or the original Newton’s equations.

In Chap. 4, a kinetic model of the magnetized sheath plasma formed in front of a
wall is presented. The gyrokinetic equations obtained in Chap. 3 is employed here and
modified expressions for the sheath plasma are used. A criterion for the stable formation
of the sheath in magnetic fields is derived. The validity of the model is investigated
by numerical comparisons with the results of a full-kinetic particle-in-cell simulation.
The parameter dependences of the electric field at the wall surface is studied by using
numerical solutions of the present sheath model. In Chap. 5, parameter dependences of
the incident angle of ions to the wall is studied by using the numerical codes developed
in Chap. 4.

In Chap. 6, the summary of this thesis and future works are presented.

10



Chapter 2

Derivation of the gyrokinetic equations

2.1 Introduction

The concept of the gyrophase-averaging is introduced at the first time by Rutherford and
Frieman [2], and Taylor and Hastie [3]. They apply the gyrophase-averaging technique
to the WKB expression of the perturbation potential and distribution function and obtain
the reduced kinetic equation decoupled from the fast gyrating motion. The procedure in
their derivations is called a recursive method and employed in many gyrokinetic analy-
ses [4,11-13]. One of the advantages of the gyrokinetics is separation of the time scale
which enables one to solve only the slow dynamics. The dominant motion of a particle
in most of the fusion plasmas is the cyclotron motion characterized by the gyrofrequency
Q = gqB/mand the gyroradiup = v, /Q. In the case of the micro-instabilities such as
ion-temperature-gradient (ITG) modes, which are believed to be a essential cause of the
anomalous transport in the magnetically confined plasmas, the characteristic frequency
is usually much smaller than the gyrofrequency. The separation and averaging of the
fast gyration provides the slow dynamics of the plasma such as drift motions in phys-
ically clear form in the resulting kinetic equation. The gyrophase-averaging procedure
in the recursive formulation also reduces the dimensions of the distribution function, i.e.
the gyrophase dependence is eliminated. This is another advantage of the gyrokinetics
especially for the simulation studies. The reduction of the computational cost is quite
important issue in simulation studies because the statistical accuracy can be improved by
using larger number of particles in the particle simulations and the spatial resolution can
be improved also in the Vlasov simulations. The recursive formulation is used for the
analytical and simulation studies mainly in the 1970s and 1980s.

In 1979, Littlejohn introduced a new approach [16, 17] in the plasma physics, which
enables one to treat the particle dynamics rigorously and to decouple the drift motions
with the aid of the the dilerential geometry. The advantage over the previous formulation

11



is the completeness and unambiguous in the derivation of the higher order nonlinear terms.
The derivation starts from a Hamiltonian representation of a particle dynamics, and then
the gyrophase and the magnetic moment are determined to be canonical conjugate through
the Darboux transformation, and finally the gyrokinetic Hamiltonian is determined to be
independent of the gyrophase through the Lie transformation. Since his formulation was
for only the equilibrium potentials, the generalization for the perturbation potentials was
made by Dubin [14] and Hahm [15].

In 1982, Littlejohn introduced another formulation method [6, 7] using the phase space
Lagrangian, or 1-form, instead of the Hamiltonian. Tligceency of this representation
in the Lie perturbation analysis [21] took the place of the Hamiltonian formulation. The
generalization for the perturbation potentials was made by Hahm [15] and Brizard [18]. A
closed set of gyrokinetic equations, i.e. equations of motion and the Maxwell’s equations,
was systematically derived by Brizard [18] and Qin [19, 20] with the aid of the pullback
transformation. A brief description of the fundamental concept in the modern derivation,
especially the Lagrangian formulation, is presented below.

The basic idea of the modern gyrokinetic theory is that if one chooses an appropriate
coordinate system, the equations of motion can be reduced. The coordinate systems used
in the gyrokinetic theory are shown in Fig.1 The dashed curve represents the trajectory
of a charged particle in a given electromagnetic fieRls; 2 andE oc (XX +y¥)/ X2 + y2.

The dotted and solid curves correspond to those of the guiding-center and the gyrocenter.
The trajectory of the guiding-center does not include the gyration due to the Lorentz force.
A small oscillatory component, however, remains in the dynamics of the guiding-center.
On the other hand, the motion of the gyrocenter is reduced to a sknp drift motion

along the contour of the electric potential. The goal of the gyrokinetic theory is to deter-
mine the most appropriate coordinate system, i.e. gyrocenter coordinate, with the aid of
mathematics and the analytic mechanics suchféardntial geometry, 1-form representa-
tions of the particle dynamics, the Lie perturbation analysis and pullback transformation.
Before dealing with the particle motion in electromagnetic fields, we discuss a simple dy-
namics related with a harmonic oscillator. Observing a simple example of determining a
suitable coordinate system will be helpful in the later discussion of the gyrokinetic theory.

The dynamics of a harmonic oscillator is described by the 1-formpdx— (v?/2 +
w?x?/2)dt, where the position and velocity of a particle are denoteklandv. The
equations of motion are derived by the Euler-Lagrange equation=asandv = —w?X.

This simultaneous €lierential equation can be easily solved and yield sinusoidal solu-
tions. We can, however, obtain more straightforward equations where the two coor-
dinate variables evolves independently each other through a coordinate transformation;
X = \/2u/wsing andv = 2w cosd. This transformation yields a new expression of the

12
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Figure 2.1: Schematic diagram of three coordinate systems; particle (dashed curve),
guiding-center (dotted curve) and gyrocenter (solid curve). The coordinate transforma-
tions from the particle to the guiding-center and from the guiding-center to the gyrocenter
are called guiding-center transformation and Lie transformation, respectively.

1-formy = pdf— wu dt+d(u sin 20/2). Since the exterior derivative of a scalar field does

not dfect the dynamics, the 1-form is reducedte u do — wu dt, i.e. gauge transforma-

tion. The new 1-form yields quite simple equations of motjpe; 0 andd = w. Since the

1-form does not includé dependence, each coordinate variables evolve independently.
This fact represents the advantage of the new coordinate sygt@jnofer the original

one. The present coordinate system correspond to the guiding-center coordinate system
in the gyrokinetic theory. Although it is dlicient for the constanb, or uniform fields in

the gyrokinetic theory, it is not the best in more general cases as is shown in tRelFig.

We consider another example of more general one. If the Hamiltonian of the harmonic
oscillator acquires a perturbation proportional to a small paranagter example of such
1-forms is given byy = u6 — w(u — e cosd) dt. In this case, the coordinate transformation,

u = p — €cosd, can eliminate thé@ dependence in the 1-formy, = (u — ecosf) do —

wudt = pdd — wudt + d(esing). The new coordinate system, @) corresponds to the
gyrocenter coordinate. Although in this simple exampledlgependence is completely
eliminated through the coordinate transformation, the dynamics of a charged particle in
nonuniform fields involves more complicated coupling between the gyration and potential
variation, and thus the determination of the appropriate coordinate system requires a more
elegant mathematical technique. In gyrokinetic theory, the Lie transformation technique
[18, 21] is employed because of its useful feature as a near-identity transformation. A
Lie transformation represents a transport along a flow generated from a vectay field
and is usually written as an exponential map, expj, with the Lie derivative operator

L, = i,(df) —d(,f). The generating vector fielg is called a Lie generator. In the
example of the perturbed harmonic oscillator, the corresponding Lie generator is given
by g = —cos#dy. Using the Lie transformation, the new coordinatand 1-form are
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written asu = expEeL)u = 4 — ecosd andy = expeL)y = udo — wudt + dS, where
the gauge function is denoted I8y In the gyrokinetic theory, the 1-form of a charged
particle, the Lie generator and the gauge function are expanded in power series of a small
parametek. Using the Taylor expanded expression of the Lie transform operator, the
Lie generator and the new coordinate system are determined order by order to eliminate
gyrophase dependences in the original 1-form.

The detailed discussions of the derivation is presented here. li23ethe guiding-
center coordinate is introduced in the 1-form of a charged patrticle. The preliminary cal-
culation for the Lie perturbation analysis is carried out and the zeroth order drift-kinetic
equations are presented. Thé&eliences in the previous derivations by Littlejohn, Brizard
and Qin are also described. In SEQ the Lie generator and the gyrocenter coordinate
are determined and the first order gyrokinetic equations are presented. The charge and
current densities written by the gyrocenter distribution function are also obtained. Fi-
nally, conclusions are presented in &4

2.2 Guiding-center transformation

2.2.1 Guiding-center coordinate

The fist step in the derivation of the gyrokinetic equations is coordinate transformation
to the guiding-center systed = (2°,Z%,...,Z% = (t,X,@",v,,v;). Definitions intro-

duced by Littlejohn [6, 7] and Qin [19, 22, 28] and by Brizard [18ffelis. In the former
definition the position of the guiding-center is explicitly defined, while in the latter only
the velocity space variable®, v, andy, are defined and the guiding-center position is
recovered through the Lie transformation. Although Brizard use the Lie transformation
for the guiding-center transformation to obtain the higher order drift-kinetic equations, it
can be omitted and a simple expression can be used for the guiding-center position. We
define the guiding-center coordinate variables as inverse transformations;

Mo,
aB(X)
v =g b(X) + 0. &(X,0). (2.2)

X=X+

a(X,0), (2.1)

Each quantity in the right hand side is a function of the new coordinate varia¥e$X(, v, , v).
The meaning of the superscrigt'‘in these equations is clarified in SE2.2 The paral-

lel and perpendicular velocities are givenidgy= v - b andv, = |6 XV X 6|, respectively.

A set of the orthonormal vectogs, b and®’ is introduced to define the gyrophade

b

B
B’ (2.3)
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Figure 2.2:Definition of the gyrophase. An unit vectaris used as the base direction.

& =0 cos®’ — (6 X 0’) sin®’, (2.4)
& = (' sin® + (6 X G’) cos®’, (2.5)

where the magnetic fiel is equilibrium one. These vectors satisfy the relafica & x&

and thust’ and& makes the perpendicular plane to the magnetic field. The unit vector

0" is normal to the magnetic field and represents the base direction for the gyrophase, i.e.
Cle—o = O’. The vectolf’ and& are utilized as the direction of the perpendicular velocity

and the gyroradius vector. These newly introduced vectors are illustrated B.Eidn

most of the gyrokinetic study, the base direction vectors are denoteddndé,, but we

usel’ here to emphasize the role as the base direction of the gyrophase. One can replace
0’ andb x O with & andé..

2.2.2 Gyrogauge transformation

The exterior derivative of the vectatf, b and® are calculated as

db = dX - Vb + dt(z—?, (2.6)
d¢' = —[de’ - d’ - (bx &')] & - (db - &) b, (2.7)
da = [de’ - do’ - (b x 0)|& - (db - &)b. (2.8)

These calculations gives the relation
d& - ¢ = -d¢ - & =dO" + Ry - dX + Rdt, (2.9)

where we introduc®y = V&'-& = Vi'-(b x 0) andR, = (3¢ /at)-& = (90 /at)- (b x "),
which do not depend on the gyrophase. The infinitesimal chdaget’ represents the
variation of the angle which the vectéf has during the infinitesimal period of timel,
and consists of the contributions of the gyrophat®, and spatial-temporal variation of
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the base directiorRy - dX + Rdt. The latter contribution is caused by the arbitrariness
in the definition of the base direction for the gyrophase, in other words a gyrophase sym-
metry existing in the dynamics. While Brizard and Qin proceed calculations #sing
andR,, Littlejohn removes the arbitrariness from the definition of the gyrophase through
the gyrogauge transformation [17, 18] at the end of the formulation. According to the
formulations by Brizard and Qin, this arbitrariness just causedtaptdn the gyrophase
and does notféect the resulting equations of motion physically. Although that fact imply
that the gyrogauge transformation is not the essential step in the formulation, we utilize
it before the Lie transformation because terms relatdfi@ndR; are canceled and the
following calculations become simple.

We introduce a new gyrophageas the angle pushed forward by a functigt, X)
from the original angl®’;

=0 +o¢. (2.10)

In order to remove the arbitrariness from the gyrophase, filsetof the angle is deter-
mined so that the infinitesimal change of the angle which the new orthonormal vectors

¢=(cos® - (b x )sine, (2.11)
a=10sin® + (b x 0) cos, (2.12)

have during the infinitesimal period reduces to only the contribution of the new gyrophase,;
da-¢ = dO. The new base directiot used in the definitions of the vectéranda is
defined byl = 0’ cosy + b x o sing. From these equations, the exterior derivative of

is determinedfy = d® —d®’ = da- € — (d& - T — Ry - dX — Rdt) = Ry - dX + Rdt.
Integratingdy, we obtain the functiop as

t
¢ = f (Rx X, R) dt. (2.13)
o dt

Although Littlejohn uses slightly dierent expression, which has an additional tqrmx
b/2 - dX, the diference is not essential because the additional term can be recovered
through the Lie transformation later and does not make the calculation complicated at all.
As long as one uses the new orthonormal vedhots &, the vectoRy andR; related to
the arbitrariness do not appear in calculations.

The infinitesimal change of the new base direction veatartroduced through the
gauge transformation can be writtendis= — (dB . G) b, or explicitly

dd dX _. . db\.

This differential equation coincides with the ‘rotationless’ transport equation introduced
by Littlejohn [42]. We use the new gyropha®ethe orthonormal vectoisanda and the
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direction vectol( in the remainder of this work instead of the corresponding vectors with
the superscript”’. We note that the vectdi differs for each particle.

2.2.3 Potential perturbation and orderings
We introduce the potential perturbations as follows;

¢ = o+ 1 (2.15)
A=Ag+A (2.16)

The subscripts 0 and 1 represent the equilibrium and perturbation components, respec-

tively. The drift-kinetic orderings,

|6 X V¢0|
Bo

wo

" 0, kiop~en Koo~ e, ~ iy, (2.17)

are applied to the equilibrium potentials. The gyrofrequency and gyroradius are denoted
by Q = qBy/mandp = v, /Q, respectively. Although we neglect the time dependence of
the equilibrium potentials here, slow variations, iug/Q ~ €4, can be treated in the same
way. The gyrokinetic orderings

|6 X V¢1|
Bo

w1

- ~ &, Kiyo~ 1, killp ~ €g,

R ~ €gly, (2.18)

are similarly applied to the perturbation components. Although we assume that the time
scale of the perturbation is much longer than that of the gyration, fast variations, i.e.
wo/Q ~ 1, can be treated in the same way [19, 23].

2.2.4 Guiding-center 1-form

The fundamental 1-form of a single charged particle defined in the coordinate system
z=(2,2,...,2) = (t,x,V) is given by

y = [mv + gAX)] - dx — [gvz ; qu(x)] dt. (2.19)
It can be rewritten in the guiding-center coordinate system introduced if2Setas

y = [GA(X +p8) + Mo, &+ muyB| - d(X + p&) - [%" (07 +02) + ago(X + pB) |t (2.20)
From a guiding-center representation of the 1-fabm= d(X + pd),

dx = (T—pvm Boa—pvﬁ-aﬁ)-dx +ptde + gdvb (2.21)
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we calculatet - dx andb - dx as¢ - dx = &- dX + pd® andb - dx = (b - pVb - &) - dX,
respectively.

The calculation ofA, - dx is rather complicated because of the dependences of the
vector potentialAo on the velocity space variables. First, using the gauge transformation
we obtainAg-dx = Ag-dX —dAg-pa+d (Ao - pa). Second, since the equilibrium potential
satisfies the drift-kinetic orderings, the tef&kg(X + pa) can be Taylor expanded with;

Ao(X + p8) = A + pa- VAq + p?8a : VVA,/2 + O(c]). Each term is reduced through the
gauge transformation as

) L1 2 ) ) )
d(p- VA) - pa = — [pax d(pa)]-Von+%a-dVAo-a+d(p2a-VAo-a),

2 1 2
d (%aa : VAO) pa, = ~2p8- V(Y x Ao) - [pax d(pa)] + %aa - d(VVA,) - pa

02
+ d(géé : VVA, -pa),
where we used the following relations;

d(p®a- VAo - a) = pa- VA - d(pd) + d(pd) - VAo - pa + p*a- d(VAo) - &,
[pax d(pd)] - V x Ag = pa - VAq - d(pd) — d(pd) - VA, - pa,
d(p%ad: VVA, - &) = pBpa : VVA, - d(pd) + 208d(pd) : VVA, - pa
+p?aa: d(VVA) - 4,
pa-V(V x Ag) - [pax d(pd)] = papa : VVA, - d(pd) — pad(pd) : VVA, - pa.
Third, using the relationdA, = dX - VAganda- VAg — VAp-a = (V X Ag) x & = —ByC,
we obtain

2 ~
GAG(X) - dX = (A, — Mo, & + %a- VB, x a) LdX + m’z’l [ax d(pd)] - b

m,p qu

+ g8 VBo- [Ax d(p8)] - “-8: d(VVAG) -pa +dS + 0(ed),

where the gauge functid®is given byS = goAg(X)-a—qo’aVAy-a—go®aa : VVAy-a/3.
Form the identityd- VBy x & = Boa- Vb - &b — &- VB¢, we obtain the gauge transformed
expression of the 1-formA, - dx up to the first order;
gAo(X) - dx = |gAo — Mo, &+ i (a-Vb-tb-a-Vin Boé)] - dX
2qBy
mPy?

2fo) (1+p&-VInBo)d® + dS + O(e?). (2.22)
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In summary, the fundamental 1-form in the guiding-center coordinate system is given
by

['=Tx-dX +Ted® + I, du+T, dy +TIdt (2.23)
I :qA0+%(é-VB~éB—é~VIn BoC) + muyb — mpu, Vb - &,

+qA1—gpAl-VInBoé—qul-V6~éf),

To = %(1—pa-vm Bo) + GpA; - &,
1 R
rp =—A1-4q,
Uy
I, =0,
m m
[t=- Evﬁﬁ“ Bo/l+§D2+CI¢o+Q¢1 ,
where the magnetic moment
mi
= —— 2.24
K= 28 (2.24)

has been introduced. The potentials except the equilibrium vector potential in the right
hand side, i.eA1, ¢o and¢1, are evaluated at the particle positn+ pa.

2.2.5 Drift-kinetic equations

The drift-kinetic equations can be obtained from the guiding-center 1-form 2220 (

by neglecting the potential perturbation or settigg= 0. The higher order calculation
requires the Lie perturbation analysis as Brizard [18] did. We take only the zeroth order
terms in the 1-form;

m

Sk + o2 queldt. (2.25)

~ m
Larit = (CIAQ + mv”b) -dX + a,ud@ - Bo,u + >

The Lagrange and Poisson tensors are calculated as

“gB*xI| 0 0 —-mb
o= 9 |0 -ma 0 | (2.26)
0 m/qg O 0
mb |0 0 O
bx1/q8| 0 0 B/mB
o= 0 0 gm 0 | (2.27)
0 -g/m O 0

-B*/mB| 0 0 0O
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The Euler-Lagrange equations yield the drift-kinetic equations of motion;

o;): I;L* [B*v” +bx (V¢0 + qVBo) (2.28)
%—Gt) =Q, (2.29)
3’: 0, (2.30)
By _ 2183 (V¢>o + ”vso) (2.31)

where a modified magnetic field is denotedy
B*EBO+%VXB:Bﬁ6+%6x(6-VB), (2.32)
BITEB-B*:BO+%6-V><6. (2.33)

From the these equations, the velocity of the guiding-center is rewritten as

dX A 1
— =ub+
dt 1+ (ny/Q)b -V xb|Bo

be¢o+quVInBo+ ”bx(b vb)|. (2.34)

This expression implies that the drift-kinetic equations derived here in&udB, gradB

and curvature drift motions. These drift velocities, howeveiedifrom the familiar ex-
pression by the factor/i(l + (v||/Q)6 -V x 6). This correction comes from the coupling

of parallel motion and the magnetic shear along the magnetic field. If the magnetic field
rotates spatially along the magnetic field itself in the same direction as the patrticle gyra-
tion, the dfective gyrofrequency is reduced and thus the drift velocity becomes slower.
The Bdios drift [24] does not appear in the zeroth order equations. The detailed reason
of the absence of the polarization drift is discussed in From the equations of
motion, the drift-kinetic Vlasov equation is obtained;

dF dX 9F dO9F _dydF

Gt Tt aX T dtae T dtaw (2.39)

The drift-kinetic equations derived here satisfy the Liouville’s theorem

d /. d (.0t LX) o (,.de) a (..4dV
azZi (BZ> at(B“at) v (B“ dt) (B“ dt) av”(B” dt) 0. (236)

It can be easily confirmed using the relations

daxX 1 ~ 1 0I'B*
Bi— =-Vx(Ib)- =——,
I dt q X( t ) m ﬁvH
Ly 1 s
Bl =~V ([[B).
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This fact implies that the phase-space volume is giverBpym. From the Liouville’s
theorem, We can obtain the conservation form of the Vlasov equation;

. S W A A S B Y A
at(BlF)+V-(B”th) 8®(B”th) o (B”F dt)_o. (2.37)

2.3 Gyrokinetic equations

2.3.1 Lie perturbation analysis

In this section, we introduce the Lie transformation to eliminate the gyrophase depen-
dences in the 1-form in the guiding-center coordinate system. First, we rewrite the
guiding-center 1-form in power series &f

F=To+eli+elz+- (2.38)

I'g= (CIAO + mv”b) dX + a/l e - [ l)” + Bo/l + q¢o] dt,

2
1

I'n=0A;- dX + qoA1 - cdo + U_Al . éd,u - q¢1(X +pé.)dt,
L

r2=[@(é-vﬁ-eﬁ-a-WnBoe)—rrpu”vB-a -dX

q

—%pé-Vln Bod® — qoa - Vg dt,

where we assume that the spatial scale of the equilibrium fields are much longer than the
gyroradius, Ofeg ~ e This assumption is justified for large devices where the plasma
size is extremely Iarger than the gyroradius.
The Lie transformation is constructed from the Lie generator expanded in the power
series Ofe;
g = €91+ eggg e (2.39)

The time component of the Lie generator is set to zero because it is convenient to keep
the time variable unchanged, igf. = 0. The guiding-center coordinate variab®sand
1-formT are transformed to the new coordin&tend 1-formr;

7=.. -exp( zjjgz) exp(EQLgl) (2.40)
Z Ty = exp(-€2L,,) exp(—€ L, Z Ty +dS; +dS, + - (2.41)

where the gauge functions and Lie derivative operators are denofggdnd L, , respec-

tively. Although a Lie derivative operator is given b, f = i,df — d(i, f) for a vector
field g, The second term;d(i, f), vanishes when it operates on a scalar function and also
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does not fect the dynamics when it operates on the fundamental 1-form. We, therefore,
adopt a reduced form{,y = i,dy. The gyrocenter 1-form is calculated from the Lie
generator as

o =T, (2.42)
I =Ty —i,,dlo +dS,, (2.43)
[y =T, —i,dl + (%(igld)z - igzd) Io+dS,. (2.44)

Then-th order gyrokinetic 1-form can be written as

I'h=Tnh—l,dlo+C,+dS,, (2.45)

where the ternC, represents all the remaining components coming from the higher order

1-forms,I';, ', .... Then-th order 1-form can be separated into the time component and
the others;
Io=Tno—g} -———|+C —_ 2.46
no no g”(aZJ ot ) +Cno + ot ( )
_ . oS
Fni = Fni - g,ﬁwji + Cni + az? (247)

Using the relations, dl'y = glw;idZ andoiwy = &}, we can solve Eq{4]) for the Lie
generator;
gg =0, ng1 =o' (Fni =i +Cpi + aisn)- (2.48)

Substituting it to Eq.[Z.46), we obtain

— S — dSn\ i 0T Ol
FnO - rno + CnO + a_tn = (Fm - Fni + Cni + az?) oV ( azojo - afj) . (249)
Using a vector fieldV, created by the zeroth order equations of motion,
; i [0 Ol pj
0 _ i _ Y200 ¢l o
Vo=1 Vy=0o (c’)ZJ’ 5 ) (2.50)
the determining equation of the gauge function is obtained as
, ds . 0S - —
i,dSn = d—t” = (V'oa—z—? = —Vp(Tni = Tni + Cni) - (2.51)

The gauge function is solved by integrating the right hand side along the zeroth order
motion.

