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Chapter 1

Introduction

1.1 Fusion energy

The development of an alterative energy resource is a inevitable issue in 21st century.

If the dependence on the fossil energy is kept at the present level, the shortage of the

fossil fuels will happen in the late of this century and then the economic activities will

receive critical damages. The air pollution caused by the exhaust gas from power plants

and automobiles also becomes a critical issue in developing countries. In order to have

the sustainable development of the world, the alternative energy resources should satisfy

the following requirements at least. Firstly the new energy resource should be easily

obtainable almost everywhere on the earth. Secondly a large amount of energy should be

available to replace the present supply of the fossil fuels. Thirdly toxic waste should not

be emitted to the air or the sea. Lastly the safety of the power plant should be assured.

A number of candidates are being studied and developed; solar power, wind power,

biofuel, nuclear energy,etc. The combined use of these energy resources may be desir-

able, but from the view point of the cost and the amount of the power we can utilize,

the nuclear energy is the most realistic choice as the main energy resource. There are

two kinds of nuclear reactions which can be utilized for the power generator. The nu-

clear fission is already utilized as a major electric power resource and its ratio to the all

power production may increase to the large extent. It will be the most realistic choice

of the alternative energy for the moment. However, the producing nations of the fuel, or

uranium, are restricted. The spreading of the technology required to develop the power

plants potentially raises the risk of the diffusion of nuclear weapons.

The other option is the nuclear fusion. It can solve the problems above. The fuel of

the fusion is deuterium and tritium in case of the D-T reaction, D+ T → 4He+ n, which

has larger nuclear cross section than others such as D-D and D-3He. Although the amount

of the tritium is small on earth because of its short radioactive half-life of 12 years, it
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Figure 1.1:Schematic diagram of the torus plasma in a simple tokamak device.

can be bred from the lithium through the following reactions; n+ 6Li → T + 4He and

n + 7Li → T + 4He+ n. The neutron in these reactions can be supplied from that of the

D-T reaction. The deuterium and the lithium can be extracted from the sea water. The

absence of the high activity wastes which require the isolation for tens of centuries is also

an advantage over the nuclear fission.

1.2 Confinement of the plasma

For the fusion reactions to take place, the nuclei, i.e. D and T, must have high energy to

overcome the Coulomb barrier and approach each other within a small distance where

the nuclear force dominates. In order to obtain a sufficient reaction rate, the mixing gas

of deuterium and tritium have to be kept in high temperature, typically 10keV. In this

condition, electrons of the atoms are unbounded from the nuclei and thus the gas is in

the plasma state. Since the electrons and ions, or nuclei, can rapidly escape because of

their high temperature, e.g. approximately 106 m/s for the 10keV ion, magnetic fields are

employed to confine the plasma. The Lorentz force acting on the particles restricts their

perpendicular motion to magnetic fields. Since magnetic fields do not interfere with the

parallel motion, closed magnetic fields are employed to avoid the particle losses from

open ends.

A concept of the confinement device, tokamak is illustrated in Fig.1.1. The mag-

netic fields are generated by the external toroidal coils and the internal plasma currents.

They form nested magnetic surfaces with torus geometry. A magnetic surface is a closed

surface filled with a certain magnetic field line when it is followed from a point on the

surface along the magnetic line. Since the magnetic fields are tangential to the magnetic
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surface they belong to, charged particles do not transported across the surface in the ideal

condition. The perpendicular transport, however, exists because of disturbances such as

Coulomb collisions and plasma waves, or oscillatory electriomagnetic fields.

The rate of the energy loss is measured by the energy confinement timeτe. This factor

represents the characteristic time for the energy generated in the plasma to escape from it

and corresponds to the decay time, i.e. (energy)∝ exp(−t/τe) if there is no energy input.

A small confinement time corresponds to a large energy transport and then a large addi-

tional heating is required to maintain the plasma temperature. Since the energy inevitably

escapes from the plasma to a greater or lesser extent, the heating is essential factor in the

present confinement devices, but small heating power is desirable from the view point of

capital costs and energy gain. The performance of the fusion reactor is measured by the Q

value, which is defined byQ = (Po−Ph)/Ph. The heating power to maintain the stationary

plasma and the thermal output are denoted byPh andPo, respectively. If the Q value is

unity, the heating power and the fusion power,Po − Ph, are balanced. Obtaining higher

Q value in long-time discharges is the goal of the fusion studies. In order to reduce the

heating power and obtain the large Q value, a long energy confinement time is required.

To this end, understanding of the transport mechanism in the plasma is a essential issue

in the fusion studies.