Since we obtain all the relations between the new gyrocenter 1-form, Lie generator
and gauge function, the gyrocenter 1-form can be determined to be a suitable form. We
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require the 1-form to be zero except the time component. This form does not change
the Poisson tensor from that of the zeroth. Thth gyrokinetic 1-form is, therefore,
determined by
[h = Vo (Tyi + Cyi) dt. (2.52)
The new 1-form has only the gyroaveraged components of the guiding-center 1-form to
be independent of the gyrophase. The remai®ndependent components are put into
the gauge function;
IS o ~
(v'oa—z_? = —Vp (T + Cai). (2.53)
From the gauge function, The Lie generator is determined as
gn=0, g =0" (Tni+Cn+dSn). (2.54)

We use the following notation here to separate the gyroaveraged component and gyrophase-
dependent component;

1 -
W) = o Sﬁwd& J=v-w. (2.55)

2.3.2 First order analysis

We carry out the procedure presented in &8.1and obtain the first order gyrokinetic
equations of motion in this section. Although the second order analysis is omitted here,
we can carry out in the same way. First, the zeroth order 1-form and the its Hamiltonian
flow are given by

Fo = (0o + mizb) - dX + gﬁd@ - | 5% + BT+ ago| (2.56)
0 1L Bou)| 0
Vo = i B B v||+b><V(¢o+ q)] X

d gB* Bou\ 9
+Q— - Vigo+ — | =. 2.57
00 mE (¢0 q /dy @50

The first order 1-form is determined from EG.%2) as
1:1 =—( <¢1 - (17”6 + v_lf:) -A1> dt. (2.58)

From the zeroth order floww, and the perturbation component of the first order 1-form
~ ~ —~— 1 —~—— ~
I'n = QA]_ -dX + qul -€CdO + U_Al . ad/.l — Q1 dt, (259)
1

the determining equation of the first order gauge function is obtained as

@+fvga_s_l+(vga_s_l.+(vv_”@

2 — by — VA - OATE. 2.
ot IX %) 0 ny a1 —qVy - A1 —qoVyAsL-C (2.60)
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Since obtaining the exact solution of thidfdrential equation takes much time in nu-
merical calculation, some approximations are applied to it. The Hamiltonianfgve
approximated to the dominant components, i.e. gyration, parallel motion and time evolu-
tion;

a _~ 0 0
VoL 1ob- 0L 2.61
o= g rub- o=+ Qom (2.61)
The derivative of the gauge functi® is approximated as
ds, ~ %1 46. (2.62)
00

Using these approximations, we can obtain the solution of the gauge function as
S = % f[¢1 — (0.&+uyb) - As - <¢1 — (0.t +yb)- A1>] do + A, (2.63)

where the constant of integration is denoted\oyl he constant is caused by the approxi-
mation employed here, i.e. we ignore the dependenc8s tf the other coordinate vari-

ables such ag X, u andy,. Originally, the gauge function is determined by the integral
along the Hamiltonian flow, or the particle trajectory, but now the path of integration is re-
placed with a mere gyration. Theffiirence form the open path to close one results in the
constant of integral instead of the initial value. Although the constant could be arbitrary,
we have to choose the most appropriate one to reduce the error due to the approximation.
Taking the gyroaverage of the original equati@re(), we obtain the time evolution of the
gyroaveraged component of the gauge functiod ¢3,) /dt = 0. This relation indicates

that the gyroaveraged component should not change in time. We, therefore, choose the
constant of integral to make the gyroaveraged gauge function vanish;

a (- a (-
si- g [ i@~ (3 [“ine)ao)

q O+2r
= Ef@ (@ - 0 - m)y,(0")de’, (2.64)
where we use the notation
U1 = ¢a(X + pA) — (0.8 + yyb) - AL (X + pA). (2.65)

In the second equality in EJZ{69), the integration by part is applied. From the gauge
function, the Lie generator is determined as

gi=0, gl=0"([y+8Sy). (2.66)

The gauge functio®; is solved here by assumit@S, /dt| =~ [QdS,/d6] > |0S,/ot +
v;-0S1/0X]. This condition for the approximation can be relaxed by solving the determin-
ing equation ofS;, Eq. .60, in the following perturbative manner. The zeroth gauge
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function is defined as a solution of the equatifde S, = qy:;

O+21

g (@ — 0 — 1)1 de’. (2.67)

sO _
1 21Q)

This solution is same as E@.69). The first order is determined by the equati@ﬁ@S(ll) =
QW1 — (@ + yb - V)S;

S(l) ~ 1 O+21 o (95(0) 6 35(0) .
1“%[9 (O ~0-m| - +ub- 7o~
_ q o2 ’ e 77 ’ 8¢’1 in 61/’:'- ’” ’
= m o (@ ® 7T) (@ -0 ) Hb ax doe d@,
__4 f "o 0y a¢1+ b. ‘9‘”1 do'. (2.68)
4702 J, ot '

The second order is obtained similaly as

S(Z) ~ q O+21

— 0 9\
1~ 12708 (0 -6-21)(0" -6 -7 (0 -0) (ﬁ +ub- _) J1d0'. (2.69)

This expansion was introduced by Brizard [18] and applied to a calculation of the com-

. , . . 0 1 2
pressional Alfien wave by Qin [19,20]. The resulting gauge func@®n= S”+S{"+s®

Is given by
_q [, @-0-n(d ~ 0
sl_sz(9 (@ -0-7)|1+—3

’ ’ 2
L(©@-0-200© —@)((9t b i)

o 100", (2.70)

In summary, the gyrocenter 1-form up to the first order is given by
To+T; = (qu + szHb) dX + au 1dO — [ v” + Bou + qgpo + q<w1>] dt. (2.71)
The gauge function and the Lie generator are given by

O+21

q

S, = % (@ — O — M) (0)dO, 2.72)
g = q% (qu ‘;il) - n'?q aajll’ (2.73)
g2 = —%(%a~ A+ ‘Z—il), (2.74)
J = %(Qpé A+ ‘2—2)1), (2.75)
g = ”I‘B: -(qu + %). (2.76)



The Lie generator is sometimes further approximated as

o q q. . &
A2 - 9580 9% .a0
g1= bx 1 X ot Mae tmd Mgy
+—q2 (@1—06'A1+U (e'A1>)—a (2.77)
1 . .
mQ ! ou

2.3.3 Second order analysis

The second order 1-form is given by
= . . 1, 2
) = iy, <r2 ~igdly+ 3 (i,0) r0> dt
o= 1, N2
Vo <r2 ~igdly -3 (i,0) r0> dt, (2.78)
where the relatiorfl =TI1 —1i,dlH +dSy, is use. Here the first term is calculated as
: ||ﬂ Moy
iy, (To) = 3 (a-vb-¢) = - 2 —%ph.vxhb, (2.79)

where we make the approximatidrv(§ ~ pb. The second term is calculated as

oo, oY)
mQ< -A) P

i (i) = -3 (5 ALY - L5 x (A1) ¥ () (2.80)

The third term is expanded as
1 1, .
= 2o (1) To) = =3 (ia + Q)
; maao Mo — 7__UH
X Igld ngd@ qgl d/.l Boglidt mv”gl . (281)

It is approximated further as

1. N2 ﬁgﬁ 591 m/ z2\ Mo 5392"
- Sivo (i) Fo)ﬁ( “he > §<gl>+7<gﬁ>

2 vy
- O<gg > ;m<A§|>—;—B'L<é-A16-VA1”). (2.82)

Therefore, the second order 1-form is obtained as

T q o ., WD g
on = ——(l:llb Vxb- <Ai||> QO < 1> [.ll - g (b X <Al>) \Y <lﬁ1>
_Bo<gu g1> oL (8- At VA, (2.83)
90 ”
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If the compressional component of the magnetic perturbation is negligibléi.e= 0,
the 1-form is further reduced to

3 o - .
on_——('q"ub V x b——<A1”> %a—ﬁ<(¢—v”Aﬂ|)z>. (2.84)

The first term in the right hand side implies the recovery of thed3adrift.

2.3.4 Gyrokinetic equations

In the preceding sections we have obtained the fundamental 1-form for the gyrocenter
coordinate system. The gyrokinetic equations of motion are easily obtained from the
HamiltonianH = —T'gg — I'1p — I'p and the Poisson tensors, ER.ZJ), as

dX 1. 6H B 9H

i T xSt ml?ﬁa_v_ll (2.85)
C(IT? _ %%, (2.86)
f’j_i‘t_ r‘;%’; , (2.87)
% _ _%3_2_ (2.88)
The linearized gyrokinetic equations of motion are given by
LN T
‘jj_‘?:m‘j;aéiﬁ, (2.90)
‘Zﬁt‘ 0. (2.91)
% - —r?]BE% : V(¢o )+ ’ajBo). (2.92)

Using the gyrocenter distribution functii(X, O, u, v;), the general gyrokinetic Vlasov
equation is written as
OF X OF dOOF dijoF _

dt " dt axX ' dtoe « dtay (2:93)

The distribution function used here is a six dimensional function of the gyrocenter coordi-

nate variables. In order to reduce the numerical calculation cost, the distribution function
is separated into the gyroaveraged component and the remaining gyrophase dependent
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componentF = (F) + F. Since the equations of motion are independent of the gy-
rophase, the Vlasov equation is decoupled in the following two equations;

d d>? 9 dyd
g + d_X ) (9 + d_@ 0 dl)” 8 F O

In the collisionless limit, one can ignore the latter equation by sefﬂng 0 at the be-
ginning of calculations, i.eF = <® because of the conservation propedt?y/dt = 0.
Therefore, the reduced equation describing the evolution of the five dimensional distribu-
tion functionF(t, X, iz, oy),
dF dX aF oF | dy dy, aF
dt dt gx  dt av” ’
is usually called the gyrokinetic Vlasov equation.

(2.94)

2.3.5 Pullback

A closed set of equations describing a plasma consists of the equations of motion, or
Vlasov equation, and the Maxwell’'s equations. Since the Vlasov equation has been ob-
tained, the remaining task we have to do is to write the Maxwell’'s equations in terms of
the gyrocenter distribution functioR. In other words, the charge and current densities
have to be derived from the gyrocenter distribution function. This can be curried out with
the aid of the pullback technique introduced by Brizard [18] and Qin [20].

If the particle, guiding-center and gyrocenter variableszZ, Z_represent the same
position in the phase space, a distribution function can be expressed by each coordinate
variable without any loss of accuracy;

f(2) = F(2) = F(2), (2.95)

because the distribution function is a scalar field in the phase space. Using the Lie trans-
formation introduced in Se@.3.1 the guiding-center distribution can be expressed in
terms of the gyrocenter one;

F(2) = F(2) = F (exp(L,) Z) = [exp(<L,) F| @)

. OF
= F(X CNTRIES glaz' (2.96)

An observable macroscopic quant'ﬁyx) are calculated from the microscopic quantity
A(X, v) through the integral over the phase space,;

A(X) = f AX V) E(X, V)X — X) d3X dy. (2.97)
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This integral can be rewritten as the integral in the guiding-center coordinate.
_ B
/1(X) = fA (X, @,/1, V||) F (X, @,/1, V||) 0 (X + pé - X) E”d?’Xd@dﬂdU” (298)

Using the pullback expression of the distribution function, Eg9®, the macroscopic
guantity 1 is expressed in terms of the gyrocenter distribution function We, therefore,
obtain the charge and current densities up to the first order as

oF V) A Bl .
Q(X, t) = f (F + glaZ|)5(X + aa— X) Ed Xd@d,udv”, (299)

F Uy . B,
jox,t) = fq v”b + vlc) (F + glaZI)é(X + é - x) ﬁ”d3Xd®dudv”. (2.100)

We present four useful expressions employed in the gyrokinetic analysis of the micro-
instabilities. The general form of the charge density under the assumption of the electro-
static plasma is given by

 wh B!
o(x, ) = f (F ; qﬂa—i)a(x ; %a— x) L d*Xdedud. (2.101)

This expression uses some approximations described above, but can be used for general
purposes such as analytical modelings and numerical simulations of micro-instabilities. If
additional assumptions can be applied to the plasma, more simple expressions are avail-
able.

The simplest expression is obtained by the long-wavelength approximatitn,<
IVIn g™

9(x)zf <F+pa vm%aa VVF

q OF oF\\ B
+§pa V(¢1 - pa- V¢1)(—M—p -V 6ﬂ)> E”Zﬂdﬂ,dvn

_ _ By
= IQ<F +%‘é: VVF - %é-V(aF V¢1)> m”Zﬂd/»t,dUn

B ou

EPSVIRL BT AV (2.102)

Zmz mz 4 4 ’ .
where the gyrocenter density and pressur® are introduced as follows;
_ B

N(X) = fl:(t X /J, U||) 27Td/J, dU||, (2103)
_ _ B

P(X) = f BoitF (L, X, /2, U”)ﬁ”anﬁ, doy. (2.104)

The physical meaning of each term in EG.J032 is understood as follows. The first
term N represents the density of the gyrocenter, the second term represents the finite
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Larmor radius (FLR) ffect and the third term represents the polarization density. It can be
interpreted as the induced charge densi¥y, - [q NAp], which caused by the polarization
shift, A, = qE1/mQ?, due to the perpendicular perturbation electric fi@ld= -V, ¢. In

other words, the time variation of the polarization densipy/dt = -V - j,, is caused by

the current due to the polarization drifts = qN(gq/mQ?)dE;/dt. As is shown in these
observations, the polarization drift does not appear in the equations of motion, but in the
density as an induced charge by the electric field. This apparently contradicted result is
caused by the definition of the guiding-center coordinate. We constructed the guiding-
center from only the magnetic field and the velocity and did not use the electric field.
Consequently, the position of the guiding-center does not shift or drift if only the electric
field changes. Since the gyrocenter transformation is an optimization to the guiding-center
coordinate to decouple the gyrophase dependences, the gyrocenter position also does not
have the polarization drift. The polarizatioftect dropped from the equations of motion
appears as the polarization density through the coordinate transformation,

A o A q
X=X+pa=X+pa- @quﬁl. (2.105)
Another useful expression is obtained for the uniform plasma. When the distribution

function is given by the sum of an uniform equilibrium Maxwellian and a perturbation,

— - =T —— — m mv2
F=Fo+6F (t,X,u, v||), Fo = Moz expl——=|. (2.106)

the perturbation charge density is calculated up to the first order of the perturbation as

_ _ Bl —
000 =+ [ a(oF(x-p8) - FFa[600 - ) (x - pA) o 2xc . (2.107)
It is usually represented in the Fourier space;

. 2
o(kK) = ano + quo(kLp)&:_(k,#’ Uu)%Zﬂ dudoy — @ |1-To(p)| ea(k), (2.108)
where the thermal gyroradiys and the functior’y are introduced as, = VT/m/Q and
I'o(2) = 1o(2) exp(-2), respectively. We denote the Bessel and modified Bessel functions
by } and k. The Paé approximation of the functiof, I'0(2) ~ 1/(1+ 2) or 1 - Ts(2) ~
z/(1+(3/4)2), is sometimes employed in numerical calculations. According to Dubin [14]
and Hahm [15], a more general expression for a nonuniform plasma is given by

— B 2n
o) = o+ [ ab(kup)oF(k.p )2 duy — T2 [1- Fo0 D) 610
qzno[r(k2 2) _To(p2) ik, - In VngoZes (k 2.109
~ = [Mu(kpf) - To(KipD) | ik - In Vrgpfea (k). (2.109)
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2.4 Conclusions

The general derivation of the modern gyrokinetic equations was presented. The mod-
ern gyrokinetic theory has started from the early works by Littlejohn, which presents
the advantages of the Lie perturbation analysis in the rigorous and mathematically clear
treatment of the particle dynamics in an externally applied magnetic field. Brizard and
Qin applied the Lie transformation technique for the perturbation electromagnetic field
and obtained the closed set of the gyrokinetic equations in the context of plasma physics.
Although their goal was same, their calculation processes were sligligrafit in the
introduction of the guiding-center coordinate. We chose the most straightforward way in
this work.

First in Sec[2.2.] the guiding-center position was used to evaluate the equilibrium
magnetic field in the definition of the guiding-center coordinate instead of the particle
position. This treatment is same as Qin’s formulation and makes the preliminary calcula-
tion for the Lie perturbation analysis much simple. Second in the gyrogauge
transformation was utilized to exclude the arbitrariness in the definition of the gyrophase
in the same way as Littlejohn did. Although this process is not essential in the formu-
lation, the suppression of the physically unnecessary terms related to the arbitrariness is
desirable for the general derivation in the case of nonuniform magnetic fields. Third in
Sec2.Z2.4 we carried out only the gauge transformation in the preliminary stage as Qin
did. The simple guiding-center coordinate adopted in this work does not provide the true
adiabatic constant, i.e. the magnetic moment. Although Brizard employed the Lie per-
turbation analysis twice to obtain the guiding-center and gyrocenter coordinates, the first
one can be omitted because it igigtient to carried out the Lie transformation once at the
last of the derivation to obtain the true adiabatic quantity.

In SecZ.3 the general expressions of the gyrokinetic equations up to the second order
were obtained. The perturbation potentials are assumed to satisfy the gyrokinetic ordering
in Sec2.2.3 The gauge function used to determine the Lie generator and the gyrocenter
coordinate is approximated under the gyrokinetic ordering in In addition to
a commonly used expression of the gauge function, we obtained a more rigorous one,
which relaxes the restriction on the time scal¢Q < 1, and enables one to treat more
short time-scale dynamics such as the compressionatAlvave [19, 20]. If much more
high frequency one such as the ion cyclotron wave has to be taken into account, funda-
mental improvements should be made. An attempt for the implementation in a numerical
simulation is found in Ref. [23].

The general expression of the charge and current densities were obtainedZiBSec.
through the pullback transformations of the distribution function. We confirmed that the
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conventional expressions of the charge density were recovered under the corresponding
assumptions. Although a closed set of the gyrokinetic equations was presented, the con-
servation of the plasma energy was not provided here. Additional discussion using the
field theory [25] may required to obtain the conservation law. Recently, a modern rep-
resentation of the field theory is studied by Brizard [26, 27] and Qin [28, 29]. The self-
consistency of the gyrokinetic theory will be an important topic of further studies.
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Chapter 3

Refinement of the gyrokinetic equations
with large flow shears

3.1 Introduction

Understanding the role of flow shears in the turbulent transport is one of the major issues
in tokamak plasmas. The stabilizinffect [30—34] of thée x B flow shears on the toroidal
ion-temperature-gradient (ITG) mode and various drift waves is believed to be one of the
essential elements in the core and edge transport barriers. The existence of large flow
shears associated with the short scale-length is a characteristic feature of the edge plasmas.
In addition to the relatively short time-scale dynamics such as the micro-instabilities, the
pedestal plasmas involves the longer time-scale equilibrium dynamics such as the edge
localized modes (ELMs) and the L-H transition. In order to treat the multi-scale physics
like the micro-instabilities and the equilibrium dynamics, a global full-f simulation is
required for the understanding of the pedestal physics. Recently the development of such
simulation codes [35, 36] has started. They employ the gyrokinetic equations [18,19, 37]
as the fundamental equations to describe the low frequency behavior of plasmas. The most
distinct advantage of the gyrokinetic theory is in the separation of the time scale between
the fast gyrating motion of particles and the relatively slow drift motions. Discarding
the gyrating motion and the gyrophase dependence of the velocity distribution functions,
one can choose much larger time-step than the gyroperiod in a simulation. It is also a
benefit that the gyroaveraged expressions of the potentials and other physical quantities
can reduce the numerical noise caused by the discreteness of the particles and the spatial
grids.

The modern derivation of gyrokinetic equations has been developed with the aid of
mathematics and the analytic mechanics such as 1-form representations of the particle dy-
namics, the Lie perturbation analysis and pullback representations. The commonly used
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procedures in the derivation are understood as two steps of coordinate transformations
and the formulation of the Maxwell’'s equations on the new coordinate. The first transfor-
mation introduces the guiding-center position, the gyrophase and the magnetic moment.
The second one decompose the gyrophase dependences in the 1-form through successive
Lie transformations. The gyrophase dependences in the original equations of motion are
removed and thus the gyration and the drift motion are decoupled. The Vlasov equation
and the Maxwell’s equations expressed by pullbacks in the new coordinate enable one to
treat the low frequency phenomena without resolving the fast gyrations of particles.

The improvement of the gyrokinetics for the strdag B drift flow was provided by
Littlejohn [17] for the first time and extended for the plasma with potential perturbations
by Brizard [38], Hahm [39] and Qin [40]. Applications to the global linear analysis of
ITG modes have been also made [31, 32]. We note that the gyrokinetic equations based
on the conventional recursive method [2,3,11-13] also has been formulated for large flow
shears by Sugama and Horton [41]. Although the formulation by Littlejohn slightigrdi
from others because of thefldirence in the expression of mechanics, their basic concepts
are same. They introduced a reference frame moving witltké3 drift velocity in the
guiding-center coordinate and decomposed the drift motion and the gyration not in the
first order equations of motion but in the zeroth order equations. The physical meaning
of this treatment is easily understood in an ideal case as follows. If the reference frame is
moving with a constant velocit®) and the electromagnetic fields are uniform, the Galilei
transformation withD yields an uniform induced electromotive foragy x B. If the
velocity D is given by theE x B drift velocity, E x B/B?, the perpendicular components
of the electric field is canceled, and the particle simply gyrates as if the electric field is
not applied from the beginning. In this case, the drift motion is successfully decomposed
from the particle motion and included in the zeroth order equations of motion.