1.3 Transport in magnetically confined plasmas

There are three types of microscopic transport mechanisms in the torus plasma; classical,

neoclassical and anomalous transports. The classical transport is caused by Coulomb

collisions in the magnetized plasma. When a charged particle experiences a collision with

another particle, the velocity is deflected through the momentum exchange and that causes

a jump of the guiding-center. A guiding-center is a center position of the cyclotron orbit

and given byX = x − B × v/BΩ, where the particle position and the cyclotron frequency

are denoted byx andΩ = qB/m. The statistical average over the series of the collisions

yields the diffusion which is characterized by the diffusion coefficient Dc ∼ νρ2
t , where

the collision frequency and the thermal Larmor radius are denoted byν andρt = mvt/qB,

respectively. Here we use the following notations; particle massm, chargeq, temperature

T, thermal velocityvt =
√

T/m and magnetic fieldB.

The neoclassical transport is also collisional but caused by different dynamics of parti-

cle associated with the toroidicity. In the toroidal magnetic fields, a guiding-center travels

around the toroidal and poloidal directions. Since the magnetic field strength is inversely

proportional to the major radius, a particle with a small parallel velocity is repelled at a

certain poloidal position by the magnetic mirror effect. Such particles are called trapped
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Figure 1.2:The projection of the trajectories of particles in toroidal magnetic fields on

a poloidal plane. The passing and trapped particles are denoted by the solid and dashed

curves. The dotted circle represents the magnetic surface where the particles started.

particles and the others are called passing particles. An example of each trajectory is

illustrated in Fig.1.2. When a particle travels in toroidal magnetic fields, perpendicular

drifts associated with the geometry of the magnetic fields, i.e. gradB and curvature drift,

causes a deviation from the magnetic surface where the particle originally located. The

deviation for the passing and trapped particle is denoted by∆p and∆t in the figure. As

shown there, the deviation for the passing particle is smaller than that of the trapped par-

ticle, or ∆p < ∆t. Since the former,∆p, is still larger than the Larmor radius, they act

as longer step-lengths in the random walk and yield about one order of magnitude larger

transport than the classical one.

The third microscopic transport is the anomalous transport. The origin of its name is

its anomalously large transport coefficient observed in experiments. Since the cause of

the enhanced transport was not identified, it was named anomalous transport. At present

it is widely recognized that turbulence driven by micro-instabilities causes the anomalous

transport. Therefore, it is also called a turbulence transport. Especially drift wave type

micro-instabilities are the most possible candidates for the turbulence transport. The drift

wave is a wave induced in the plasma by gradients of the density and temperature. The

time and spatial scales of the drift wave are characterized by the drift frequencyω∗ ∼ κcs

and the most unstable wave lengthλ∗ ∼ ρti. Here we denote the inverse scale length,

the cold ion sound speed and the ion thermal Larmor radius asκ = |∇ ln n|, cs =
√

Ti/mi

andρti = vti/Ωi =
√

miTi/qB, respectively. Since the driving force of the turbulence, or

micro-instabilities, exists even in the collisionless plasma, the turbulence transport also

exists in low collisional regime. This is the most prominent difference of the turbulence

transport from the classical and neoclassical ones.
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Another difference is the dependence on the structure or state of the plasma. Since the

growth rate of the drift wave is roughly proportional to the gradients, the dependence on

the plasma profiles is a natural consequence. The dependence on the dynamical structure,

i.e. global modes or flows, is one of the key issues in the transport study. As mentioned

above, the wave length of the most unstable mode is of the same order as the ion thermal

Larmor radius and is much shorter than the system length characterized by the minor

radius, or the distance from the magnetic axis to the plasma surface. The existence of

nonlinear couplings can, however, excites even the stable modes which has shorter or

longer wave length. These processes are called a cascade (toward modes with shorter

wave length) and an inverse cascade (longer). One of the nonlinearities comes from the

polarization drift, which has been modeled by Hasegawa and Mima [1]. The polarization

drift is a perpendicular drift caused by the variation of the electric field in time and has a

reducing effect of the electric field. From studies using their single field model, namely

the Hasegawa-Mima equation or Charney-Hasegawa-Mima equation, or more generalized

models, the importance of the nonlinear couplings are revealed. One of its characteristic

roles is structure formation such as a zonal flow and convection cells which are linearly

stable. The zonal flow is a poloidal flow generated by a nonlinear stress tensor. The self-

suppression effect of the global flow, or structure, has been found through these studies

and has a large impact on the transport study.

1.4 Simulation in the turbulence transport study

In turbulence studies, simulations have played a significant role in elucidating the nonlin-

ear characteristics existing in the plasma dynamics associated with the micro-instabilities.