In the case of a general electric field, however, the veldgity E x B/B? acquires the
gyrophase dependence through the coupling of the gyration and spatial variation of the
potential throughe = —V¢(x). This dependence makes the derivation of the gyrokinetic
equations complicated [17]. On the other hand, if the veldoiig defined as th& x B
drift velocity measured at the guiding-center position as is common in the previous works
[38—40], it differs from the averaged drift velocity of the gyrating particle in case of the
nonuniform electric fields. In order to obtain the most appropriate zeroth order equation
of motion, refinement of the velocity of the reference frame is necessary.

In the present study, using the conservation property of the magnetic moment as the
criterion of the accuracy of the zeroth order equation of motion, we examine several
kinds of drift velocities including the previous expression and obtain the practically most
accurate expression of the veloclly The advantages of our gyrokinetic equations of
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motion are verified through comparisons between the numerical solutions of the previous
gyrokinetic equations and ours.

In Sec[3.2 the guiding-center coordinate variables are introduced in the 1-form for a
single particle. An equilibrium drift velocity is also introduced in the transformation
of the velocity coordinates so that the particle motion becomes a nearly simple gyration
in the reference frame. In Sd8.3 the criterion to choose the appropriate velo@ys
discussed. After examining several possible choice®fas most practical expression
is determined. The rest of the standard procedures, Lie perturbation analysis and the
formulation of field equations, are curried out and the gyrokinetic equations are obtained
in Sec3.83 The accuracy of the resultant equations are compared with those of Qin’s
formulation [40] in Sed3.8 Finally, conclusions are presented in $&d

3.2 Preliminary transformation

The first step in the derivation of gyrokinetic equations is a guiding-center transformation
introducing a guiding-center positiof, a gyrophas®, a perpendicular velocity, and
a parallel velocityV,. In the conventional derivations [18, 19, 37], the velocity is simply
separated into the perpendicular and parallel components, ise'f) X (v X 6)| andy, =
v - b, where the unit vectob represents the magnetic field direction. In the gyrokinetic
theory for largeE x B drift flow shears [17,38-40], however, the velocity space is defined
on a reference frame moving with a equilibrium flow veloddy The vector field of
the flow plays an essential role in the improvement of the theory and is discussed in
Sec.B3 In order to distinguish the modified velocity space variables from those on
the stationary framey, andy;, we denote the new velocity components in the moving
frame as capital letter§/, andV,. We note that if the velocit is zero everywhere, the
modified gyrokinetic theory coincides that of usual ordering, i.e. the equilibrium flow is
much slower than the thermal velocity. In this case the guiding-center velocity variables
also coincide, oW, = v, andV, = yj.

We assume that the equilibrium flow is a function of the guiding-center posiion
to avoid undesirable complexities due to the dependences on the velocity space such as
0D/oV,. The guiding-center transformation is defined as inverse coordinate transforma-
tions;

_ mV, ., ,
X=X+ qB(x)a(x,@), (3.1)
v =D(X) + V. &(X,0') + V,b(X), (3.2)

where the gyrophags@’, the orthonormal vectofls = B/B, & = & cos®’ — & sin® and
& = &, Sin@’ +§&, cos®’ are introduced. The perpendicular unit vec@randé, are func-
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tions of the guiding-center positiok and assumed to be given beforehand. Since their
definitions are arbitrary unless they have any singularities, the gyrogauge transforma-
tion [17,18],0 = O’ + ¢, is introduced to remove the arbitrariness in the definition of the
gyrophase®’. The gyrogauge is given byy = fot [(dX/dt) - V&, - & + (0&/0t) - &] dt.
We denote the new direction vectdis(, ®) = ¢'(X,0 — ¢) anda(X,0) = &(X,0 — ¢)
simply by ¢ anda in the remainder of this chapter. The usage of the new gyrophase
©® ensures the the uniqueness of the base direction for the gyrogha%$ée relation,
da-¢ =dX-Va-C+dt0a/ot) - € = do is utilized later in the gauge transformation of
1-form to simplify the calculations.

Although the definition of the guiding-cent&rdoes not have the explicit dependence
on D, a difference arise from the modification of the perpendicular velogity When
the guiding-center position fdd = 0O is denoted by’, the diference from the present
guiding-center position is written a§, = X — X’ ~ (m/qB)b x D, where we used the
approximatiorB(X) =~ B(X’). If the velocityD is given by the simpl& x B drift velocity,
the quantityA, is reduced ta\, = -mV,¢/qB* The fact that its derivative with respect
to time coincides the polarization drift velocity, = —(d/dt)mV  ¢/qB? indicates that
the modified guiding-center coordinaXerecovers the polarization drift due to the equi-
librium electric fields in the zeroth order equations of motion,dX/dt — dX’/dt = v,.

In order to separate the fundamental 1-form for a single charged particle,

y = [GA(X) + V] - dx — [%’UZ + q¢(x)] dt, (3.3)

into zeroth, first and successive higher order components, we introduce the perturbation
potentialsg = ¢ + ¢1 andA = Ag + A1, and the following orderings;

$r~e—, Ai1~e—, (3.4)

where quantitym, g andv, are mass, charge and thermal speed of the particle species,
respectively. The frequency of the perturbatioms assumed to be much lower than the
gyrofrequency; w ~ €Q. The equilibriumE x B drift speed is assumed to be comparable

to the thermal speed at most, and the the spatial scale of equilibrium magnetic field is
assumed to be a second order quantity;

Eo [VBol 5wt
— ~ ~ € —. 3.5
The time scale of the equilibrium potentials are assumed as
0(;50 22 aA0
— ~ , — ~0. 3.6
at € Ut BO 01: ( )

36



From the fundamental 1-form, EQR.Q), and the above orderings, the 1-form in the
guiding-center coordinate can be written order by order;

Yo = (G0 +mV(b + mD) - dX + g“ de

- [gvnz + Bou + gDz + qao] dt, (3.7)
Y1 =(0A1 —mpVD - &) - dX + goA; - €dO + V—lLAl-édu

— [ado + MVLD - & + gga(X + p3)| dit, (3.8)
vy = [%(a-vﬁ 86— 4-VInBot) - mVLV”vB-a} . dX

_ %péb VIn By d® — rrp%—[t) Ladt, (3.9)

The higher order componentg, ya, ..., are omitted. Gyroaveraged quantities and their
corresponding perturbation components for the electromagnetic poteptialgg, ¢, or
Ay, are denoted by = § (X +pa) d®/2r andy = y(X + pd) — . Here the perturbation
of the equilibrium potential is expressedd@sinstead of the Taylor expanded o, ~
pa - Vgo. Although the latter form is commonly used in the previous works [38—40], the
former exact form without the Taylor expansion are desirable in the case of the present
ordering,Eq/By ~ v. The gyroradius and the direction of the equilibrium magnetic field
atX are denoted by = mV, /qBy(X) andb = Bo/By, respectively. The magnetic moment
u = mV2/By has been introduced and the gauge transformation, y + dS, has been
applied to simplify the expressions.

From the truncated zeroth order 1-form under the assumption of the drift-kinetic or-
deringk, p ~ € < 1;

yar = (G0 + mV{D + mD) - dX + gﬂ 4o
_ [gv”2 + Bop + gDZ ; q¢o] dt, (3.10)

we can obtain the zeroth order drift-kinetic equations

(?j): I;L* [B V, +bx (V¢o + qVBo + ZJVDZ 2%—?)} : (3.11)
z(;) qr;lo’ (3.12)
% _o, (3.13)
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where a modified magnetic field is introduced as

B’ EVx(Ao+m—V“6+TD) (3.15)
q q
= Bjb + (mVj/q)b x (b - Vb) + (m/g)V x DI.., (3.16)

where the parallel component Bf is denoted byB; = b-B*. If the velocityD is given
by the simpleE x B drift velocity, it is confirmed that the polarization drift is recovered

as
m~ 0D mV

a8 XE+ q JIIVXDM:—
The velocity of the guiding-center, therefore, invoNes B, gradB, curvature and polar-
ization drifts due to the temporal variation ¢f and due to the parallel motion. Although
we omitted the Baos drift [24] in the above equations, it can be recovered from the sec-
ond order 1-form. The phase space volume is calculat&]/as and the Liouville's the-
orem is confirmed;d/aZ') (B;Z'/m) = 0, where the coordinate variable X, ®, 4, V)),

are denoted by' fori =0,1,...,6.

1 (aVJ_QSO

3.3 Equilibrium drift velocity

In this section, we discuss how the equilibrium drift velodityshould be chosen. The
introduction of the vector fiel® in Sec[3.2is aimed at decomposing the circular gyra-
tion from the particle dynamics. Therefore, one might expect the drift velocity obtained
from the drift-kinetic equatiorfd 1J) to be the best choice &. The dependences to the
velocity space, however, causdfatiulties in the calculations, i.e. the fundamental 1-form
acquires some additional terms sucldBgou andoD/aV,. In order to keep the complex-

ities in the same level as the previous study by Qin [40], we assume that the vector field
D is an only function of the guiding-center positi®&n From the guiding-center velocity,

Eq. 3.11), and this assumption, we can obtain the practically most precise drift velocity;

D=

b (V¢0(X) N VDZ), (3.18)

1+b-VxD/Q Bo 20

Using the identity equatioD x Vx D = VD - D — D - VD, we can obtain the relation

\vj 2
(ﬂ'FDE)— — 1 (V¢O+VD)
B Q 1+b-vxD/Q\ B 2Q
b Vo VDZ)
= = + -V xD. 3.19
1+b-V><D/Q(B 2Q ( )
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The vector product with yields a mathematically equivalent form to EG.I9),

o (Vo VD
D=b><(BO+D Q). (3.20)
Since the definition in the previous study is givenyy, = b x V¢o/B, the modification
introduced into our definition is the second term in the right hand side if3&220)(

The physical meaning of EJ320 is easily understood through the vector product
with the magnetic field;

mD - VDI, = gD x By — V., . (3.21)

This equation represents the perpendicular force balance in the stationary flow. The con-
vection term in the left hand side is missing Dyin. A similar equation,u - Vu =
Quxb- (/Bo)Veo — VP/mN, is discussed by Brizard [38] in the formulation of the
gyrokinetic Vlasov equation for the plasma with toroidal rotation. Since their main in-
terest is in the toroidal flow, their equilibrium velocity includes the parallel flow and they
adopt an approximated expression of the floy= Ug b + b x Vo/Bo, as the vector field

D. Although the equilibrium parallel flow can be included in the definitiopive omit

it for the clearness in the examination of the equilibrium perpendicular drift velocity.

One of the straightforward ways to examine the properness of this choice is to verify
the conservation property of the magnetic momerince the gyrophase dependence is
truncated in the drift-kinetic 1-form, E43{10), the drift-kinetic equatiorid I3 conserves
the magnetic moment. The general equation of motion, however, does not conserves

%:qvl(o-a-e-—-x—-e), (3.22)

because of the gyrophase dependence in the general 1-form

y:(qA0+m\/||6+mD—anD-é)-dX+%d@

- [gv”2 + Bu+ gDZ +mV,D - &+ qdo(X + pa)] dt, (3.23)
where we neglecVBy, Vb and the perturbation potentials. If the gyration and the drift
motion are decoupled well, the value @i/dt should be small. We calculatg:/dt for
three choices dD. The first is zero velocity case, which corresponds to the conventional
formulation with the equilibrium potentialy, but without special treatments for the large
flow. The time derivative oft becomes

de __dVig vy, (3.24)

d B
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If the electric field is largeEqy/By ~ vy, the variation of the magnetic moment becomes
the same order gsg itself. In other words, the electric field has to be as small as the
perturbation potentiap, in this case. The second is the simple B drift velocity, which
corresponds to Qin’s formulation;
du  qVi,

— = 228 V(¢ — ¢o(X)) — qV. XA

s 5 (3.25)

VVgo(X)
B 2

Since the most part of the electric field is canceled, it is applicable for a strong electric field

in this case. The second derivativeggthowever, appears iu/dt and can be significant

if the potential contour has a large curvature. The last is our definition3E2)|

e (Vo—9oX) o ~ VD)
3= _qV, (T +(X-D)- 6) & (3.26)

Since the velocity of the guiding-cent&rcan be approximated a6~ ViB*/B; + D, the
second term proportional t8D is considerably reduced. From the above observations,
we confirm that the refinement of the gyrokinetic equations is achieved through our new
choice of the vector field, EqB(Z0. Numerical verifications of the new equilibrium
velocity are given in Se@.6

3.4 Solution of the equilibrium velocity

We discuss the solution of EQR.Z0Q here. Since there is no analytic expression of the
general solution, we have to employ a numerical solver for the general potential profile.
We can, however, obtain the solution for special cases. First we consider the potential
profile with plain contours. The electric field is writtenass E(X - A)fA with the normal
vectori. In this case, the solution is given by the ordin&ry B drift velocity.

~ vV
D=px 20 (3.27)
B
The solution is confirmed by the relati@n- VD = (E/B)(f x b) - V(E/B)(f x b) = 0.

Second we consider a more practical potential profile with circular contours. We

rewrite Eq.[B.20 in a new orthogonal coordinate system where the base vectors are given
by

e = (b, V.go. bx V. g0). (3.28)
~ VL‘pO E)legbo)

=|b, . 3.29

. ( V.00l V.o (3.29)
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Using these bases, E@.20) is decomposed into

Do=D-e =0, (3.30)
VD
D]_:D'e]_:—D'E'ez, (331)
1 VD
D,=D-&g=—-+D-— €. 3.32
2 &=g+D & (3.32)

If the vectorD is also written ad = D;& = D'&, Each component of the fiierential
equation is written as

(D10" + D20%)Dy + E113(D1)? + (Ez12 + E122)D1D5 + Egpo(D2)? = —-QD;,  (3.33)
Q
(D10" + D20%)Dy + E111(D1)? + (Ez11 + E121)D1D3 + Eg4(D2)? = QD; - E’(3'34)

where the notatiod' = & - V andE;yx = € - Vel - g are introduced. In the case of the
potential with circular contours, the déieientE,,, vanishes because of the symmetry;

Ezz0= (b X Vo) - VIN |V o2 = O. (3.35)

The first component of the vectd®, therefore, vanishes and theffdrential equation
reduces to

1 E
Do=0, D;=0. Z-D+ %%Dz)2 =0. (3.36)
This quadratic equation is solved as
1 2
D, == , (3.37)
B1+ Vl — 4E221/BQ
The codlicient E,,q is calculated as
Vo ~ ~ Vo
Exi1=€ -V e = ‘b xVVpoxb- : 3.38
@ Wl Y W 839

Since the potential with circular contours can be expresseg(g§ with the radial vector
r, the codficientE,»; is reduced to

o AN L/ P A P
E221_r b x (¢o r)r2+r| x b c = b><r , (3.39)
and thus the solution is given by
2 b x V¢ E |- rf
D= = - A4
1+ viac B Ba P X7 (3.40)
where the radial electric field is denoted By = —d¢o/0r. This velocity is larger

(smaller) than the simpl& x B drift velocity for positive (negativejjE by a factor of
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2/ (1+ M) and the polarization shifb x D/Q is also larger (smaller). We note
that if the codficientC is larger than 14, i.e. the electric field is too large, the velocity
D can not be defined. Above the marginal value, the trajectory of the particle diverges
exponentially.

Lastly, the numerical scheme for the general potential profile is presented. We used a
simple recurrence equation to solve the equilibrium drift velocity;

~ 'V
Do = b x %, (3.41)
~ [V vD
Dn+1 = b X (% + Dn+l * ?n) s (3.42)

where the gradient of the vectbr,(X) is calculated as

9,00 = 3220+ 92) — (x-o2) (3.43)

The small quantity is chosen to be much smaller than the scale length of the potential
¢o. Suficient accuracy for general purposes can be obtained by two or three times of the
iteration.

3.5 Gyrokinetic equations

3.5.1 The general derivation of the gyrokinetic equations

The remaining procedures to obtain the gyrokinetic equations are the Lie perturbation
analysis and the formulation of the gyrokinetic Maxwell's equations. Since these treat-
ments are essentially same as the previous works [17-19, 37-40], we omit detailed dis-
cussions and describe the outline and the results.

Successive Lie transformations are introducgds - - - exp2L,) expeLy). Theith
order operator/; is a Lie derivative operator defined by ath order Lie generatag;;
Liv = i (dv). Although the correct Lie derivative has the forpidv) + d(i,v), we adopt
the truncated expression because the second term doeffexitta scalars and resul-
tant equations of motion. In other words, the second tefiy) is eliminated through
the gauge transformation. The guiding-center coordinate variales (t, X, ®, i, V;)
are transformed to the gyrocenter coordinate variailes (t,X,0,/,V)); Z = TZ =
-+ - explei,,d) expei,,d)Z, where the time variableis not changed through the Lie trans-
formation. The 1-form in the guiding-center coordinate; yo + ey, + €%y, + - - -, is also
transformed to the gyrokinetic 1-form,= I'y + €'; + €°T» + - - -, in the gyrocenter coor-
dinate. The new 1-fornii is determined by the Lie generatgrand the gauge function
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I'o = o, (3.44)
Fl =vY1— igld’)/o + dS]_, (345)
o=y =gy + 5 (('gld) ig,d) yo + dS. (3.46)

The first order gauge functioBi; and the first order Lie generatgy are determined as
follows;

0S

(Vioa—z—il = —Vi (yn — (yai)) » (3.47)
8S, .

= i+—=| forj#0, 3.48

sh=o [+ 53 foris 349

where the vector fieldvi0 is defined as the flow created by the zeroth order equation of
motion;

Ooi _ aLOO) (3.49)

Vo= (azo 7]
The time-component of the Lie generatof, is defined as zero, which corresponds to
the identical transformation for the variatleThe tensotr represents the Poisson tensor
calculated from the zeroth order 1-form, EG.4);

bx1/q8| 0 0 B/mE
. 0 0 ao/m O | (3.50)
0 -g/m O 0

BY/mE | 0 0 0

The gyrokinetic 1-form is obtained up to the first order;
I'=To+T1 =7y Vh(yy)dt (3.51)

This 1-form yields the gyrokinetic equations of motion

i A OT:
dz _ (_, _ %) (3.52)

dt ot o0zi)’

The Vlasov equation and its conservation form are also obtainéd(aE_ /62‘) =0 and
(0/0Z') (Z'B;F) = 0, respectively.

The gyrokinetic expressions of Maxwell’s equations can be obtained by writing the
charge density and current density with the distribution function in gyrocenter coordinate.
The formulation is achieved by pullback technique introduced by Brizard [18] and Qin
[19,20]. When a physical quantity is given b, v), e.g.4 = gfor the charge density and
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A = qv for the current density, its moment is expressed(a} = f AX V) T(X, V)X —
X)d*x'd®’. Thus, the pullback expression 8f A(Z) = A(X + pa, v(0,u,V,)), yields

the averaged quantity in the guiding-center coordinﬁ(ue) = fA(Z’)F(Z/)é(X’ + pa—
X)B;/m dz’. The distribution functiorF(2) is that of guiding-center and also can be
written in the gyrocenter coordinate &&) = F(Z) = F(Z). The gyrocenter distribution
function F is usually assumed to be independent of the gyropﬁaé'erom the pullback
expressions, we can write the moment integral of arbitrary physical quantities with the
gyrocenter distribution functioR;

By ’ w7/ ’ A Bﬁ 6=/
%) = fA(Z T F@)6X +pa-x)—L 7" (3.53)

3.5.2 Limiting case with electrostatic perturbation

We show the gyrokinetic equations with the electrostatic perturbation as an example of
limiting case. The equations of motion in this section are used inN&&for numerical
verifications. We use some approximations commonly assumed in the analysis of the
micro-instabilities [39, 43, 44]. First, the vector field of the zeroth ordéy, used in the
determining equations of the gauge funct®n Eq. [3.43), and the 1-form, EqE5)), is
reduced toV, ~ (\7”6 + D)dx + Qdg + 0. Second, we assume that the dependences of the
gauge functiors; on the coordinate variablex_(ﬁ, \7H,t) are much smaller than on the
gyrophase@, i.e.dS; ~ 6@81d(§.

Under these approximations, the gyrokinetic 1-form is obtained up to the first order
as

I = (gAo + mVjb + mD) - dX + gﬁdé

-~ [2\7”2 + Bu + gDZ + Qoo + qg;l] dt. (3.54)
Although this equation is almost same as the corresponding equations in the previous
works of Hahm [39] and Qin [40], there are twofldirences. One is the definition of

D from the simpleE x B drift velocity to the generalized one. The otheffelience

is the expression of the gyroaveraged equilibrium potegialHahm and Qin employ

do+ (Mu/202)b - V x D anddo + (1/29Q) V2 ¢, as the gyroaveraged potential, respectively.