A simulation provides physical insights on a complicated system such as the plasma in

turbulent or highly structured state and promote the modeling of the turbulence trans-

port. With regard to the rigorousness and the extent of reductions, there are several set of

equations employed in the turbulence simulations. The most fundamental one is a kinetic

simulation solving the Newton’s equations,

dx
dt

= v, m
dv
dt

= qv × B + qE, (1.1)

or its continuum expression known as the Vlasov equation,

d f
dt

=
∂ f
∂t

+ v · ∂ f
∂x

+ (qv × B + qE) · ∂ f
∂v

= 0, (1.2)

where the distribution functionf represents the number density in the six dimensional

phase space (x, v) at time t. The simulation using the equations of motion to calculate
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the motion of individual particles is called a particle simulation. The force acting on

each particle is calculated from the velocities and positions of the other particles. A

more simplified simulation using Maxwell’s equation is called a particle-in-cell (PIC)

simulation and frequently used for plasma simulations. Another commonly used one is

called a Vlasov simulation or an Eulerian simulation, which solves the Vlasov equation

and Maxwell’s equations self-consistently. Maxwell’s equations are given by

∇ · E =
ρ

ε0
, ∇ × E = −∂B

∂t
, ∇ · B = 0, ∇ × B = µ0j +

1
c2

∂E
∂t
, (1.3)

where the charge and current density,ρ andj , are calculated from the distribution function

as

ρ(x) =
∑

species

∫
qs fs(x, v)d3v, j (x) =

∑

species

∫
qsv fs(x, v)d3v. (1.4)

The simplified expressions of Maxwell’s equations are usually employed in the plasma

simulations; (
∇2 − 1

c2

∂2

∂t2

)
φ = − ρ

ε0
,

(
∇2 − 1

c2

∂2

∂t2

)
A = −µ0j , (1.5)

where the scalar potentialφ and the vector potentialA are related to the electromagnetic

fields as

E = −∇φ − ∂A
∂t
, B = ∇ × A. (1.6)

Here the potentialsphi andA have to satisfy the Lorentz condition,

∇ · A +
1
c2

∂φ

∂t
= 0. (1.7)

Another type of simulation employs fluid equations. They are derived from the kinetic

equation by taking the velocity moments. The zeroth order moment yields the continu-

ity equation, or conservation of the density. The first, second and third moments yield

balance equations with respect to the momentum, the pressure and the thermal flux, re-

spectively. Since the Vlasov equation includes the velocity in the formv ·∇ f , the equation

for a certain moment contains one order higher moment. The fluid equations are, there-

fore, composed of the infinite series of hierarchy equations. In order to obtain equations

using only the finite number of moments, the hierarchy is usually truncated at a certain

order moment by introducing an appropriate closure model. If the second moment is trun-

cated, for instance, the pressure in the equation of state is substituted into the equation of

the momentum balance. Therefore, the fluid equations discard the detailed information of

the distribution function. Paying the cost of the truncation and the approximation model

of higher moment, they have a great advantage in its moderate requirements for the com-

putational resources, especially the memory consumption, because they do not need the
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velocity space, while the kinetic equation needs a number of particles for the particle sim-

ulations and a number of grids in velocity space for the Vlasov simulations. The fluid

model is, therefore, employed for global simulations and the long-time simulations such

as an equilibrium, a transport calculation for given or modeled diffusion coefficients, and

magnetohydrodynamics phenomena.

In the turbulence simulations related to the anomalous transport, however, the sim-

ulations are mostly based on the kinetic equation because the kinetic effects such as the

Landau damping, the finite-Larmor-radius (FLR) effects and the particle trapping strongly

affect the growth rate of the micro-instabilities and also the turbulence. Some advanced

fluid models have been constructed to include the kinetic effects but the calculation based

on the first principle is widely recognized as an essential element for the quantitative

prediction of the anomalous transport coefficient. As mentioned above, the kinetic equa-

tion, or Vlasov equation, involves all the particle dynamics except the Coulomb collision,

which can be included as additional terms in the Vlasov equation. Although the kinetic

equation can describe the accurate dynamics of the plasma, it requires a vast amount of

computational resources and may be an unrealistic choice of a method for the global tur-

bulent simulations. In order to overcomes the difficulty, a reduced but still accurate kinetic

equation, namely the gyrokinetics, has been developed.

1.5 Gyrokinetics in the turbulence simulation

The gyrokinetic equations is simplified equations under the condition that the gyration due

to the Lorentz force is the fast and dominant motion of charged particles in the plasma.