The term (nu/2g2)b - V x D is also found in Brizard's paper [38] and can be written as
(u/29Q)V? ¢ approximately. Since our expression of the gyroaveraged potential is also
approximated ago ~ ¢o + (u/20Q)V2 ¢o, these three expressions are essentially same.
Our equation, however, has an advantage in the rigorousness because of the absence of
the truncation due to the Taylor expansion.
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The first order gauge function is obtained as

_ 9~ 9 mp . .
S, = 5®0+5®1—H(V”b+D)-VD-c+ mpa - D, (3.55)

where the notatiod = ¢ ¢ de - <§<Z d@)é is introduced foi®, and®;. It is calculated
by the partial integral;

- 1 O+21
b= f@ (@ — @ — 1) (X + pa(@)) d@'. (3.56)

Using the definition of the velocity fiel®, Eq. [3.20, we can rewrite Eq[d59 in a

simpler form,

~ mv,
S, = o, + L. vy, - TLb-vD &+ gcpl (3.57)

The first two terms in Eq[3 53 can be written also as

O+21
Ao+ Levgo = f (0'~0-) [¢o (X + pA(©")) ~ $o(X) ~ &(©") - Vo(X)] O
(C]
(3.58)
The previous expression given by Qin for the simple equilibrium veldDigy, = b x
V¢0/B is

" V . V. V- ~
gq)o + q—;c V(Po - = DQin . VDQin -C— ?”b . VDQin -C+ %(Dl (359)

The third term inS; qin has been canceled in our gauge funct&n This fact shows that
the zeroth order equations of motion adopted here is more accurate than that of Qin’s
study. The first order Lie generatgy is calculated from this approximat&] as

Sl Qin —

Vi 1~ A q q do HP
X = —— —_— . — — ——
g1 = anbx mpVD a+V(QCDO+Q<Dl+ ot Vo b-VD- )]

B* mp ~ "
- = l(_ﬁb'VD'C)’ (3.60)
oo E (0% 0b 1o Mg on e (3.61)

LT mo g T ar T vl T v, ’ '

I V - .
ji:qm(¢o+¢l—pa-v¢o+ny;”b-VD'a), (3.62)
v B* A q g =~ do ., \T
gy = e ) [—moVD CA+ V(Q(I)O + 5(1)1 + 50 Vo — —b VD -C||. (3.63)

Terms proportional t® - VD have been canceled also in the Lie generator.
From the gyrokinetic 1-form, the gyrokinetic equations of motion are obtained as

moD
[B V, +bx (V¢0 + Vo + qVBO + ZJVDZ q E)

dX 1

ot B* (3.64)
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d®@ qB ¢ o S ¢

dat - m " m i T ou’ (365
du

2= 0, (3.66)
dvy  gB” — — U m__, madD

The term proportional tdD/dt in Eq. (3.6 represents the polarization drift due to the
temporal variation of the equilibrium electric field. This term lacks in Hahm’s paper
[39] because of the assumption that the equilibrium potential is constant in timeu The
derivative of the gyroaveraged potential is also expressed as
ap 1 "
—=—(a-Vo(X + pd)) = = (cc VV¢(X + pd)) . (3.68)
TR \V
If the spatial scale of the equilibrium potential is much larger than the gyroradius, we can
use approximated expressions,~ ¢q + (p2/4)V2 ¢ anddgo/dp ~ V2 ¢o/2B.
The particle density is calculated up to the first order as a pullback expression;
~ x OF  L0F g oF\B
n(x) = f(F +g5 - X + 1@ +g, 8V|) — (X + pa—x)d*XdedudV,.  (3.69)
If we used the approximated expression of the Lie gener@gt@r,jf, as is often the case
with the most of the gyrokinetic analyses, the density equation is reduced to

f (F+ o0z F} B 50x + pa—x) d*XdedudV. (3.70)

Using the partial integral for and assuming that the spatial scale of the equilibrium
potential is much larger than the gyroradius, we can obtain the reduced expression

1
n=N+ @VL . (U”V”D) + Np, (371)

where we define the gyrocenter dendity the parallel velocityJ; and the polarization
densityN, due to the potential perturbation as

_B:
N = f Fﬁ”a(x + pa— x) d*XdedudV,, (3.72)
_B
U” = fV”F—”é (X + pé - X) d3Xd®d,le\/||, (373)
oF B 3
Np = —¢ ——5(x + pa — X) d*XdedudV. (3.74)

The density equation for Qin’s equilibrium velocity is given by

Noin = N + évl +|(NDgin + Uyb) - VDgin| + Np. (3.75)
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The term proportional t® - VD has been canceled also in the equation of the density.
This relation gives the Poisson equation and thus we have obtained the whole set of the
gyrokinetic equations.

3.6 Numerical comparisons

In this section, numerical verifications are given to confirm the advantages of the present
equilibrium drift velocity. We solve the gyrokinetic equations of motiB68 — (3.67)

and compare the solutions with that of the full-kinetic equations and the previous gyroki-
netic equations for three kinds of potential profiles.

First, we examine the particle trajectories for the potentiak —Ey and¢; = 0.

The solution of the new equilibrium drift velocity, Eq3.20), for the uniform electric

field is given by a simplée x B drift velocity D = E/BX for B = Bz. Therefore, the
equations of motion for the previous definition@f= D, and our definition coincide

with each other for the uniform electric field. We solved the full-kinetic equations and
the gyrokinetic equations and plotted the particle position and the gyrocenter position in
Fig.B.1 The initial position and velocity used in solving the gyrokinetic equations are
determined from those of the full-kinetic calculation through the coordinate transforma-
tion, X = x — pa+ g7. The last termy} comes from the Lie transformation between the
guiding-center and the gyrocenter coordinates. It represents a correction of the gyrocenter
position related to the perturbation generated from the nonuniformity of the equilibrium
potential and the particle gyration. The solution of the gyrokinetic equations are trans-
formed inversely to the particle positions,= X + pa — gf, and plotted. The gyrating
curve labeled "full” in Fig[B.d represents the particle trajectory calculated from the full-
kinetic equations. The plus cross marks represent the particle positions calculated from
the gyrokinetic equations with and withdDt respectively. From the fact that the particle
positions withD are just on the curve of the full-kinetic solution, while thosé®of 0 are

not, the éfectiveness of the employment of the equilibrium drift velo&ityor the strong
electric field is confirmed.

The upper and lower horizontal lines represent the trajectories of the gyrocenter with
and withoutD, respectively. The dierence in the gyrocenter positions are caused by the
modification of the velocity space. Since the velocity in the gyrokinetics Withdefined
in the frame moving with the velocit§, the gyrocenter position shifts along the electric
field. The amount of the shift is given Hyx D/Q = E/BQy and corresponds to the
polarization due to the equilibrium electric field.

Secondly, we use a potential profile with circular contogggr) = —Er. A parti-
cle drifts along the contour to the clockwise direction for a posiiveThe solution of
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Figure 3.1:Comparisons of particle trajectories calculated from the full-kinetic, gyroki-
netic equations with and withoiil. The curve labeled “full” represents the particle orbit
calculated from the full-kinetic equations of motion. The plus and cross marks corre-
spond to the solutions of the gyrokinetic equations with and witByuespectively. The
gyrocenter orbits with and withold are shown as dashed and dotted lines, respectively.

Eq. .20 for this potential is given by
D= 2 b x V¢O,
1+ v1-4E/rBQ B
where we denote the radius by= +/x2 + y2. In order to confirm the accuracy of the

equation in the nonuniform electric field, the conservation of the energy is examined.
There are two expressions for the energy according to the coordinate systems;

(3.76)

Hi(<.v) = 27 + o E.77)

— - M-, __ m
Hq(X, 1, V)) = EV”Z +Bu+ EDZ + <o) - (3.78)

The former is the Hamiltonian on the particle coordinate system and represents the energy
of the particle at the phase space positioyv]. The latter expressioy is the gyroki-

netic Hamiltonian on the gyrocenter coordinate systﬁn@ﬁ, \7”). Since the description

of dynamics consists of the definition of the coordinate system and the equations of mo-
tion, or time derivative of the coordinate variables, the Hamiltonian becomes an invariant
if and only if the corresponding equations of motion are employed. Thus, the full-kinetic
equation conserves the particle enetgybut not the gyrokinetic energiy, andvice
versafor the gyrokinetic equations. The reason for the nonconservation is that the gy-
rokinetic 1-form and the coordinate transformation between the particle and the gyrocen-
ter involves truncation errors through the Taylor expansions with respecflioerefore,

the degree of energy conservation is a suitable criterion to evaluate the accuracy of the
equations.
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Figure 3.2: Time evolution of the particle energys, Eq. .79, and the gyrokinetic
energyHq, Eq. 8.79. They are calculated from the full-kinetic equations (solid) and the
gyrokinetic equations with the equilibrium velocity fieltl(dashed) an®q;, (dotted).

We employ two combinations of the energy expressions and equations of motion. One
is the ‘proper’ pair of the particle energhis, and the full-kinetic equations of motion,
and alsoHy and the gyrokinetic equations. In this case, the energy is conserved rigor-
ously. From the numerical comparison with the full-kinetic one, the consistency of the
gyrokinetic equations are examined. The other combinationtHi.@nd the gyrokinetic
equations, is useful to examine the accuracy of the equations of motion and the coordinate
transformations used in the calculationtéf from the gyrokinetic coordinate variables.
Although the time evolution of the energy is not stationary, it does not have a secular
variation but oscillates with the gyrofrequency and its harmonics. The amplitude of the
oscillation is employed as the criterion of the accuracy.

We solve the full-kinetic and the gyrokinetic equations numerically and plot three
kinds of energy values in Fig.2 First is the particle energyl; calculated from the full-
kinetic solution. It is shown as a solid horizontal line labelkl in the figure. Second is
the gyrokinetic energyiy calculated from the gyrokinetic solution. The dashed and dot-
ted horizontal lines labeledHy’ represent the gyrokinetic energy for our equilibrium drift
velocity fieldD and that of Qin, respectively. Their conservation indicates the consistency
of the gyrokinetic equations derived here. The reduction of the derivation from the value
of the full-kinetic energy is also observed. The third energy value is the particle edergy
calculated from the gyrokinetic solution. Sinkleis a function on the particle coordinate
system, it is evaluated with the particle coordinate variables transformed from the gyro-
center coordinate variables. The dashed and dotted oscillatory curves correspond to the
solutions obtained from the equations @randDq;n, respectively. Since the amplitude
of the energy oscillation for the presdntis reduced by a factor of three compared with
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Figure 3.3:Standard deviations of energy oscillations for Bve B drift velocity. Figures

(a), (b) and (c) correspond to three kinds of the initial positions of the particles=

25, 100 and 400, respectively. The cross, triangle and circle marks correspond to the
gyrokinetic equations fdD = 0, the improved equations of Qin and the equations derived
here, respectively.

that for the previou®qin, we confirm that the refinement of the gyrokinetic equations has
been achieved by the new equilibrium velocity.

In order to study the dependence of the error on the various plasma parameters, we
plot the standard deviations of the energy oscillation for variéuB, v; and the initial
velocity in Fig.[3.3 The standard deviatiam is normalized by the perpendicular energy
Bu and can be interpreted as a relative error. The horizontal axis represeits Bdrift
velocity normalized by the thermal velocity. F§3a), (b) and (c) correspond to three
kinds of initial positions of the particle,/o; = 25, 100 and 400, respectively. The cross,
triangle and circle marks correspond to the gyrokinetic equatiori3 fo10, the improved
equations of Qin and the equations derived here, respectively. The broad distributions in
o /Bu, especially for the equations f@ = 0, are caused by the thermal spread in the
perpendicular velocity space, which has a Maxwellian distribution. The relative error of
the equations fob = 0 does not depend on the initial position, which corresponds to the
curvature of the potential contour in this case, while the error of the improved equations
with D decreases for smaller curvature. This fact indicates that the error in the equations
for D = 0 depends on the electric field strength, while that of the equation®©ntdpends
on the second derivative @} rather than the first derivative or the strength of the electric
field. This tendency agrees with the observation on the conservation of the magnetic
moment in Sed3.3 The relative error with the presebt is roughly estimated from
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Figure 3.4:Time evolution of the particle energy. The solid and dashed lines correspond
to the solution of our gyrokinetic equations and those of Qin, respectively.

FigB3asA ~ (vexs/v)?/2(r/p0)? = (E/rBQ)?/2 ~ (V2¢/BQ)?/2. From the comparisons
between the Qin’s previous solutions (triangle marks in[Big) and ours (circle marks),
the reduction of the error is achieved when Ehe B drift velocity exceeds approximately
1/10 of the thermal velocity. The maximum reduction arouridQLis achieved when

VExB > Ut.

Finally, we examine the energy oscillation for a more general potential profile. We
used an equilibrium potential with elliptic contours as an examfijes —E /4x2 + 12.
The solution of Eq.E.20 is numerically calculated. The time evolution of the particle
energy calculated from the gyrokinetic equations@Poand Dqj, are shown in Fig3.4
The period, T = 92, equals to a one cycle of the rotation along the contour. At the
beginning of the calculation, the particle is located onxfais, x,y) = (I, 0), and drifts
clockwise to (0—2l) att = T/4 = 23. The slow variation of the envelope is caused by the
spatial diference of the curvature of the potential contour. The amplitude of the energy
oscillation is reduced by a factor of three also in the potential with elliptic contours.

The time evolution of the gyrocenter positions are also compared for the potential
with elliptic contours. We solve the full-kinetic equations, the gyrokinetic equations for-
mulated by Qin and ours from the same initial position and velocity. The deviation of
the gyrocenter position from that of the full-kinetic results is presented iMf3d&.The
dashed and solid curves correspond to the solution of Qin’s equations and ours. Our
equations gives less deviation by a factor of three. The smallness of the deviation of the
position represents the accuracy of the velocity given by the equations of motion.
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Figure 3.5:Time evolution of the deviation of gyrocenter position calculated by the gy-
rokinetic equations from that by the full-kinetic equations. The solid and dashed lines
correspond to the results of Qin’s gyrokinetic equations and those of ours, respectively.

3.7 Conclusions

Refinement of the equilibrium drift velocity in the gyrokinetic theory has been proposed
for edge plasmas with large x B flow shears. An equilibrium velocity fiel® is intro-
duced in the coordinate transformations, EBsl)(and B.2), to decouple the drift motion
and gyration of a charged particle in the zeroth order dynamics inEg). (We inves-
tigated the &ects of the velocityD on the zeroth order equation of motion, especially
on the magnetic momept and obtained the practically most accurate expressia, of
Eq. 3.20.

Using the standard procedures of Lie perturbation analysis, we obtained the general
expressions of Lie generator. EB.48), and the gyrokinetic 1-form, EJ3(5J), up to the
first order. As a limiting case, the electrostatic gyrokinetic equations of moffo64)(

— (B89, and the particle density, EQR.{ZD), were derived. It was confirmed that a term
proportional taD-VD in the gauge function, EJ3(59, used by Qin was canceled through
the refinement ob in our gauge function, Eq3(53. This fact indicates that our modifi-
cation inD reduces the error involved in the zeroth order dynamics.

The advantages of our formulation were also confirmed in the numerical verifica-
tions in Sec[3.8 The accuracy of the equations of motion was estimated through the
conservation of the particle energy calculated from the gyrocenter coordinate variables
Z= ()Z, @,;7, \7”). When thek x B drift velocity is comparable to the thermal velocity, the
oscillatory behavior of the energy due to the truncations at the second order was reduced
up to Y10 in its standard deviation compared with the previous formulation by Qin.

From the analytic investigation and the numerical verifications, it has been confirmed
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that the refinement of the equilibrium velociBy succeeds in obtaining more accurate
equations of motion and gyrocenter coordinate. The general expressions of the charge
and current densities were formulated and the approximated density eq@uidnfor

the electrostatic potential was also obtained. Our formulation is, however, based on the
single particle 1-form and thus the self-consistency for collective dynamics, or a plasma,
is not fully ensured by itself. The self-consistency, e.g. conservation of the plasma energy,
for the gyrokinetics without large equilibrium flow has been confirmed by the field theory
[25]. The self-consistency is essential not only for the theoretical completeness but for the
numerical simulation as a guarantee of the conservation of energy and momentum. The
application of the field theory to the gyrokinetic theory with the strengB flow will be

an important topic of further studies.
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Chapter 4

Kinetic modeling of a sheath layer in a
magnetized collisionless plasma

4.1 Introduction

Plasmas in the laboratory are usually contacting with walls. If the walls are electrically
floating, negative charges accumulate on the walls and repel electrons until the electron
flux balances with the ion flux. The repulsion of electrons causes a decrease of electron
density and generates a nonneutral layer, namely sheath, in front of the wall. The strong
electric field in the sheath layer with a width of a few Debye lengths causes acceleration of
ions toward the wall. In fusion plasmas, the plasma is continuously produced in the core
region and transported across the magnetic field over the separatrix. Since the magnetic
field is open outside the separatrix, the plasma is transported mainly along the magnetic
field toward the divertor plate. The core plasma, the peripheral plasma and the sheath
layer are strongly linked with each other. A proper modeling of the sheath layer in a
magnetic field is one of the important issues in transport analysis of the fusion plasmas.

In addition to the global transport study, local physical quantities near the wall surface
are also important to understand the physics in the plasma-wall interaction. For examples,
the electric field profile is essential information for the prediction of the behavior of dust
particles [45]. The incident angle distribution of ions to the surface is also essential for
obtaining the production rate of secondary electrons and the sputtering at the surface
[46—-48]. An analytic model of the sheath layer can provide physical insights about the
dependences of these quantities on various plasma parameters and physical processes
such as the polarization drift and the finite Larmor radiffea. The condition for a
stable sheath formation is also a quite important issue in the analytic modeling of the
sheath layer. The analytic treatment is superior to the particle-in-cell (PIC) simulation in
order to extract these fundamental informations.
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Recent theoretical investigations of unmagnetized plasmas [49-52] have been made
to reveal the property of the self-consistent potential profile for the plasmas generated by
ionization. The geometry used in these studies is one dimensional with lebhghd?
bounded by two facing walls at = +L, which is called a fully bounded model. Plasma
equations are solved in the half regioxx < L by virtue of the symmetry. This model
is usually used for studies of a presheath, in which the ions are accelerated till the sheath
edge defined by the equality of the generalized Bohm criterion, [53<1u'i7é> =m/Te.

Since the electron Debye lengtly. is much shorter than the system length, the ratio
Ape/L IS usually assumed to be zero.

A geometry such that a sheath layer connected with an infinite plasma is called a
half-bounded model. The half-bounded model is usually used to study a sheath layer
rather than a presheath layer and the the ratio of the Debye length to the system length is
finite. [54-56] This model has an arbitrariness in the choice of the plasma at the source
boundary and velocity distribution of the plasma source has to be specified. We adopt this
geometry and use a shifted Maxwellian for the velocity distribution function of the plasma
source. The velocity distribution of small velocity ions are truncated for the fulfillment of
the generalized Bohm criterion.

The sheath formation in a magnetized plasma has drawn a lot of attention since
Chodura and Daybelge revealed the properties of the magnetic presheath in the fluid and
particle-in-cell (PIC) simulation study [56] and the kinetic study [57]. The most dis-
tinctive property is the existence of a characteristic length related to the magnetic field.
The length of the magnetic presheath is roughly proportional to the ion Larmor radius,
which was predicted by Chodura and confirmed by simulation studies [55, 58]. When
the plasma is moderately magnetized, i.e. the ion Larmor radius is comparable or larger
than the characteristic length, the full-kinetic equations including the cyclotron motion
are usually solved in simulations [55, 58—-60]. The dynamics of the magnetized plasma is
sometimes described by the gyrokinetic theory on the assumption that the characteristic
time is much longer than the gyration period. The extension of the theory to the plasmas
with strong electric field has been developed by Littlejohn [17], Hahm [39] and Qin [28].
Recently Qinet al. published a review on the derivation of gyrokinetic equation which
can be applied to the edge plasma with a strong electric field [40]. We adopt this theory
to describe the potential profile in a magnetized plasma.

This chapter is organized as follows. First, we derive a equation which describes a
potential profile in the sheath layer for an unmagnetized plasma from the stationary colli-
sionless Vlasov equation in SEEZ.1 In Secl4.3 a potential equation for a magnetized
plasma is derived from the gyrokinetic Vlasov equation on the assumption that the ion
gyroradius is smaller than the characteristic length of the potential profile. The gener-

56



alized Bohm criterion for a magnetized plasma is formulated. In&dcthe numerical
solutions of the potential equations for the magnetized sheath layer are obtained. Compar-
isons of the potential profiles between the analytical solutions and the full-kinetic particle
simulation results for the same parameters are made and the validity of our modeling is
discussed. Finally, conclusions are presented in[&&c.

4.2 Basic equations for a unmagnetized plasma

4.2.1 Model equations based on the Vlasov equation

We consider a plasma without magnetic field in this section prior to a magnetized plasma.
Plasma profiles near a wall are essentially one-dimensional if the wall is large enough to
be treated as an infinite flat plane. We assume a one-dimensional plasma and a plasma
source which compensates the loss of particles at the wallZH ghows the geometry of
the plasma. The system length along ¥exis is denoted by and a perfectly absorbing
wall is placed aix = L. The source plasma consists of electrons and ions of one species
filling the regionx < 0 and flows into the region in consideration,<0x < L. The
electrostatic potentiat is measured from the value at the source end 0.

In the present analysis, we neglect ttigeet of collisions and particle generations in
the sheath layer. The one dimensional system we consider here is similar to that in the
simulation study [58, 61] except that there is no particle source in the sheath layer. For
simplicity, we assume that the source region iisiently large and is notféected by the
wall. The source plasma in the regian< O plays a role of source and also sink. All
particles passing through the boundary 0 from positivex are just removed. The rate
and the velocity distribution of newly injected particles from= 0 have no correlation
with the removed patrticles.

The equilibrium of the plasma can be determined from the energy conservatfga;
g¢(X) = const, and the collisionless stationary Vlasov equation for a particle distribution
function f(x,v) , df/dt = 0 or f = const along the particle trajectory. Here, the con-
stantsm andq represent the mass and the charge, respectively. The velocity distribution
f at arbitraryx andv can be expressed d§x,v) = fo(m), where fo(v) is
an initial distribution function ak = 0. By solving the Poisson equati@ip/ox? =
—(1/eo) f_ Z(qi fi + gefe) dv, we can obtain the potential profile as a functiorxof

The plasma source and the sheath layer are strongly linked with each other and the
distribution function at the source boundaty= 0 can not be determined by itself. We,
however, have some clues on the distribution function in the presheath region. The ve-
locity distribution of the plasma source can be assumed to be close to a Maxwellian be-
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Figure 4.1:The schematic diagram of the sheath layer.

cause of the collisionality. The velocity distributions in the presheath region have been
investigated in many studies [51, 58, 60—62]. These studies suggest the existence of a
weak electric field in the presheath region which accelerates the ions until the generalized
Bohm criterion,(vi‘2> < m/T,, is satisfied. The notatioq) represents the average over

the velocity space with a weigltit

[ A, v) f(x,v) dX
[ f(xv)dx

In this work, the distribution functions of electrons and ions at the source boundary,
x = 0, are assumed to be shifted Maxwellians,

(A(X,v)) = (4.1)

Velo (U - U_e)z)
f = exp| - for , 4.2
Oe(v) \/the ( thze Uce <v< o ( )
vilg (v— U_i)z)
foi(v) = expl| - for v < v < oo, 4.3

where the electron and ion drifting velocitigsandv; represent the amount of the velocity
shift of the electron and ion velocity distributions, respectively. We note that the temper-
aturesT, andT; and the corresponding thermal velocitigs= VTe/me andv; = VT;/my
in Egs. B2 and B3 can deviate from the actual second-order velocity moment be-
cause of the existence of the cui-in the velocity distributions by the minimum ve-
locitiesvee < 0 anduve; > 0. We write the &ective temperature with a superscript *’,
T = <mvi2>. The electron cut4d velocity v is determined by the wall potenti® = ¢(L)
asvee = —V2ed/me. This cut-df velocity yields the electron normalization dheient
Ve = 2/ [1 + erf (v_e/ V206 + ed)/Te)], whereng represents the density at= 0. The
ion normalization cogicienty; are also calculated as = 2/ [1 + erf ((v_i — vgi)/ \/Evti)].
These normalization cdiécients satisfy the charge neutraliby(0) = Zny(0) = no.

Since zero-velocity ions violate the generalized Bohm criterion, the ions distribution
function used here is truncated at a positive velogity We solve the equality of the
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Figure 4.2: Minimum cut-df velocity v as a function ofy;. The generalized Bohm
criterion is satisfied in the region above the curve.

generalized Bohm criteriorB(v;, vs) = Z(m/m) (<v§> - (ve>2) <vi‘2> = 1, and plot the
numerical solution of; as a function of; in Fig.[4.2 Here, we assume a hot hydrogen
plasma;T; = Te, m/me = 1836,0/ge = —1 andve, = 0. We note that thefkective
temperature ratio can varies according to the dhitvelocity v;. We should choose a
set of parameterg andu,; in the region above the curve to assure the generalized Bohm
criterion B < 1. The minimum cut-ff velocity has a value.; ~ 0.58; for v; = 0, and
monotonically decreases asncreases. In the following discussions, we use 0, v; =
2v andug; = 0.1v. The Bohm parameter has a slightly smaller value than uBity0.96,
the wall potential isb ~ —2.13T./e and the actual temperature ratiolis/T, =~ 0.97 in
this case.

The electric potentiap is assumed to be a monotonically decreasing function of the
positionx. The density and the particle flux can be calculated by the integral over the
velocity space,

Ns(X) = foo f05[1 [1? + 2Eqsqs(x)) dv, (4.4)
[s(X) = foo vfoS(, [v? + %qsgb(x)) dv = foovf()s(v) dv. (4.5)

The lower limit of the integralymins, represents the minimum velocity of the particles at
the positionx, and has a diierent form for each particle species according to the charge
of the particlesg. = —eandq; = Ze

2e
Umine = — \/_IT_Ie((D - ‘P(X))’ (46)
tmini = 0% - %%(x), (4.7)
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where® is a wall potential an@d < ¢ < 0. The electron which has the velocityine < 0

at the positionx corresponds to the particle which was reflected just at the wall. The
ion which has the velocity,; at the positionx corresponds to the particle which was
injected at the velocity,; from x = 0. The wall potentiad is determined from the particle
flux balance between electrons and ions;

T = ZI. (4.8)

This condition means the wall is perfectly absorbing and electrically floating.

For simplicity, we introduce the electron Debye lengga = /no€?/e T and dimen-
sionless parameteys= m/Me, 7 = Ti/Te, ¥ = —€9/Te, Me = 0 VM /Te = 106/ Vte,
M; = v Vm/Te = V1ui/vg andC = v Vmi/Te = 1uei/vi, whereM, and M; represent
the ratios of the drifting velocities; To the cold-ion sound velocitw/T./m andC repre-
sents the ion cut{b velocity. We note that the normalized potentiahas opposite sign
to ¢, thus 0< y < ¥ = —ed/T.. By using these parameters and the source velocity
distribution function.2) and E.3), the densities and the fluxes are calculated as

Ne 0 Ve 1( = Me)zl .
T _ (VEr2w - o) o, 4.9
o Im@exp[Z(”‘” Vi) % (9)

0 Vi 1 2
L = L exp|-— (/12 - 2Zy - M;)" | db, 4.10
No f \cz2zy V2ntZ p[ 27( v ) ] ( )

Te _ v exp[_[\/—_ M. ]2

n.

veMe Me
Y - NG e [1— erf [\/’ - @H (4.11)
L Y _(Mi —C)Z) vi M (Mi —C)]
Noty —\/ZZ eXIO( > + Ve 1+erf v )| (4.12)

The wall potential¥ is determined by the flux balance equatiddj;

(- 5o )

+ Me

Vi 2t (Mi - C)2 Vi _ Mi -C
=\ 7 exp( > + VeM. 1+erf v )| (4.13)

The density profile is obtained from these equations as a function of potentiBly
solving the Poisson equation
2 dzlp _ n; Ne

y A (4.14)

AL —— =
DedX2 Np No

with the boundary conditiong(0) = 0 andy/(L) = ¥, a unique self-consistent potential
is obtained as a function of the positian
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4.2.2 Generalized Bohm criterion for an unmagnetized plasma

The generalized Bohm criterion has been formulated by Harrison and Thompson [53] as
a generalization of the original Bohm criterion for a plasma with a finite ion temperature.
The physical meaning of the criterion is that the charge density increases as the potential
decreases toward the wall, idZen—en,)/d¢ < 0. A stable sheath layer is automatically
formed only if this condition is satisfied. In this section we recover the generalized Bohm
criterion from the equations obtained in S42.1

Before discussing the physical interpretation of the Bohm criterion, we calculate the
derivative of the electron and ion density with respect of the potential. The electron and
ion densities are given by

Ne(X) = f w feo( oz - r2r_i¢) do, (4.15)
ni(X) = foo in ( 4 ,UZ + %e(ﬁ] dU, (416)

where the lower limits of the integrals are given in EGEB( and E.7). We assume the
electron velocity distribution to be a Maxwellianxat 0O;

No

2\[1 1 ( [\
\/the exp(—;tze) [E + Eerf ( —T—e)] . (417)

The value of the distribution function for the velocity belawi,e is defined as zero.
Here we calculate the derivative of the electron density with respect to the poteasal
follows;

do = dé feo( Umine me¢) , do \[U me¢ dv

mine [T 1)2 — g—i‘(p

_ e o /.2 < e , 2

where the relation foo/dv = —vfeo/vZ is used. In the limit ok — 0, we obtain

dne e 2e No€  No€
e _ - fol = /[-=@ |+ ~ —. 4.19
dg 2me® e°( V' ome ) maf,  Te -

We employ the approximation exg/mev2) < 1 in the second equality. The derivative
of the ion density is obtained similarly as

2Ze 2Ze
fio( Uiin + W‘P] + fo (_ Viini + _¢]]

feo(v) =

dn _ _dvmini

dg — do m
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f"" Ze dfio( 2Ze )
+ AU+ —¢|dv
Umini lvz + 22e¢ do m

mini m

B
00 / 22e m
m
N E: ~_ ze  dfo( [, 2Ze
2me¢ '0(0)+j,:mml m [2 2Ze dv [ ¢) do
¥ f — df'o( 2 %ip)dv (4.20)
oo / 22e

We require the conditioffip(0) = O to take the limit ofix — 0 and then we obtain

~ Zedfyo f Ze dfp
= dv + —_ d
. e o —(v)dv + v ( v)dv

f E%( )dv (4.21)

where the notationﬁ-’represents the principal integration. We require also the condition
(dfip/dv)(0) = O for the integral to be finite. The integration by parts yields

dn
d¢

an f"" Ze
— =P] —fp(v)dv 4,22
e P Y o(v) (4.22)
From the above calculations we obtain the derivative of the charge density as
2
do _ Z°€ (™ fol) g o€ (4.23)
d¢ m e VP Te

The spatial potential profile is determined by the Poisson equalf@nz= —p/ e, for
a given charge density. Using the relationd/dx = (d¢/dX)d/d¢, we can rewrite the
Poisson equation as
dg\’
E@ (d_x) = —p. (4.24)

Since the squire of the electric fieldl#/dx)?, should be positive and the charge density

is practically zero at the sheath edge, the monotonically decreasing potential requires
dp/d¢ < 0, i.e.d¢/dx < 0 anddp/dx > 0. This requirement is the generalized Bohm

criterion; 22 &
Z * in(U) Ne ) m
= PLO o< T o Z(u )sT—e, (4.25)

where the charge neutralit¥ng = neg, is use. We note that the expression derived here
relies on the following assumption$s|,-o = 0, d fo/dv|,.-0 = 0 and expé®d/mev) < 1.
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Figure 4.3:The influence of the correction term in EB.Z8). The right hand side of the
equation is plotted as a function of the normalized poteetdlT.

The last one can be excluded by using the more general expression;

1

e e
e Bed

The approximation in the second equality is valid f&®d/ T, > 0.5. The second term in

the right hand side is a correction due to the electron @tedocity caused by the absorp-
tion at the wall. The right hand side is plotted as a function of the normalized potential
ed/Te in Fig.[43 The influence of the correction term is restrictive. If the normalized
wall potential is larger than unity as is often the case, the deviation ofi&28) (from

unity is relatively small.

IA

1R

4.3 Basic equations for a magnetized plasma

4.3.1 Model equations based on the gyrokinetic theory

In this section, we derive a set of equations describing a potential profile in a magnetized
sheath layer. The motion of a magnetized particle is essentially four dimensional at least;
one dimension for a space coordinate normal to the wall and three dimensions for the
parallel velocity along the magnetic field and the perpendicular velocities. It means that
the system has additional degrees of freedom compared with the unmagnetic case in the
last section, therefore obtaining a rigorous solution is a ratlicwli task. In some cases
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where the Larmor radius is ficiently smaller than the characteristic length of the sheath
potential profile, however, we can separate the dynamics of the parallel and perpendicular
motions, eliminate the perpendicular velocities and treat the plasma as one dimensional
system.

Magnetized plasmas have three kinds of characteristic lengths, Debye lgagtrer-
mal Larmor radiugp and mean free patljs,. lons and electrons have their Larmor radii
and mean free paths, respectively. We discuss a one component plasma first. The mean
free path is usually much longer than the Debye length, but the ratj@$ootpe andlmg
differ according to the plasma parameters. Thus, we classify the relative magnitudes of
the Larmor radius to the other lengths into three cases;<ip0< Ape, (ii) Ape < p < Imip
and (iii) lnp, < p. The first case corresponds to a strong magnetic field case or a low
pressure plasma. The particle motion is dominated by the cyclotron motion and thus, the
velocity spaces can be separated to the parallel and perpendicular velocities. The velocity
coordinatesy, andv, can be described by two fékrent equation of motion. Since the
perpendicular velocity coordinate can be ignored because of the conservation law of the
magnetic momentum in a uniform magnetic field, the dynamics of the plasma can be re-
duced to one dimensional. The third case; |, corresponds to weak magnetic field.
Since a patrticle dters collisions during a gyration period, the velocity spaces tend to be
Isotropic except the average flow toward the wall. Therefore, the plasma in this case can
be also treated as one dimensional system on the assumption of the high collisionality. In
the second case, however, the dynamics of a particle is quite complicated because of the
shorter characteristic length of the potential profile and the existence of collisions. The
dynamics in velocity spaces must be treated as three dimensional and described directly
by the full-kinetic equations of motion. Therefore, PIC or Vlasov simulations are required
to obtain the potential profile in the sheath layer.

When the plasma consists of ions and electrons, the pafig. is classified into five
regions as shown in Fig.4 We assume that the ion mean free path; is much shorter
than vVm/medpe. The horizontal axis represents the squared ratja3,. The actual
range near the divertor plates of fusion devices [55] is arougd,oi//lzDe < 1000. The

regions where the plasma can be treated as one dimension is the first from the left end,
pi < Ape, the third,lmpi < pi < VM /Medpe and the fifthpo; > Vmy/Mefngpe OF pe > finpe.

The other regionsdpe < pi < fmpi andApe < pe < fmipe require three dimensional
full-kinetic description for ions or electrons, respectively.

In this work, we concentrate on the first cape,< Ape. The magnetic field is as-
sumed to be diiciently strong so that a gyrating orbit of ion can be regarded as a small
but finite circle around a guiding center. The motion of guiding center is described by
the gyrokinetics on the assumption that the gyroradius is much smaller than the charac-
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Figure 4.4:Schematic diagram of various characteristic lengths, Debye letagthLar-
mor radiusp; and mean free path,,. The actual parameter range @f Ape is around
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Figure 4.5:Geometry of the magnetic sheath model.

teristic scale length of the spatial inhomogeneity. The gyrokinetic theories generalized
for a strong electric field [17, 28, 39, 40] have been developed to describe a edge plasma
accompanied with a large equilibrium radial electric field. THeedence from the ordinal
gyrokinetic theory is that the particle velocity is measured on a frame moving with the
E x B drift velocity. This gyrokinetic theory enables one to obtain the potential equations
in a magnetized sheath layer.

We assume a one dimensional system shown inl&HR). The potential and density
profiles alongy andz directions are uniform and the uniform magnetic fiBlg on they-z
plain. The formulation is similar to that of the unmagnetized case except that the equations
are expressed in the gyrocenter coordina¥®(u,v;). The magnetic momentum is
measured on the moving frame with tBex B drift velocity D = b x Vé(X)/B;

~ 2
miv — b - D mv? 2
el = g gy, O
2B 2B BQ 2mBQ2

p= V. ¢, (4.27)

where the vectob = B/B is an unit vector parallel to the magnetic field. The gyrocenter
positionX is defined also in the moving frame;

—yb-D 2Bu/m
xax MouboDl PRI, 429

The unit vectorf represents the gyro-radius vector and is a function of the gyroghase
F(0) = § x bcoss — §sing. The particle velocity on the stationary frame is expressed as
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v = yb + {/2Bu/mf x b + D. The gyrocenteK and the ordinary guiding-cent’ are
related by the equation

2Bu, 1A
X X! = [x— Tﬂ/mf(g)‘ _ [x— var(e’)]
1
= _@VL¢(X)’ (4.29)

where the relation of the perpendicular veloaitf (¢) x b = /2Bu/mf () x b + D is
used. The gyrophags# is measured in the stationary frame. From E§29, we can
confirm that the gyrocentex includes the polarization shif, /BQ. The two kinds of
gyrophases$ and¢’ are also related by the equation

— N 1. -
v, COSH’ — +/2Bu/mcosh = -y -D = —Ey xb-Ve. (4.30)
The energy conservation equation is rewritten in the gyrocenter coordiXat®g(v,) as

m _ n 9
H:—vﬁ+B,u+q¢+—Vi¢+2mQ2

2 _
> 20 |V, ¢|” = const. (4.31)

The particle density is expressed by an integral of a gyrocenter distribution furk€tion
with respect to the stationary velocity spaégv(, v));

n(X) = f F(X, 9,,[7, U”)UJ_dgva_dU”. (432)

The arguments of the functida(X, 0, u, v)) are treated as functions of the stationary ve-
locity space. This transformation is called pullback [20] and provides expressions of
physical quantities on both the stationary and the gyrocenter coordinate systems.

The formulation itself is quite similar to that in SEEZ.1 The magnetic momentum
u in Eq. @37 can be ignored because of the conservation property,const, and the
energy conservation equation becomes one dimensional,

m
Evﬁ + Qpgyro = CONSL (4.33)

This equation is almost the same as the unmagnetized expression except that the potential
Is modified to the #ective potential

q
2mQ)2

¢gyro =¢+ LViqﬁ + |V¢¢|2- (4-34)

209

When the perpendicular velocity distributions are simple Maxwellian and the parallel
velocity distributions are given by the shifted Maxwelli@d) and B.3), the densities
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and the fluxes are expressed as

n
n

|5

. 2

n_ f gl fv— FZ x[ By W;_zwgym_m)z]

x exp(——) (1 - fiosgu. doydlu, d6, (4.36)

o

I'e ~ 1 Me ° Me Me
novte:N.bve{\/_Z_ﬂexp[_[\@_ \/_] 2\ o erf[\/_ \/Z] }64.37)
Lo_p f 1 M, Mi

m_N by {—\/ZZ exp( 27) 2\/_ 1+erf(\/2_T)]} (4.38)

The newly introduced functioffi,ss represents the particle loss due to the absorption of
particles in gyration at the wall. The detail §fssis discussed in the next section. We
defined, here, a normalized gyration velodity = /2Bu/m /v, @ unit vectoN normal

to the wall and a normalizedtective potential for ions

‘l'a)2

= P ﬁv2 _ L P 4.39
wgym—wzmz 5 Vi =~V (4.39)
i

The Poisson equation is the same as Edl4). These equations are similar to those of
the unmagnetized plasnid.®) — (@.19 except three points, thdfective potential for ion,
the ion density equation and the parallel flux @méentN - b.

4.3.2 Particle loss at a wall

In the gyrokinetic theory, a particle is usually treated as a charged ‘ring’ driven by a force
due to the ffective potentialyqy,, representing the averaged potential over the ring. This
concept makes the rigorous treatment of finite size plasmas, especially bounded by walls,
difficult, because a wall may cut the ring and cause some inconsistency. If the ring is
assumed to keep its shape when it overlaps with the wall, the density will be overestimated
and the temperature will be also overestimated because faster particles tend to be lost
more rapidly even if the gyrocenters are at the same distance from the wall. If the ring is
assumed to be lost when some part of it touches the wall, the density and the temperature
will be underestimated.

The concept of ‘ring’ is based on the assumption that the gyrocenter distribution has
no gyrophase dependence, b€./06 = 0. That is true in many cases without wall or
some other spatial discret@fect. In the sheath analyses, however, we need to consider
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an inhomogeneous gyrophase distribution near the wall. Therefore, we have introduced
the particle loss factofi,ss into the ion distribution function.

F(X’ Q’II l)||) = [1 - fIOSS(X’ 9’/7’ Ull)] F_(XHJ’ Ull) (440)

The factorfi,ss represents simply whether a particle is lost or not. If the point(u, v;)
Is on the trajectory which has cross points with the wall in the plagttakes the value
one. If the particle on the point experiences no collision with the wall in the fiagls
zero.

In order to evaluatd,s;, we examined three kinds of coordinate system, the stationary
frame, the guiding-center frame and the gyrocenter frame. We calculated a particle tra-
jectory numerically for the fieldB = 1/4%X + V15/16Z andE(X) = x/8 from the initial
pointXg = 0 andvy = X. The results are shown in Fig.8 The three curves corre-
spond to the stationary frame (dashed curve), the guiding-center frame (dotted curve) and
the gyrocenter frame (solid curve). The original trajectory on the stationary frame is too
complex to determine whether the particle hits the wall. The second one is rather simple
because th& x B motion and the parallel motion is canceled. However, it still includes
the polarization drift which is caused by the change of the electric field due to the parallel
motion. The third one is almost completely circular motion because the gyrocenter used
in this work includes the polarization shift.

The calculation of the loss factdyyss is carried out on the frame of the gyrocenter.
Since the gyrocenter motion includes the parallek B drift and polarization drift ve-
locities, the particle motion on this frame is just a simple gyration with a perpendicular
velocity v, = 4/2Bu/m. The wall approaches from the right hand side with a velocity
v OS¢, Wherep represents a angle between the magnetic field and the normal direction
to the wall. These motions are illustrated in Fgd. The two figures show the projec-
tions of the particle orbits to thex andy-x planes. The wall is assumed to locate at
the distancd from the gyrocenter. Since we assume that a particle is absorbed once it
touches the wall, the loss factor can be obtained to see whether the dis{gnoetween
the particle and the wall has been negative in the padd;

A(t) = | —ytcosy + % sing cos@ + Qt). (4.41)

We neglect the acceleration due to the electric field because the change of the parallel
velocity during the one cyclotron periodrX2 is small. Since the parallel velocity is
always positive, it is sfficient to examine only a gyro-period. The algorithm used in our
code is as follows. (i) if the distan@dq0) is negative fioss = 1. (ii) if A(t) is monotonically
decreasing function, i.e. the time derivative/ff) is non-positivep, cosy > v, Sing, the
function A(t) is always positive fot < 0, thereforefi,ss = 0. The time derivative oA(t)
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Figure 4.7:Schematic diagrams of a parti-

center frame (dotted curve) and the gyro- cle trajectory on the gyrocenter frame. The
particle motion is simple gyration and the

wall is approaching from the right hand

center frame (solid curve).

side with the velocity, cose.

IS given bydA/dt = —y;cose — v, Singsin@ + Qt). (iii) if a negative extremal value
exists in—2r < Qt < 0, fioss = 1. The extremal values are given by solving the equation
dA/dt = 0. Two solutions always exist;

Qty

Qt,

-0 - sin‘l(

-0 +sint (—

_M (mOd—27T)
v, Sing ’
M) +x (mod—2n),
v, Sing

(4.42)

where the notation (mod2r) represents the selection of the solutions-#xr < Qt < 0.
(iv) if the condition (iii) does not hold truefj,ss = O.
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4.3.3 Generalized Bohm criterion for a magnetized plasma

As the analytic model equation of a magnetized plasma has been obtained, now we can
formulate the corresponding criterion for the magnetized plasma. In the formulation of the
magnetized Bohm criterion here, we assume that the ion Larmor radius is much smaller
than the system length and also much smaller than the scale length of the density and the
potential in the presheath, i.e./Q <« L andv, /Q < L,. We note that the scale length

of the density and the potential is comparable in the presh&ath; ne =~ ny(1 + ep/Te).

Since the sheath edge, which is defined by the equality of the Bohm criterion, is far
from the wall, the ion loss factor is ignored, ifgss = 0. For simplicity, we use the

so called long wave length approximation,~ (v/Q2)/Ls; < 1, and expand terms up

to the second order, e.g(x) =~ ¢(X) + (v./Q)a- Vo + (v, /Q)?44 : VV¢/2 and(¢) ~

¢(X) + (v, /Q)?V2 ¢/4. After straightforward calculations, the ion density equatfaB®)

yields the familiar equation used in many gyrokinetic theories;

n= Pt Ti VZ_ Ze

_ b§T. h | bZed (_dg
=N + + —
2mQ7? dx2 mQde W dx
_ b2ZT; [d%n; n| b2Ze[dn (do\> p_
— o+ d°n; (d¢ _B@ 4 2 dni (dg _PRl, (443
2m QZ dg? \ dx € 0p| mQ?|dp \dx €

where the charge density is denoted dwnd a gyro-particle density is introduced as
n(X) = ffi_”(x, vy) doy and f,; is a gyro-particle distribution function. The second and
third terms in Eq.[4.43 represent the finite Larmor radius and polarizatifiects, re-
spectively. The potential derivative of the ion densidy4d) can be calculated by using
the following relations.

d d?n [(de\°d®n  _pd?n 1 dpdn;
g R (d—) 47 Codr  wdsdp (4.4
dg\ (d¢\*d?m _pdn  ndp
d¢ dx( dx) (dx) dg? 360 dp edp (4.49)

Since we can assume that 0 at the sheath edge, the ion density is estimated by taking
leading order terms as

dn _dh bBZevdp di _BEZTe dp

dp ~ dp emQZdp dp 2 ennmQ?de’
where the definition of the Debye Ieng,tﬁe = g Te/N€ is used. The derivative of the
gyrocenter ion density is calculated as

e 2o g, 2 i
% = %jo‘ [mim f0|(\/ ¢+ VJ_¢ + szZWJ_(MZJ eXp( ﬂ) dUIIdUJ-
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Zen | biTeTi  dp
Sk Y R A N 4.47
m <U”' >( 472 2mQ2ny dg (4.47)

where the conditiorp = 0 atx = 0, is used. The derivative of the electron density,
dr. _ nee
dg ~ Te’

is also obtained similarly. From EqBL&S), (4.49), (4.48 and the definition of the charge

density,0o = Zen - en, the potential derivative of the charge density is obtained as

do Z°nTe 2 No€? T, ngTe do
i (A )@ grma @

The relation between the ion particle densitynd the ion gyrocenter densityis calcu-
lated from the charge neutrality conditionxat 0, Zen = en, = eny;

(4.48)

B bZZZ n 2
S—— z_ze%(dﬁ)
mQ7 dg \dx
b2z%€ (dg\* BT do)”
~ 1+ 2 | Nl —————— ’ 450
nO[ T ma? (dX) (i >( 4ﬂ%ee2m9i2”0d¢)} o

where Eq.[{.47) is substituted. Finally, we obtain the generalized Bohm criterion for a
magnetized plasma frodp/d¢ < 0 and Eqs.[4.49 and E.50);

ZT. b2z& (dg\2]"
m <U|“2> < [1 - mTIZTe (d_)() l . (451)

This expression coincides with the generalized Bohm criterion for unmagnetized sheath
if the magnetic field is normal to the wall, iJls, = 0. When the electric field is negligible,

the present expression is reducedZd/m) (v;2) < 1, which is the same form as that of

zero magnetic field except that the average is taken for the gyrocenter distribution function
and the velocity in the average integral is replaced with the parallel velocity. The presence
of the electric field makes the right hand side large and then the potential derivative of the
charge density becomes small. It means a earlier increase of the charge density and a
formation of the magnetic presheath in front of the Debye sheath.

4.4 Numerical solutions and PIC simulation results

In this section, we show the solutions of the model equation obtained in the preceding
sections. We have developed a numerical code to solve the model equations and also a
full-kinetic PIC simulation code to confirm the validity of our modeling. The results of
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Figure 4.8:Numerical solutions of the model equations (solid curves) and PIC simulation
results (dotted curves) for (8x/B = 1/2 and (b)Bs/B = 1/32. The other plasma
parameters ane = 1836,Z = 1, M = 0, M; = 2 andC = 0.1. Three curves in each figure
represent the potential, electric field and charge density. These quantities are normalized
and plotted as absolute values.

the magnetized case are presented and the dependence of the wall electric field on the
magnitude and the direction of the magnetic field are studied.

We use the parameters= T;/Te = 1, u = m/mg = 1836 andZ = 1 for an unmag-
netized plasma and solve Ed4.9) — (4.13 to obtain the density profiles for the parallel
drifting velocitiesMe = ve/ VTe/m = 0 andM; = v/ VTe/m = 2 and the ion cut ve-
locity C = v Vm/Te = 0.1. The generalized Bohm criterion for a magnetized plasma is
satisfied, ZTo/m) (v;?) = 0.96, and the wall potential isD/ T ~ —2.13 and the fective
temperature ratio i3*/T; ~ 0.97. The magnetic field is assumed to be strong enough
to satisfy the gyrokinetic ordering, /Q < L,. Fig.[4.8(a) and (b) represent the profiles
of the potential, electric field and charge density in the magnetic field characterized by
pi = VTi/m/Qi = Ape andB,/B = 1/2 (a) andB,/B = 1/32 (b). The angles of the
magnetic field areg = 60° andy = 1.8°, respectively. Three quantities shown in the
figures are normalized and plotted as absolute values. The sold and dotted curves corre-
spond to the solution of the model equatiods3f) — (.39 and B.19 and full-kinetic
PIC simulation results and they agree quite well each other.

Distinctive diferences related to the magnetic field angle are observed on the electric
field and charge density profiles near the wall. They decrease when the magnetic field
becomes parallel to the wall. The electric field profiles obtained from the model equations
with M; = 2 andp; = Ape are compared in Figf.9 The solid, dotted and dashed curves
correspond tdB,/B = 1, 1/2 and %32, respectively. The decrease of the electric field
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Figure 4.9:Electric field profiles obtained from the model equationsBofB = 1, 1/2
and 1/32. Plasma parameters are- 1836,Z=1,v =1, M = 0, M; = 2 andp; = Ape.

occurs within about 2, from the wall. The length of the sheath layer increases a little
for small B,/B. In order to see the dependence of the reduction of the electric field on
the magnetic field angle, we plot the electric field on the wall as a functidd, M in
Fig.[4.10for three cases;/Ape = 0.5, 1, and 2. The solid and dotted curves correspond
to the results of the model equation and PIC simulation, respectively.

The relative standard deviations of the PIC simulation results are about 1%. Although
the numerical solutions of the model equations are slightly larger than those of the PIC
simulation in the case gf; = 0.51pe andApe, the both results show good agreement and
give the same dependencesByiB. In the case opi/Ape = 2, however, the solution of
the model equations gives smaller value than the PIC simulation resu2t ati),/B < 1.

From these results we conclude that our magnetized sheath model equation is valid for
the strong magnetic fielg; /1pe < 1. The reason of the existence of the lower limit in the
magnetic field strength is the gyrokinetic ordering/Q < L;. Away from the wall, the

scale length of the potential profile increases proportional to the thermal Larmor radius
and is much larger than the Debye length, however in the vicinity of the wall, the potential
scale length is still dominated by the Debye length and violates the ordering.

In Fig.[4.10 we can observe that the wall electric field decreases almost linearly with
respect to - B,/B for B,/B > 0.5 and parabolically foB,/B < 0.5. This diferent
characteristics can be understood as follows. The steep decreads; fi2ar O is cause
by the particle loss due to the absorption of particles in gyration which is introduced in this
work as the factoffi,ss When the magnetic field is nearly parallel to the wBll/B ~ 0,
the normal velocity of a gyrocenter is considerably small and thus patrticles strikes the wall
mainly because of the perpendicular gyrating motion. The loss of ion due to the gyration
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Figure 4.10:Wall electric field as a function dB,/B. The PIC simulation is performed
for pi/Ape = 0.5, 1 and 2 and foB,/B = 1/4, 1/16 and 164.

causes the reduction of the charge density and consequently the wall electric field.

On the other hand, when the magnetic field crosses the wall at nearly right angle,
By/B ~ 1, almost all the particle loss is caused by the parallel motion. The fact that the
process of the particle loss is same as the unmagnetized sheath implies the existence of
other cause of the reduction. A possible candidate for the reduction is the polarization
density due to the perpendicular electric field. An approximate form of the polarization
density is usually expressed as a divergence of the guiding-center density multiplied by
the polarization shift lengtdev , ¢/mQ?;

ZeV
np:Vl-(n rEQLf) (4.52)

We note that this polarization density term does not appears in the ion density equation
(4.39 because our definition of the gyrocenter includes the polarization shift and thus the
gyrocenter density includes the polarization density.

We solved three types of equation to identify tieeets of the particle loss factor
and the polarization density on the wall electric field. The first equations are the original
ones, the second are modified to involve no polarizatiteceand the last are without the
loss factor, i.efioss = 0. The three curves in Figl.1] solid, dotted and dashed curves,
correspond to the solutions of the three types of equations, respectively. The wall electric
field without the polarization does not change so muctB{giB > 0.5 and have the same
dependence foB,/B < 0.5 as the original solutions. On the other hand, the solutions
without the particle loss factor has same dependencB,jd > 0.5 as the original ones
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Figure 4.11:Comparison of the wall electric field between the original solution (solid
curve), without the polarizationfieect (dotted curve) and without the particle loss factor
(dashed curve).

and becomes nearly constant By/ B < 0.5. From these considerations, we can conclude
that the wall loss of the patrticle reduces the charge density and the electric field near the
wall for B,/B < 0.5, and the polarizationfgect reduces them in all parameter region

0 < By/B < 1 but the amount of the reduction becomes constami,AB approaches

Zero.

4.5 Conclusions

The kinetic equations for an electrostatic potential in a sheath layer were derived from the
collisionless Vlasov equation. We obtained two set of equations for the unmagnetized and
strongly magnetized plasma sheaths. In the derivation for the unmagnetized plasma, we
assumed that the plasma source which had the fixed velocity distribution at ax-efid,
and the absorbing wall at the other emds L. In the sheath layer, @ x < L, no source
and no particle collision exist. lons and electrons are generated at the source boundary
and also removed when they move across the boundary taxwvar@®. We adopted the
shifted Maxwellian with a truncation for the ion source velocity distribution. The €ut-o
velocity was determined to satisfy the generalized Bohm criterion at the source boundary.
In the presence of an uniform magnetic field, the gyrokinetic treatment of magnetized
electrons and ions was applied to the plasma sheath problem for the first time. In order to
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deal with a strong electric field, we adopted the gyrokinetic theory on a moving frame with
theE xB drift velocity [40]. We obtained a potential equations in the sheath layer from the
gyrokinetic collisionless Vlasov equation. They have similar forms to the unmagnetized
equations, but there are thredfdrent points. The first is thB,/B factors in the flux
equationsi4.37) and .38, which represent the normal velocity component to the wall.
The second is the polarizatiofifect in the energy conservation equatida3@ and the

ion density equatiord38). The last is the particle loss fact@gss, which determines the
loss rate of the particles due to the gyration near the wall.

The condition for the stable sheath formation in a magnetic field was derived from our
sheath model under the assumptionn ofQQ < L. If the electric field at the sheath edge
is ignorable, the resul@{5]) is quite similar to the generalized Bohm criterion without a
magnetic field [53] except that the gyrocenter distribution function is used instead of that
for actual particles and the parallel velocity should be used instead to the normal velocity
to the wall. When an electric field is presence, a term related to the polarization becomes
considerable in the criterion and implies the existence of the magnetic presheath.

From the comparison between the numerical solution of our model equation and the
results of the full-kinetic particle simulation for various valuesByf B andp;/Ape, We
confirmed that the model provides accurate solutions for the strongly magnetized plasma,
l.e. pi/dpe < 1. In a weaker magnetic field, the solution of the model equation gives
smaller electric field for @ < B,/B < 1, because the ion Larmor radius becomes larger
beyond the gyrokinetic ordering, /Q < L.

We also investigated the dependence of the wall electric field on the angle of the
magnetic field,B,/B. It was found that the particle loss due to the gyration and the
polarization &ect reduce the charge density and the electric field near the wall.ffdot e
of the patrticle loss is observed fB/B < 0.5 and becomes larger &/B approaches to
0. On the other hand, the polarizatiofiext always exists excep,/B ~ 1. It increases
with the decrease @,/B, and is saturated fd,/B < 0.5. The magnitude of theséects
on the wall electric field are the same order in the cagg ef Ape.

Our work is based on the assumption of strong magnetizatiafn Ape. This assump-
tion is not always applicable to the edge plasma in fusion devices. Further investigation
for weakly magnetized plasmas, = Ape Of pe ~ Ape, IS required. In order to overcome
the lower limit of the magnetic field strength in this model, we are preparing a more ex-
act gyrokinetic formulation without Taylor expansionsdotvhich relies on the ordering
v, /Q < L,. Also the dfects of the particle collision and atomic processes need to be taken
into account, because they play a role of additional source and sink and alter the potential
profile.

76



Chapter 5

Analysis of incident angle distribution
of ions in a magnetized sheath

5.1 Introduction

When a plasma is facing an electrically floating wall, negative charges accumulate on the
surface and a large positive electric field is created in a thin layer, namely a sheath. The
electrons are repelled by the electric field and the ions are accelerated toward the wall. If
a magnetic field is not present, the width of sheath layer is typically a few Debye length
and the wall potential is around twice of the electron temperature.

When a magnetic field is applied to the plasma, the property of the sheath layer
changes according to the magnitude and the direction of the field. When the magnetic
field is oblique to the wall, an additional ion flux due to the polarization drift creates a
guasineutral region in front of the sheath, namely magnetic presheath [56]. The width
of the magnetic presheath region ighdult to define exactly, but it was predicted by
the fluid study [56] and confirmed by the kinetic simulation [55] that the scale length
is proportional to the ion thermal Larmor radius. The influences of the magnetic field
are observed also on physical quantities near the wall. The electric field and the charge
density in the vicinity of the wall become smaller as the magnetic field decreases. These
reductions are significant when the ion thermal Larmor radius becomes longer than the
Debye length [55, 63]. Since the wall electric field is a key parameter for the release of
dust particles [45], understanding the physics in the sheath layer is an important issue
for fusion devices. The incident angle distribution of the particles to the wall is also es-
sential for obtaining the production rate of secondary electrons and the sputtering at the
surface [46,47,65].

In this work, We analyze the incident angle distribution to the wall in a magne-
tized plasma by using a gyrokinetic model equation based on Ref. [63] and a full-kinetic
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particle-in-cell (P1C) simulation [64]. The model equation is valid for strongly magne-
tized plasmas, i.e. the ion thermal Larmor radius is comparable or less than the Debye
length. We make a comparison between the numerical solution of the model equation
and the simulation results. The dependence of the incident angle distributions on the
magnitude and the direction of the magnetic field is studied.

This chapter is organized as follows. First, we briefly review the model equations to
describe the potential profile in the sheath layer and introduce the incident angle distribu-
tions to the wall in Sedg.2 In Sec5.3 the numerical solutions of the model equation
and the results of PIC simulations are compared with each other for a strongly magnetized
plasma. The dependence of the incident angle on the magnetic fields is studied by using
the PIC simulation. Finally, conclusions are given in $&d.

5.2 Kinetic modeling of a sheath layer

We assume an one-dimensional plasma which has a source boundary at one end and an
electrically floating wall at the other end. The source boundary provides new particles
to compensate the loss of particles at the wall. Theots of collisions and particle
generations in the sheath layer are neglected. The system length aloxgliteetion
Is denoted by and a perfectly absorbing wall is placed»at= L. The potential and
density profiles are uniform alongandz directions and monotonically decrease along
direction. The magnetic fielB = B(cosgX + sing2) is uniform and has ng component.
The angle of the magnetic field with the surface normal is denoted Byplasma source
consists of electrons and ions of one species filling the regien0 and flows into the
region O< x < L. The electrostatic potentialis measured from the value at the source
end,x = 0.

Since a sheath layer has a strong electric field, the usual magnetic momg(2B,
Is not an invariant, but a generalized magnetic moment introduced by Littlejohn [17]
has been proved to be a new adiabatic invariant when the ion Larmor radius is com-
parable or smaller than the scale length of the potential. By using this invariance, the
dimension of the velocity space is virtually reduced to ong ffom three ¢, v, and
the gyrophase@). When the Larmor radius is much larger than the characteristic length,
however, the particle motion becomes quite complicated and the velocity space must be
treated as three dimensional. The analysis for the parampgtés. > 1 requires the
complete integrals along the particle trajectory [57] or full-kinetic particle-in-cell (PIC)
simulation technics [55,56,58,60]. Here, the Debye length, the thermal ion Larmor radius
and the ion cyclotron frequency are denotediBy = no€/eyTe, pi = VT;/m/Q; and
Qi = gB/m;, respectively.
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The model equations describing the potential profile in the sheath layer are derived
with three steps. The first is to define the gyrocenter coordinates and introduce the ‘gyro-
particle’ distribution. The motion of a charged patrticle is described as the superposition
of a simple gyration, drift motions and a parallel motion in the gyrocenter coordinate
system. The gyration is decomposed from the other components and represented by the
time evolution of the gyrophase. The second is to rewrite the energy conservation in terms
of the gyrocenter coordinate variables. The third is to express the particle density in terms
of the ‘gyro-particle’ distribution function and integrate the Poisson equation to obtain
the potential profile. The details of these procedures and the validity of the model are
discussed in [63].

The definitions of the gyrocenter coordinate§ @, i, v;), gyrocenter position, gy-
rophase, modified magnetic moment and parallel velocity, are given as follows;

v=D+ ob(X) + V_ &(X), (5.1)
D= %, (5.2)
X=X+ Z?&’;)a(xy (5.3)
i= ngg), (5.4)

where the ion charge is denoted Bg The vectorD represents the velocity of the ref-
erence frame. The modified magnetic momeri¢ defined on the moving frame. The
three orthonormal vecto@ b and¢ are defined in terms of the base direction vector
asb = B/B, &) = (icos® — (b x ) sin® anda = b x &. Since they direction can

be used for the base direction in the magnetic geometry used here, wiesugen the
following discussions. A particle velocity is measured on the moving frame to cancel
the potential perturbation caused by the gyration of the particle. In the case of an uni-
form magnetic field, the energy conservation law is rewritten in terms of the gyrocenter
coordinate variables as

gvﬁ + B+ 2—:22 V.o + Zep + %Viqﬁ = const (5.5)
The motion of the charged particle can be determined from this energy equation.
The parallel velocity distribution function at the source boundary, O, is assumed
to be a shifted Maxwellian which is characterized by a thermal velogignd a parallel
drifting velocity vs; fos(uy, v1) = (No/ v/(27)303) exp(=(v — vs)2/ 202 — v% /202). Since the
plasma can be described by the one dimensional collisionless Vlasov eqiiffidn= 0,
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the distribution functiorfs is written in terms of the source distribution functiég as

fs:fos(\/vﬁ+£e(¢ * a5 Va0f + 25 V%0). (ﬁ)] (5:6)

where the gyrokinetic energy conservation |&@g is used. The distribution functioh

is a function ofX, u andy. In order to simplify the formula, we introduce dimensionless
parameterg = m/me, 7 = Ti/Te, ¥ = —€4/Te, Me = ve VM/Te = Hve/ve and M; =

i Vm/Te = +Tui/vi, where M. and M; represent the ratios of the drifting velocities
vs to the cold-ion sound velocity/Te/m. We note that the normalized potentiahas
opposite sign t@, thus 0< ¢ < ¥ = —e®/T,. By using these parameters and the source
distribution functionfy, the densities are obtained as

L L( foiy - Me ]
No - f\/md Il \/— exp[ ( I + le \//7) s (57)
1( o= 2 2
" f dvl VJ—f def ZZ.(p dvll(zﬂ. )3/2 p[ Z( Uﬁ_zzi‘/’g_ Mi) - 2—7_]’
(5.8)

where the normalized céiicients are denoted by, andv;. The gyrophase measured
on the stationary frame and that on the moving fram@ are related with the equation
v,¢(0) = D+V,E(®). Thisrelation can be rewritten ascost = —(d¢/dX) sing+V, cos®
by usingD = —(d¢/dX) singy andd = ¥.

The wall potential is determined from the flux balance between electrons and ions.
The gyrokinetic modified potentialy is given by

2 (2
Yg=y + Pii ( =V2y - —|Vﬂﬁ|2)~ (5.9)

The particle loss factofy represent®-dependent component of the distribution function
and takes the value either zero or one. The physical meaning if the factor is intuitively
represented in Figg. 1 This factor is determined by whether the particle has crossed the
boundaryx = L in the past or not. If the particle crossed the boundary at some time in the
past, the particle has been lost and tfgis: 0. The trajectory denoted by the dashed curve
in the figure might be possible without the wall, but here it cannot be realized because the
particle is absorbed before reaching there. We use the same algorithm for this calculation
as in Ref. [63]. The®-dependent component of the electron and small terms such as
e/ Ape < 1 are neglected.

In order to obtain the incident angle distribution of ions, we calculate the angle from
the velocity space coordinates ¢, , v;) and the distribution function obtained above. The
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Figure 5.1: Meaning of the particle 10ss Figyre 5.2: Definition of the incident an-

factor fo. The particle can not have the gje g, It is measured from the normal di-
orbit denoted by the dashed curve. rection to the wall.

incident angle denoted ¥y is defined by the angle between the velocity and the normal
direction of the wall as in Figg.2 Since the velocity can be rewritten into three compo-
nents a¥ = ub+v,&(6) = (v oS + v, SINGSINE) X+, COSHY+ (v SiNg — v, SINH COSY) 2,

the incident angle is obtained as &s: Vv - X/|v| = (v, COSp + v, SiNgsing) / ‘/vﬁ +12.

A flux for a certaing; and energy can be calculated by integrating the velocity distribution
function for the fixed, and energy.

5.3 Results and discussion

We employ two numerical codes to obtain the potential profiles in the sheath layer and the
incident angle distributions for the same plasma parameters. One is a numerical solver of
the model equation given in Sé&2 and the other is a PIC simulation code. The former
integrates the Poisson equati@fy /13, = Zn/ng — ne/No, with Eqs. B.17) and E.8) from
x = 0 towardx = L by Runge-Kutta method of the second order. The spatial step size used
here isApe/16. This integral requires the boundary vatligdx,-g = —Eg < 0 and the
system length.. Although the parametdr is given beforehand, the source electric field
Eo must be calculated so that the solution of the potential satisfies other constraints such
as the system length and the flux balance at the wall. We employ the shooting method to
figure out the boundary valug,.

The latter is a full-kinetic particle code which calculates the trajectories of electrons
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Figure 5.3:1on velocity distribution func-  Figure 5.4:Potential profiles foM; = 0, 1
tions forM; = 0, 1 and 2. The velocity and 2. The dterences in the distribution
cut-of is introduced to fulfill the general- functions causes the firent ion fluxes
ized Bohm criterion. and potential profiles.

and ions from the Newton'’s equation of motion;

d?x dx

Mz = % g X B - qsVé. (5.10)
The time integral is implemented with the Runge-Kutta method of the fourth order and
the time step is determined as/X2JAt = 20 to 40 so that the energy of the plasma is
conserved. The magnetic field is assumed tB beB(cosypX+singz) and the electrostatic
potentialg is determined by the Poisson equati®i¢y = —(Zen — en)/e. The Poisson
equation is solved by using the finitefidirence method with the boundary conditions

d¢

¢(0) = 0, axl, = -EL. (5.11)

The wall electric fieldE, is determined by the Gauss’ theorem. The spatial step size is
Ape/8. The number of particles is about a thousand per Debye length, or a hundred per
grid. We use the parameters= T;/T, = 1,u = m/m, = 1836,Z = 1, M, = 0 and
M; = 2. In order to realize the generalized Bohm criterion [53, 63], a velocity fiuso
introduced in the ion velocity distribution function. The distribution function¥gr= 0,
1 and 2 are shown in Fi§.3 The velocity at the cut{d is determined as/v; = 0.61,
0.41 and 011 for M; = 0, 1 and 2, respectively. The corresponding potential profiles are
also shown in Fig5.4. Since the ion flux depend on the distribution function, a laider
causes a smaller wall potential because of the increase of the ion flux.

We made comparisons of the potential, electric field and charge density profiles be-
tween the two codes faxi/Qi1pe = 1 and confirmed that they quantitatively agreed with
each other within the relative error of 1%. Thefdrences between the solution of the
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Figure 5.5:Energy flux distribution foM; = 0, 1 and 2 as a function of the incident angle.
The distribution functions given in Fif.3are employed.

model equation and the PIC simulation results tend to grow for large thermal Larmor
radii. Whenui/Qilpe > 2, the relative error exceeds 10%. Therefore, we have to employ
the PIC simulation for the case of a weak magnetic field or a dense plasma. The model
equation, however, still has benefits compared to the PIC simulation. First, analytic model
Is suitable to extract fundamental informations such as a stability of the sheath layer and
effects of the polarization drift [63]. Second, there is practically no numerical noise in the
solution of the model equation, while the statistical process in the PIC simulation causes
the noise. The plasma oscillation with a long wave length is alfocdit to eliminate
in the PIC simulation because of the small dumping rate. The PIC simulation results
presented here are time-averaged to reduce the noise and the plasma oscillation.

Before discussing the results for the magnetized plasma, we presents the those of the
unmagnetized plasma. The normalized energy flux distribution is shown iBBigrhe
solid, dashed and dotted curves correspond to the paraieterO, 1 and 2. The each
velocity distribution function and potential profile used here are same as ik Bignd
Fig.BE4 A shift of the incident angle which yields the maximum energy flux is observed.
This tendency is caused by theffdrence of the normal velocity component for each
cases. A large parallel drifting velocity, i.8]; = 2, causes a large normal velocity and
then the incident angle becomes small.

We make a comparison of the incident angle distributionBgiB = 0 andM; = 2
with the approximate form of the angular distribution function obtained by Gottscho [47];

f(6) = 286; exp(~67) . (5.12)

where the parametet is given byg = mv_ﬁ/ZTl for 6 and the angle; is measured
in radian. The quantityo_ﬁ is the average of the square parallel velocity at the wall and
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Figure 5.6:Comparisons of the energy flux distributions. The solid, dashed and dotted
curves correspond to our model, best fitting function and Gottscho’s model.

T, is the perpendicular temperature at the wall. The atz?j.JathL obtained from the
numerical solution yield8 = 5.2. The energy flux distributions at the wall surfage; L,
calculated from our model equations and from Gottscho’s model are shown iB.Big.
The flux is normalized by the total flux and defined as

Q(G)—f—é ——cos@ d3 /f—d3 (5.13)

The flux is normalized so that the total energy flux is unity. We found the parameter
providing the best fitting curve g& = 5.7, which is also shown in Figt.8 as a dotted
curve. The mean square root of the residual is about 1%. Thus, we have confirmed that
the Gottscho model practically gives an accurate distribution function for the plasma with
a normal magnetic field to the wall.

We show the energy flux distribution for a magnetized plasma ifdzitas a function
of the incident angl®, for v;/Q; = Ape andB,/B = 1, 3/4, 1/4 and Y16. Each magnetic
field direction corresponds to the = 0°, 414°, 755° and 864°. The solid and dashed
curves represent the solutions of the model equation and the results of the PIC simulation,
respectively. The solid and dashed curves agree well in the whole rangg Bfand
especially good foB,/B = 1 which is equivalent to that of an unmagnetized case. The
contour plots of the particle flux are also presented in[E@for four cases; (aBy/B = 1,
(b) Bx/B = 4/3, (c) By/B = 1/4 and (d)By/B = 1/16. The incident angle for the
intermediate magnetic angleB,/B ~ 0.75, has a broad profile, and the tails reaches the
both endsg; = 0° and 90. The profile forB,/B ~ 0 are sharply peaked at large incident
angle, which means that most particles hit the surface with strongly slanted angles. This
tendency is understood as follows. If the magnetic field is nearly parallel to the surface,
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Figure 5.7:Energy flux as functions of the incident angle tgfQ; = 1pe andBy/B = 1,
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Figure 5.9: Average incident angles obtained from the PIC simulationdbtpe =
vi/Qidpe = 1, 2, 4, 8 and 16.

the average normal velocity, or normal velocity of the gyrocenter, is much lower than
the perpendicular velocity of the gyration. Since a particle is absorbed instantly after a
collision with the surface, the circular orbit is scrapdtifoom the edge by the wall. The
velocity of the particles in the vicinity of the wall, therefore, have large incident angles.

In order to see the dependence of the incident angles on parameters associated with
the magnetic field, we plot the average incident angle as a function of the magnetic field
angley in Fig.[5.9 The average angles are calculated from the PIC simulation results
and weighted by the energy flux. The five curves correspond to the thermal Larmor radii
vi/Qidpe = 1, 2, 4, 8 and 16, respectively. We use the system lebgila. = 32, 64
and 128 for; /Qidpe = 1 and 2,vi/Qidpe = 4 and 8, andyi/Qilpe = 16, respectively.
When the magnetic field is perpendicular to the vigaliB = 1, the perpendicular motion
of particles are completely decoupled from the parallel motion and the average incident
angles for diterentu;; /Q; Ape coincide to be that of an unmagnetized case. Wher(,

6; asymptotically approaches to9rhis behavior is understood as follows. In this case,
the normal velocity of particles to the wall is much smaller than the perpendicular velocity.
Since particles are immediately absorbed when they hit the wall, almost all the particles
remaining in the vicinity of the wall have large incident angles.

A clear dependence of incident angle on the thermal Larmor radii is observed in the
range of 30 < ¢ < 85°. The reduction of the incident angles is observed for the weaker
magnetic field and especially significant aroumé 70°. The magnitude of the reduc-
tion is logarithmic to the parametef/Qidpe iN 1 < 1i/Qidpe < 16. One of the rea-

sons is the increase of the normal velocity due to the polarization dEft (dt)/BQ =
—(vy/2BQ)d?p/0x? sin 2p k. When the Larmor radius is large compared with the Debye
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length, the polarization drift makes the incident angle small. Similar comparisons have
been made by DeWalet al. [67]. Although they do not specify the absolute value of the
ratio vy / Qi Ape, the dependence of the average angle on the magnetic@aagkkthe ratio
i/ Qidpe IN their paper agree with our results qualitatively.

When the magnetic field becomes normal to the wall, the average incident angle ap-
proaches a common valde= 21°. This behavior of the incident angle is consistent with
the fact that the parallel and perpendicular motion of particles are completely decoupled
if the magnetic field becomes parallel to the normal direction to the wall. Since the per-
pendicular velocity space is uniform in such case, the plasma becomes equivalent to the
unmagnetized one. On the other hand, when the magnetic field becomes perpendicular to
the wall, the average incident angle approaches another commongyalu@0C. If the
magnetic field is nearly parallel to the wall, the averaged normal velocity of a particle, i.e.
v by, becomes extremely slow and thus the velocity becomes parallel for all the particles
hitting the surface.

5.4 Conclusions

The distribution of incident angle when an ion hits the wall in the magnetized plasma was
studied by using the model equation and the particle-in-cell (PIC) simulation. The model
equation was derived from the gyrokinetic energy conservation law on the moving frame
with the E x B drift velocity. The potential profiles and the angular distribution obtained
from the model equation and the PIC simulation agreed well with each other in the case
of a relatively strong magnetic field; /Qidpe < 1. The energy flux distribution for the
incident angles becomes broad for intermediate rand®g . On the other hand in the

case of magnetic field parallel to the wall, the distribution becomes narrow and has a
peak near the region where the perpendicular component of the particle velocity becomes
larger than the parallel one.

The average incident angle for varioygQi1pe was studied by using the PIC sim-
ulation. When the magnetic field becomes normal or parallel to the wall, the incident
angle approaches the common valye= 21° or 9C°, respectively. The former value
corresponds to the unmagnetized one. The dependence on the magnetic field strength is
mainly observed when the angle of the magnetic field is in the rangg 30< 85°. The
incident angle decreases as the magnetic field becomes weak.

The range of the parametgr/ Qi 1pe used in this work does not cover the whole range
at the divertor plate in fusion devices. When the magnetic field is weaker so that the
thermal electron Larmor radius is comparable or larger than the Debye length, it works as
a characteristic length in the potential profile. The incident angle distribution for electron
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is also expected to change according to the ratjdQ2.|1pe. The analysis of the incident
angle distribution for a wider range of magnetic field strength is a remaining issue. The
influence of particle collisions and sources must be evaluated in further studies for more
realistic plasmas.
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Chapter 6
Conclusions

In the first half of this thesis, the gyrokinetic equations for electromagnetic perturbations
were derived by using the modern analytical dynamics and the refined gyrokinetic equa-
tions applicable for the plasma with large equilibrium electric fields were also formulated.

It was confirmed that the particle dynamics can be more correctly treated for large electric
fields. In the latter half, the application of the gyrokinetic equation for the modeling of the
sheath plasma in magnetic fields was studied and the dependences of the electric field and
incident angle of ions were investigated. The validity of the present model was confirmed
by the comparisons with the full-kinetic PIC simulation.

Gyrokinetic equations with the strong electric field

A new comprehensive derivation of the nonlinear gyrokinetic equations is presented in
Chap. 2 and its refinement for the strong electric field is presented in Chap. 3.

The objective of Chap. 2 is to obtain the general expressions of the gyrokinetic equa-
tions as a preliminary for the succeeding chapters. Employing the 1-form representation
of a single particle dynamics and Lie transformation technique, we carried out the stan-
dard procedure developed by Littlejohn, Brizard, @inal. and commonly used in the
gyrokinetic analyses. Although there is no significarfedence in the essences of their
calculations and also ours, they uséalient ways to represent the gyrocenter coordinate
system and the 1-form on it as is described in Ze2.

We chose a simple and explicit way to obtain the guiding-center 1-form. The guiding-
center coordinate is introduced as a usual coordinate transformation used by Littlejohn
and Qin instead of a sophisticated but complicated way with the Lie transformation
adopted by Brizard. Although our, or Qin’s, scheme does not provide the ‘best’ guiding-
center coordinate system, the equations of motion obtained through the Lie transformation
employed later are identical with those of Brizard. In order to exclude the arbitrariness
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in the definition of the gyrophase, we employed the gyrogauge transformation introduced
by Littlejohn. It redefines the base direction by which the gyrophase angle is measured
and makes it possible to suppress the physically meaningless terms caused by the arbi-
trariness.

After the above preliminary transformation, we employed the successive Lie transfor-
mations to isolate and decouple the gyrophase dependences in the guiding-center 1-form
order by order in Se2.3 While the new coordinate system, or gyrocenter coordinate sys-
tem, allows a gyrophase dependent perturbation, the equations of motion derived from the
gyrocenter 1-form evolves independently of the gyrophase. We obtained a general form
of the gyrokinetic 1-form determined by the gauge function and the Lie generator given
by ordinary diterential equations. Using the Lie generator, we obtained the pullback of
the distribution function, i.e. the gyrocenter distribution function expressed by the original
particle coordinate variables. The general expression of the charge and current densities
to be used in Maxwell's equations were obtained by the pullback technique developed by
Brizard and Qin and thus a closed set of the gyrokinetic equations was formulated. In
addition to the general expressions of the closed equations, we calculated limiting forms
based on the assumptions usually used in the analysis of the micro-instabilities, i.e. the
time-scale of the plasma is much more longer than the particle gyration and the dominant
motions of the particle are only the parallel and gyrating motions. Finally, we recovered
a closed set of the gyrokinetic equations essentially same as those in the previous works
by Lee, Dubin, Hahm, Brizard, Qiet al.

In Chap. 3, we have refined gyrokinetic equations applicable to edge plasmas with
large flow shears by adopting a modified guiding-center coordinate system as a starting
point of the derivation. An attempt to improve the gyrokinetic equation for a strong
electric field was originally carried out by Littlejohn and generalized to the plasma with
potential perturbations by Brizard, Hahm, Q@b al. We adopted the same technique
as in their works, i.e. a reference frame moving with an equilibrium drift veldoiig
introduced in the guiding-center coordinate system. Their choice of the reference velocity
D is that of a simpleE x B drift for the equilibrium electric field, i.eEq(X) x Bo/BZ,
measured at the guiding-center positinTheir choice is simple and perfect for the one
dimensional potential profile, while it gives less accurate solution for general potential
profiles.

Through the investigation of thefects of the reference velocify on the zeroth order
equations of motion, we obtained a new definition of the velocity in[8&as a ordinary
differential equation. The solution of the determining equatioD @fas investigated in
Sec[3.4and a analytical expression of the solution for an special potential profile and a
numerical solution for the general profiles were obtained. Through the standard procedure
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of derivation of the gyrokinetic equations, the general form of the gyrokinetic 1-form,
gauge function and the Lie generators were obtained infEBcLimiting forms for the
electrostatic plasma were also obtained.

The validation of the present equations was confirmed numerically if33@cThe
time-evolution of the particle energy calculated form the solution of the gyrokinetic equa-
tions was compared with that directly calculated from the full-kinetic equations, i.e. the
usual Newton’s equations of motion. From the comparisons of the energy for various val-
ues of the electric field, magnetic field, initial velocity and initial position, we confirmed
that the refined equations derived here yield more accurate solutions than the previous
equations for Qin’s simple reference velocity, especially when the the electric field is
strong and the curvature of the potential contours is large. Tieeteof the refinement
becomes notable when tkex B drift speed becomes comparable to the thermal velocity.

Kinetic modeling of the sheath layer

The objectives of Chap. 4 and 5 are to understand the physics of the sheath plasma espe-
cially the dfects of the magnetic fields on the potential profile and particle’s incident angle
to the wall. To this end, the kinetic equations for an electrostatic potential in a sheath layer
were derived from the collisionless Vlasov equation in Chap. 4. In the derivation, we as-
sumed that the plasma source which has the fixed velocity distribution at one er,

and the absorbing wall at the other emds L. In the sheath layer, @ x < L, no source

and no particle collision exist. The fundamental equations were obtained il Zet.

and the stability condition of the sheath formation was also obtained ifdS&8 We
recovered the generalized Bohm criterion derived by Harrison and Thompson. In addition
to that, we obtained a small correction term caused by the presence of th& weitoity

of electrons.

In the presence of an uniform magnetic field, the gyrokinetic treatment of magnetized
electrons and ions was applied to the plasma sheath problem for the first time. In order
to describe with the strong electric field in the sheath layer, we adopted the gyrokinetic
theory on a reference frame moving with tBex B drift velocity, which was derived
in Chap. 4. We obtained potential equations in the sheath layer from the gyrokinetic
collisionless Vlasov equation. They are similar to the unmagnetized ones, but they include
correction terms caused by the finite Larm€ieets, the dierences between the parallel
and perpendicular motions and the particle dynamics near the wall.

The condition for the stable sheath formation in a magnetic field was also derived
under the assumption that/Q < L in Sec.[4.3.3 The result is quite similar to the
generalized Bohm criterion without a magnetic field except that the the parallel velocity
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should be used in the condition.

In Secld.4, numerical comparisons of the solution obtained from the present model
and the results of the full-kinetic particle-in-cell simulation. Here, we adopted a shifted
Maxwellian with a truncation for the ion source velocity distribution. The diitrelocity
was determined to satisfy the generalized Bohm criterion at the source boundary. From
the comparison of the profiles for various value8gfB andp;/ 1pe, we confirmed that the
present model provides accurate solutions for a strongly magnetized plasmddbe <
1. The dependence of the wall electric field on the angle of the magnetic Bgl8,
was also investigated. It was found that the particle loss due to the gyration and the
polarization &ect reduce the charge density and the electric field near the wall.ffdot e
of the particle loss is observed fB/B < 0.5 and becomes larger &g/B approaches to
0. On the other hand, the polarizatioffiext always exists excep/B ~ 1.

In Chap. 5, distribution of the incident angle of ions when they hit the wall in a mag-
netized plasma was investigated by using the model equation obtained in Chap. 4 and a
full-kinetic PIC simulation. The potential profiles and the angular distribution obtained
from the model equation and the PIC simulation agreed well with each other in the case of
a relatively strong magnetic field;/Qi1pe < 1. The energy flux distribution with respect
to an incident angle becomes broad for intermediate randgy /. On the other hand
in the case of magnetic field nearly parallel to the wall, the distribution becomes narrow
and has a peak near the region where the perpendicular component of the particle velocity
becomes larger than the parallel one. The average incident angle for vayi6kgpe
was studied by using the PIC simulation. In the case of the magnetic field normal to the
wall the incident angle approaches the unmagnetized one. On the other hand, in the case
of nearly parallel magnetic field, the incident direction approaches parallel to the wall.
The dependence on the magnetic field strength is mainly observed when the angle of the
magnetic field is in a moderate range. The incident angle decreases as the magnetic field
becomes weak.

Future works

The most important issue with regard to the gyrokinetic studies in Chap. 2 and 3 is the
rigorous derivation of conserved quantities for the plasma. From the analytic investiga-
tion and the numerical verifications in Chap. 3, the improvement of the accuracy for the
plasma with larg& x B flow shears has been confirmed. The present formulation is, how-
ever, based on the single particle 1-form and thus the conserved quantity such as energy
and momentum of the many-body system, or plasma, is not obtained here. The existence
and the knowledge of the explicit invariant is essential not only for the theoretical com-
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pleteness but for the numerical simulation as a tool of validation. The application to the
simulation study has been a strong motivation for the development of the gyrokinetic the-
ories and the demand for the global simulation including the edge plasma will become
higher. In order to realizefgcient and reliable simulation codes, the theoretical assur-
ance of the energy conservation and the determination of its explicit expression may be
the most important topic of further study in this field.

Another issue attracting an attention lately is a more rigorous calculation scheme for
higher frequency waves. In this thesis, the time-scale of the perturbation potentials is
assumed to be much longer than that of the gyration. The determining equation of the
gauge function is approximated by using/ot ~ 0. Although this reduction yields
efficient and sfficiently accurate equations for the low frequency drift waves, it fails in
the high frequency range such as ion cyclotron wave. The analytical basis is given by
Brizard and Qin and an implementation for a simulation code is also given by Kolesnikov
et al.[23]. A full-kinetic simulation may be suitable for the ion cyclotron wave in heating
processes, but investigation of the such numerical scheme will increase the accuracy even
in the case of low frequency wave.

The remaining issue with regard to the sheath modeling in Chap. 4 and 5 is the treat-
ment of a weakly magnetized plasma characterized by the gyroradius longer than the
Debye length. The present model equation does not yield accurate solutions in such con-
ditions. One reason is in the incomplete implementation of the pullback expression in
the Poisson equation, i.e. the contributions from the Lie generator are ignored here. The
use of more rigorous density equation will reduce the limitation on the magnetic field
strength, or smallness of the Debye length. It is expected that the generalization of the
model for small Debye length reveals the quantitative property of the magnetic presheath.

Another important element in the study of plasma-wall interactions is the collisional-
ity. Although it is ignored here, it should be included when one considers more realistic
plasma. With regard to the collisionality and the small Debye length, the investigation
of the presheath layer including sources and collisions will be challenging but important
application of the sheath modeling.
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Appendix A

Modern analytical mechanics

We present a review of the fundamentals of th€edential geometry and modern analyt-
ical mechanics [68] which is necessary for the derivation of the gyrokinetic equations.

A.1 Fundamental bases of the dferential geometry
A.1.1 Vector field
A function on a diterentiable manifold\ is defined by a map
f:M—R:PeMr— f(P)eR (A.1)
A curve on a manifoldM is similarly defined by a map
C:R—D M:teRr— Q=c(t) e M. (A.2)

An intuitive representation is given in Fi.I From these maps, the directional deriva-
tive operatowng at the pointQ is introduced as

d f(c(t)

volf] = at (A.3)
It operates to an arbitrary functiohand is written in a local coordinatg as
dg o
= Tt oq (A4)
This differential operator satisfies the following relations;
volaf + bg] = avg[ f] + buglg], (A.5)
vql fg] = vl f]g(Q) + f(Q)uagly]. (A.6)
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Figure A.1:Function and curve.

A set of these dierential operators, therefore, makes a vector space, which is called a
tangent space at the poi@on a manifoldM and denoted byT(M)q. The element of

this spaceyg € (T M), is called a tangent vector at the po@te M. The diferential
operators}; = 9/0q, are the natural bases in the tangent space for the local coordinate
systemq. The union of the tangent space at each poinddn

TM= | J(TMq, (A7)

QeM

is the tangent bundle. A vector field is defined as a map from the manifold to the tangent
bundle,

vV Mr— TM: Qe Mi— vg e (TM)o. (A.8)

A trajectory of a point on the manifold carried by the vector figisl called an integral
curve. Itis given as the solution cunat) : R — M, of the diferential equation

dc
a (t) = Uc(ty- (A9)

It is also expressed in the local coordinate systert asv'(c). A map advancing a point
on M form the initial positionQg along the vector field byis expressed as

o M— M:Qor— Q = ¢(Qo). (A.10)

The union of the map for each{y; |t € R} is called a flow. Since it satisfies the following
relations

¢o = id (identity map) (A.11)
Ptis = ¢t O Ps, (A.12)
o= () (A.13)

the vector fieldb makes 1-parameter transformation group and the gpapan element
in the group.
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A.1.2 One-form

The dual space of the tangential spadeM]o, is called a cotangent space and written as
(T*M)q. As described above, a tangent veatpoperates to a functiohasuvg[ f] = uiQai f

in a local coordinate systemi. This relation can be interpreted as the mapping from a
tangent vector to a real number;

df)g: (TM)g — R :vg +— (df)glvg] = vo[ f] € R. (A.14)

A set of these maps, makes a vector space, which is called a cotangent space at the point
Q on a manifoldM and denoted byT*M)q. If we use the natural bases for a local
coordinate systend;, the dual bases of the cotangent spacedare

@d)io)] = @)Id] = 5 = (A15)
An element in the tangent spacg, = uiQai, and an element in the cotangent space,
yq = yqidd satisfy the relation
Yolvgl = yqiuh(dd)[8;] = yqih. (A.16)
The union of the cotangent space at each poindgn
T M= [T M), (A.17)
QeM

Is the cotangent bundle. A 1-form is defined as a map from the manifold to the cotangent
bundle,
Yy M—TM:Qe Mr— g e (T"M)o. (A.18)

A map from a manifold to a real number
i,y 1 M— R:Qe M yolvg] = yqivg € R

Is called an interior product.

The 1-form corresponds to the totaff@rential of a scalar function. In general, the
p+1-form is derived from the p-form by the exterior derivative. The exterior derivative of
the O-form, i.e. scalar function, gives the 1-form;

af

df = —
oq

ddq. (A.19)
The exterior derivative of the 1-form gives the 2-form;

dy = dy; A dd = %dqj andd, dd Add =-dg Add (A.20)
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Figure A.2:Function and its pull back.
The interior product of a 2-forrv and a vector fiela@ is given by
w = i,)((x)ijd(:]j A dqj) = Uia)ijdqj - Uja)ijdd = vj(a)ji - (,L)ij)dqj. (A21)

The exterior derivative in the three dimensional real space ¢) gives the familiar
vector equations,

df =Vf.-dr, dr=(dxdy,d2, (A.22)
d(A-dr)=VxA-dS, dS=(dyAdzdzAdxdxA dy), (A.23)
dB-dS)=V-BdV, dV=dxAdyAdz (A.24)

The identity equatiod(d f,) = O gives the vector identitie¥,x (Vf) = 0andV-(VxA) =
0.

A.1.3 Pull back

Suppose there are two manifoldsl and N and a map
¢:M—N:QeMr— PeN. (A.25)

The composed functiof o ¢ for an arbitrary functionf : N +— R can be regarded as a
function on the manifold\ and written ag* f;

(" £)(Q) = fop(Q) = f(p(Q)) = f(P) (A.26)
This new function is called a pull back. The pull back for the 1-form is given by

3,

30 dq'. (A.27)

¢ (v(@dd) = 7i(a)d (la) = ¥i(eq)

An intuitive representation is given in Fig.2
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A.1.4 Lie derivative
The Lie derivative generated by a vector field formally written as

¢ —id
£, =lim . (A.28)

where the mapg* and id are the pull back of the flow generated by the vectord the
identity map, respectively. The Lie derivative of a function, or O-form, is given by

¢ f(9) - f(9)

L,f=Ilim
t—0 t
t—0 t
f(q) + (v'6: f(a)) t - f(0)
= lim
t—0 t
6f
aq' (A.29)
The Lie derivative of a 1-form is given by
Loy = lim ()0 pidg) —
t—>0 t
o' (9yi ;
Z dd +
=% oq dg + .dd
vl 0y
= (y,-a—qi 6q; ) dq. (A.30)

These relations can be rewritten without using the local coordinate system as

i,(df) = £,f, (A.31)
i,(dy) + d(isy) =i, (dys A ddf) + d (v'n)
6’}4 ov i 0Yi
( ldd - vdql) (Fy' aql)dqj
= Lv% (A.32)

A.1.5 Lie transformation

A transport of a point along a vector fiedds given by the dferential equation
9Q
ot
The flow generated by the vector field is, therefore, written as

=i,dQ. (A.33)

¢ = expti.d). (A.34)
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This map can be used for the coordinate transformation. The bases of the local coordinate
systemq are transformed to the new basgs

¢ q — g = expti,d)q. (A.35)

If the parametet is suficiently small, the transformation is near-identity transformation
and thus Taylor expanded as

d=q+t+ %iv(dv') . (A.36)
From the definition, the Lie derivative generated by a vector fieddwritten as
L, = E : (A.37)
v T dt (=0 Sot ’ .

where the mag; is the pull back of the flow. This ffierential equation yields the pull
back of the flowy, as an exponential map

¢; = exptL,). (A.38)
Therefore, the pull back of 1 1-form(Q,) is given by

7(Q) = expEtL)(Q) (239
_ 2
= 7(Q)d ~ tL(Q) + 5 L¥(Q) - - (1.40)

A.2 Mathematical description of the mechanics

A.2.1 Modified Hamilton’s principle

Suppose a set of the canonical coordinate variables and the Hamiltonian are giyen by
andH(t, g, p). According to the modified Hamilton’s principle, the motion generated by
the Hamiltonian is determined by the condition that the action integral,

_ (%[, dg
|=L (p-a—H)dt, (A.41)

has an extreme value. The integral can be rewritten as

to

153 )
(p-dg — Hdt) :f yi$dt: f)/i dz, (A.42)
11 o]

t1

where the local coordinate systete (t, g, p) and the 1-form is introduced by

y =p-dg - Hdt, (A.43)
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or explicitly
yo=-H(@,p), 7¥ic123=P, %Yicase=0. (A.44)

The integral is carried out over the curwe
The condition for having an extreme value is given by the variational principle,

sl = 6fyi dZ = 0. (A.45)
Cc

Although the variation of the functiop, is usually utilized in this calculation, we proceed

in a more geometrical expression. The variation of the action integral can be understood
as a diference of the integral over a curgeand an infinitesimally deviated cureé By
construction, the new cuna has to satisfy the following restrictions;

c(ty) =c'(ta), c(tz) = C'(t2). (A.46)

We employ an arbitrary vector fieldand a infinitesimally small paramet&r. The curve
C is expressed as
c'(t) = c(t) + o7v. (A.47)

The vector field also has the restrictions; 0 att = t; andt,. The variational principle

is rewritten as
5= [ i~ [ndi= [@ir-». (A.48)
Cc+otv c Cc

If we take the limitér — 0 in this equation, the right hand side yields the Lie derivative
and thus we obtain

I|m — f&y 0. (A.49)
670 OT

Using the relationt,y = i,dy — d(i,y), the integral is calculated as

f i,y + f d(i,y) = f 2. zl]g—dt+[vy]tl 0, (A.50)

where we introduce the Lagrange bracket

S oy; 0Oy
Z,7|=2 -2 A.51
[ ’Z] 0z 02 (A.51)

Since Eq.[A.50) has to be valid for any vector fieldwhich vanishes at = t; andt,, it
yields the equation of motion,

[2,2] ddi —0, or idy=0. (A.52)

This equation corresponds to the Euler-Lagrange equation for the Lagrangian.
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A.2.2 Fundamental 1 form

A 1-form describing a dynamical system is called a fundamental 1-form. One of the
advantages of the 1-form representation of the mechanics is its invariant characteristic
in the coordinate transformations. Suppose that a fundamental 1-form is expressed in a
coordinate system = (q) asy = yi(q)dd and a new coordinate systefn= (Q') is given

by ¢ : g — Q. The fundamental 1-form can be expressed also in the coordinate system
Q asT = I;dQ. If the both 1-form represent the same dynamics, they are equivalent,
Q) = vy(q) orI'(Q) = [go‘l*y] (Q). The explicit transformation of the 1-form is as
follows;

y =%dd = (¢ Qd(¢ "' Q)

. 07t '
= QD_ *’)/i 6QJ ClQJ = FdeJ. (A53)
Therefore, the new 1-form is written in terms of the original 1-form as
A~
I EU
[i=¢ Yigq (A.54)

We note that the coordinate transformation here is carried out by the arbitrary arap

thus there is no restriction in the transformation. On the other hand, the Hamiltonian
mechanics requires the recalculation of the Poisson tensor in case of the non-canonical
transformation. In the Lagrangian mechanics, only the transformation in the configura-
tion space is available because the coordinate variables for the velocity are automatically
determined from those of the position.

A.2.3 Fundamental 1 form of a charged patrticle

The dynamics of a charged particle is described in the coordinate systdifi, 7', . . ., 2) =
(t, %, v) by the fundamental 1-form

y = [MVv + GAMX)] - dx — [gvz + qu(x)] dt (A.55)
The equations of motion are given by the Euler-Lagrange equations;
. _ “de _ Gyi 0’)/0 . .
ixdy =0, or wj 5 " (820 7 )zo for Vi, (A.56)

where the zeroth coordinate variatferepresents the time, @ = t. The tensorw
introduced here is the Lagrange tensor,

4 dy; Oy
wij = [Zl,ZJ] = ((9_2' — 5) . (A57)
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The Poisson tensar is introduced as an inverse matrix of the Lagrange tensbiy =
6'J Using this relation, the equations of motion are written as the Hamilton equations;

dz _ dyj  on

In the familiar coordinate system,(v), the Lagrange and Poisson tensors are given by

wij = ~g8 1 -ml ] (A.59)
ml 0
oij = <_»O l/T . (A.60)
—I/m-gBx | /nm?

where we use the unit tensbr= 6" and the notatios'*B* = —Bx | . Newton’s equations
of motion are recovered from the Hamilton equatidA50);

dx
i v, (A.61)
dv g q 0A
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Appendix B

Useful formulae

B.1 Vector operations

Levi-Civita symbol € and vector product:

Zfijkfmnk: OimOjn — Oindjm. (B.1)
K
(UxV)xw=(w-u)v-—(v-wu. (B.2)
ux (vxw)=(w-uv-(u-v)w. (B.3)
Uivj — Uju; :Zfijk(uXV)k: —(u><v)><T. (B.4)
K
(uxw)-Vxv=u-Vv-w—-w-Vv-u. (B.5)

Orthonormal vectors &, b and &:

bx = &¢ — ¢a. (B.6)
axsx:_(T_aa).. (B.7)
a-Vxb=(b-vb-¢) (B.8)
b-Vxb=(¢-vb-a)-(a-Vb-¢) (B.9)
¢-Vxb=-(b-vb-3). (B.10)
bx (Vxb)=-b-Vb. (B.11)
Vxb=-8xVb-&-axVb-a (B.12)
b-vbxb=(b-vb-a)e-(b-Vb-¢)a (B.13)
(bxV)-b=-b-(Vxb). (B.14)
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B.2 Taylor expansions

= 2 T exol—x
erf(X) = \Efoexp( x)dx (B.15)
N _\/EX N +—5\/7_Tx5+0(x) (B.16)

x>1 1 exp(—xz) eXp(—XZ) 3 exp(—xz)

o(x7e™). B.17
VX i 2+/nx3 4+/rrx5 ol ) ( )

z 7

@ = 1- TVt o). (B.18)
zZz 7z
lo(2 = 1+ T m" o). (B.19)
Ao(? = lo@exp)=1-z+ ;2;22 -~ 13223 +0(2Y). (B.20)
B.3 Integrals

Error function:
v 1 (v— 5)2) ( v — v_) 1 ( v )
dv exp| - = —erf + —erf ) B.21
ff; V2nu; p( th2 V2 2 V2u, ( )
dv ——— exp| - exp|—— | — exp| -
fc; V2 p( 207 V2r P 20 P 2

NI

+ % erf ( \/gvt) + erf (”\/_Zm . (B22)
Bessel function:

fo ” cosnd cosgsing)dd = [1 + (-1)"xd(2). (B.23)
fo - sinng sin(zsind)do = [1 — (=1)"xd(2). (B.24)

fo i Jn(@x) expB*x*)x dx= gﬁ‘ exp(—%;) ['(n—l)/z (g;jzz) — )2 (%)] -
(B.25)
fo ) Jn(@X) I (BX) expy*x2)x dx = 2%2 exp(—az%yzﬁz) I (;’—yﬁ) . (B.26)
% 95 exp(zipk - &) = J(k.p). (B.27)
2—1ﬂ 95 aexp(xipk - 8) = +ik, Jy(k.p). (B.28)
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vi Kipt
exp(——z) Jo(k p)2mv, dv, = exp( > ) (B.29)
t

= e
[ s (——E)Jé(kLp)vaLde-lo(kipf)exp(—kipf). (8.30)

107



108



Bibliography

[1] Hasegawa and Mima, Phys. Fluidd, 87 (1978)

[2] P. H. Rutherford and E. A. Frieman, Phys. Fluid$, 569 (1968)
[3] J. B. Taylor and R. J. Hastie, Plasma Phy$),,479 (1968)

[4] W. W. Lee, Phys. Fluid26, 556 (1983)

[5] W. W. Lee, John A. Krommes, Carl R. Oberman, and Ralph A. Smith, Phys. Fluid,
27, 2652 (1984)

[6] Robert G. Littlejohn, J. Math. Phy23, 742 (1982)
[7] Robert G. Littlejohn, J. Plasma Phy29, 111 (1983)

[8] S. E. Parker, H. E. Mynick, M. Artun, J. C. Cummings, V. Decyk, J. V. Kepner, W.
W. Lee and W. M. Tang, Phys. Plasm8s1959 (1996)

[9] Z.Lin, T. S. Hahm, W. W. Lee, W. M. Tang, R. B. White, Scien28}], 1835 (1998)

[10] G. Furnish, W. Horton, Y. Kishimoto, M. LeBrun and T. Tajima, Phys. Plasr@as,
1227 (1999)

[11] T. M. Antonsen, Jr. and B. Lane, Phys. Flui@8, 1205 (1980)
[12] P.J. Catto, W. M. Tang, and D. E. Baldwin, Plasma PH33.639 (1981)
[13] E. A. Frieman and L. Chen, Phys. Flui@&g, 502 (1982)

[14] Daniel H. E. Dubin, John A. Krommes, C. Oberman and W. W. Lee, Phys. Fluids,
26, 3524 (1983)

[15] T. S. Hahm, W. W. Lee and A. Brizard, Phys. Flui84, 1940 (1988)
[16] Rober. G. Littlejohn, Phys. Fluid24, 1730 (1981)

[17] Robert G. Littlejohn, Phys. Fluid24, 1730 (1981)

[18] Alain Jean Brizard, Ph. D. thesis, Princeton University, 1990
[19] Hong Qin, Ph. D. thesis, Princeton University, 1998

[20] H. Qin and W. M. Tang, Phys. Plasmag, 1052 (2004)

109



[21] John R. Cary and Robrty G. Littlejohn, Ann. Phyk51, 1 (1983)
[22] H. Qin, W. M. Tang and W. W. Lee, Phys. Plasm&as4433 (2000)

[23] R. A. Kolesnikov, W. W. Lee, H. Qin and E. Startsev, Phys. Plasrh4s072506
(2007)

[24] Alfredo Banos, Jr., J. Plasma Physids 305 (1965)

[25] H. Sugama, Phys. Plasm@s466 (2000)

[26] Alain J. Brizard, Phys. Rev. Lett34, 5768 (2000)

[27] Alain J. Brizard, Phys. Plasmas,4816 (2000)

[28] H. Qin, Fields Ins. Commun46, 171 (2005)

[29] H. Qin, R. H. Cohen, W. M. Nevins and X. Q. Xu, Phys. Plasmds056110 (2007)

[30] Bruce I. Cohen, Timothy J. Williams, Andris M. Dimits and Jack A. Byers,
Phys. Fluids B8, 2968 (1993)

[31] G. Rewoldt, M. A. Beer, M. S. Chance, T. S. Hahm, Z. Linand W. M. T&nd815
(1998)

[32] M. Maccio, J. Vaclavik and L. Villard, Phys. Plasm&s895 (2001)
[33] J. E. Kinsey, R. E. Waltz and J. Candy, 062302 (2005)
[34] B Scott, Plasma Phys. Control. Fusidi®, A387 (2006)

[35] J. A. Heikkinen, S. Henriksson, S. Janhunen, T. P. Kiviniemi and F. Ogando, Con-
trib. Plasma Phys46, 490 (2006)

[36] X. Q. Xu, Z. Xiong, M. R. Dorr, J. A. Hittinger, K. Bodi, J. Candy, B. I. Cohen,
R. H. Cohen, P. Colella, G. D. Kerbel, S. Krasheninnikov, W. M. Nevins, H. Qin,
T. D. Rognlien, P. B. Snyder and M. V. Umansky, Nucl. Fusi#n,809 (2007)

[37] A.J. Brizard and T. S. Hahm, Rev. Mod. Phy&9, 421 (2007)
[38] Alain J. Brizard, Phys. Plasma, 459 (1995)

[39] T. S. Hahm, Phys. Plasm&;,4658 (1996)

[40] H. Qin, Contrib. Plasma Phy<l6, 477 (2006)

[41] H. Sugama and W. Horton, Phys. Plasma®560 (1998)
[42] Robert G. Litlejohn, Phys. Rev. 88, 6034 (1988)

[43] T. S. Hahm, Phys. Fluid81, 2670 (1988)

[44] Yasuhiro ldomura, Tomo-Hiko Wakanabe and Hideo Sugama, C. R. Physique,
650 (2006)

110



[45] Roman D. Smirnov, Ph. D. thesis, The Graduate University for Advanced Studies,
Japan, 2006

[46] R. Chodura, J. Nucl. Mater1,1-12420 (1982)

[47] Richard A. Gottscho, J. Vac. Sci. Technol. B,1884 (1993)

[48] G. Kawamura and A. Fukuyama, submitted to Contrib. Plasma Phys.
[49] T. E. Sheridan, Phys. Plasm&s4240 (2001)

[50] E. Tskhakaya, B. Eliasson, P. K. Shukla and S. Kuhn, Phys. Plasita8945
(2004)

[51] K-U Riemann, J. Phys. (86, 2811 (2003)

[52] K.-U. Riemann, Phys. Plasmdk3, 063508 (2006)

[53] E. R. Harrison and W. B. Thompson, Proc. Phys. Sot,..145 (1959)

[54] D Tskhakaya and S Kuhn, Plasma Phys. Control. FugignA327 (2005)
[55] J. P. Gunn, Phys. Plasmds 4435 (1997)

[56] R. Chodura, Phys. Flui®5, 1628 (1982)

[57] U. Daybelge, Phys. Flui®4, 1190 (1981)

[58] S. Devaux and G. Manfredi, Phys. Plasni3,083504 (2006)

[59] A. B. DeWald,A. W. Bailey and J. N. Brooks, Phys. Flui@§, 267 (1987)
[60] Devendra Sharma, Phys. Plasni,103506 (2005)

[61] R. J. Procassini, C.K. Birdsall and E.C. Morse, Phys. Fluidg,B191 (1990)
[62] T. Lunt, N. Ezumi, W. Bohmeyer, G. Fussmann, J. Nucl. Mag387, 201 (2004)
[63] G. Kawamura and A. Fukuyama, Phys. Plasmd€)83502 (2007)

[64] C. K. Birdsall and A. B. LangdorRlasma Physics via Computer Simulatigimsti-
tute of Physics Publishing, Bristol and Philadelphia, 1991)

[65] E. S. Aydil, B. O. M. Quiniou, J. T. C. Lee, J. A. Gregus and R. A. Gottcho,
Mater. Sci. Semicond. Proces$.75 (1998)

[66] D. Bohm, The Characteristics of Electrical Discharges in Magnetic Fielddited
by A. Guthrie and R. K. Wakerling (McGraw-Hill, New York, 1949), Chapter 3

[67] A. B. Dewald, A. W. Bailey and J. N. Brooks, Phys. Flui@6.267 (1987)

[68] Yamamoto and Nakamur&aisekirikigaku | and I] Asakura-syoten, Tokyo, 1998
(in Japanese)

111



112



Acknowledgments

First of all, 1 would like to express deep gratitude to my supervisor Professor Atsushi
Fukuyama for his continuous support and advice throughout the six years in Kyoto Uni-
versity. | would like to thank him especially for giving me the freedom to work on the sub-
jects of my interest and guiding my work regardless of his workload. | would like thank
to Associate Professor Sadayoshi Murakami for his support over five years. | am also
grateful to all the members of the laboratory, especially Dr. Morihisa Uchida, Dr. Taku
Akutsu, Dr. Mitsuru Honda for their helpful advice.

| am indebted to Dr. Hideo Sugama, Dr. Tomohiko Watanabe and Dr. Yukihiro Tomita
of National Institute for Fusion Science, Dr. Tomonori Takizuka and Dr. Yasuhiro ldo-
mura of Japan Atomic Energy Agency, Dr. David Tskhakaya in University of Innsbruck,
Dr. Masatoshi Yagi of Kyusyu University, Dr. Yasuaki Kishimoto of Kyoto University,
and Dr. Taik Soo Hahm in Princeton University for their helpful comments and sugges-
tions.

| also wish to thank Mr. Kazuhiro Miki and Mr. Kenji Imadera of Kyoto University
and Mr. Motoki nakata of the Graduate University for Advanced Studies (Sokendai) for
fruitful discussions.

Finally, | would like to thank my parents, Kazuyuki and Takako Kawamura, for their
continuous support and encouragement throughout my life.

113



	1 Introduction
	1.1 Fusion energy
	1.2 Confinement of the plasma
	1.3 Transport in magnetically confined plasmas
	1.4 Simulation in the turbulence transport study
	1.5 Gyrokinetics in the turbulence simulation
	1.6 Peripheral plasmas
	1.7 Outline of this thesis

	2 Derivation of the gyrokinetic equations
	2.1 Introduction
	2.2 Guiding-center transformation
	2.2.1 Guiding-center coordinate
	2.2.2 Gyrogauge transformation
	2.2.3 Potential perturbation and orderings
	2.2.4 Guiding-center 1-form
	2.2.5 Drift-kinetic equations

	2.3 Gyrokinetic equations
	2.3.1 Lie perturbation analysis
	2.3.2 First order analysis
	2.3.3 Second order analysis
	2.3.4 Gyrokinetic equations
	2.3.5 Pullback

	2.4 Conclusions

	3 Refinement of the gyrokinetic equations with large flow shears
	3.1 Introduction
	3.2 Preliminary transformation
	3.3 Equilibrium drift velocity
	3.4 Solution of the equilibrium velocity
	3.5 Gyrokinetic equations
	3.5.1 The general derivation of the gyrokinetic equations
	3.5.2 Limiting case with electrostatic perturbation

	3.6 Numerical comparisons
	3.7 Conclusions

	4 Kinetic modeling of a sheath layer in a magnetized collisionless plasma
	4.1 Introduction
	4.2 Basic equations for a unmagnetized plasma
	4.2.1 Model equations based on the Vlasov equation
	4.2.2 Generalized Bohm criterion for an unmagnetized plasma

	4.3 Basic equations for a magnetized plasma
	4.3.1 Model equations based on the gyrokinetic theory
	4.3.2 Particle loss at a wall
	4.3.3 Generalized Bohm criterion for a magnetized plasma

	4.4 Numerical solutions and PIC simulation results
	4.5 Conclusions

	5 Analysis of incident angle distribution of ions in a magnetized sheath
	5.1 Introduction
	5.2 Kinetic modeling of a sheath layer
	5.3 Results and discussion
	5.4 Conclusions

	6 Conclusions
	A Modern analytical mechanics
	A.1 Fundamental bases of the differential geometry
	A.1.1 Vector field
	A.1.2 One-form
	A.1.3 Pull back
	A.1.4 Lie derivative
	A.1.5 Lie transformation

	A.2 Mathematical description of the mechanics
	A.2.1 Modified Hamilton's principle
	A.2.2 Fundamental 1 form
	A.2.3 Fundamental 1 form of a charged particle


	B Useful formulae
	B.1 Vector operations
	B.2 Taylor expansions
	B.3 Integrals

	Bibliography
	Acknowledgments