While the kinetic equations, which are now called full-kinetic equations to be distin-

guished from the gyrokinetic equations, follow the trajectory of a particle, the gyrokinetic

equations follow that of the gyrocenter, which is a generalized or ‘optimized’ position of

the guiding-center given byX = x − B × v/BΩ. The fundamental concept of the gyroki-

netics is the determination of the gyrocenter coordinate system where the equations of

motion are reduced to simple equations without gyration. This idea resembles the intro-

duction of an amplitude and a phase into the harmonic oscillator given by ¨x +ω2x = 0. It

can be reduced tȯA = 0 andθ̇ = ω through the coordinate transformationx = Acos(θ).

The amplitude and the phase correspond to the magnetic moment given bymv2
⊥/2B and

the phase of the cyclotron motion.

Since the gyration and other motions such as the drift and the parallel motion are

completely decoupled in the gyrokinetic equations, one can reduce the dimension of the

velocity space to two, i.e. the parallel and perpendicular velocities. In other words, the

phase of the gyration can be discarded. It contributes to the large reduction of the com-
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Figure 1.3:Schematic diagram of the poloidal cross section of a tokamak device.

putational resources because the elimination of the gyrating motion enables one to use

larger time-steps than the gyration period and also to ignore the velocity space variable

corresponding to the phase of the gyration. Another advantage is reduction of the nu-

merical noise in the simulation. The particle is treated as an imaginary ring instead of a

point, or the particle itself. The force acting on the particle is calculated from the potential

averaged over the ring, or the trajectory of the gyration. Short-scale noise characterized

by the Larmor radius and the cyclotron frequency is much reduced compared with the

full-kinetic calculation.

The gyrokinetics was first developed for theoretical modelings of the micro-instabilities

in the late 1960s [2, 3] and its application to simulation started in the early 1980s [4, 5].

The basis of the modern gyrokinetic equation widely used at present appeared around

1980 [6, 7]. The simulation studies requiring more general and accurate reduced equa-

tions of motion has motivated the development of the modern derivation employing an-

alytical mechanics. The establishment of the mathematically unambiguous and rigorous

gyrokinetic equation and the rapid progress of high performance computing made the ki-

netic simulation a realistic choice for the global turbulence study and indeed global, or

toroidal, simulations using the gyrokinetic equations has started in the late 1990s [8–10].

The gyrokinetic simulation is now believed to be an essential tool for the study of the

turbulent transport driven by the micro-instabilities.

8



1.6 Peripheral plasmas

We described the plasma confinement and the transport study in the preceding sections.

In addition to the core plasma which is confined in the magnetic surfaces, the external,

surrounding region also has important role in the fusion devices. A poloidal magnetic

configuration of a standard tokamak device is illustrated in Fig.1.3. In the core region,

the magnetic fields are closed and the hot and dense plasma is confined. In the outer

region called scrape-off-layer (SOL), the magnetic fields are open to the divertor plate

and a relatively cold and thin plasma exists. The boundary between the closed and open

magnetic fields is called separatrix. The objectives of separatrix and open magnetic field

are the determination of the hot plasma surface and exhaustion of the heat and the alpha

particles generated by the fusion reactions. The plasma expelled from the core region is

subjected to rapid parallel transport and the main part of the energy flux flows into the the

divertor plate.

On the surface contacting with a plasma, various phenomena are observed; large po-

tential formation called sheath, generation of neutral atoms, formation of small particles

called dust, secondary electron emission, sputtering of the surface,etc. The sheath is a

boundary layer formed in front of a surface and has a large electric field. The cause of

the electric field is a difference of the thermal velocity between ions and electrons. For

instance, a deuterium is approximately sixty times faster than a electron if they have the

same energy. Since a particle flux is roughly a product of the density and thermal velocity,

an imbalance of the fluxes, or electric current, occurs if a return flux from the surface does

not exist. To compensate it, a large electric field is formed in front of the wall surface and

the electron return flux is generated.

The behavior of impurity atoms and particles are important issues for the plasma con-

finement because they may penetrate into the hot plasma. The impurity atoms are excited

and cause a considerable energy loss through radiations, especially in case of high atomic

number. In order to predict their generation rate and their behavior, the state of the plasma

such as the potential profile, energy flux and velocity distribution near the wall are re-

quired. Therefore, understanding of the plasma in the divertor region is an essential and

fundamental issues in fusion research.

1.7 Outline of this thesis

One of the objectives of this thesis is a new formulation of the gyrokinetic equations appli-

cable to the plasma with strong electric field and the numerical verification. The equation

derived here aims at being applied mainly to gyrokinetic simulations of the fusion plasma
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in the turbulent state accompanied with global and fast flows. The other objective is to

understand the physics of sheath formation in a magnetic field. To this end, a kinetic

modeling of the sheath plasma in magnetic fields is provided by using the gyrokinetic

equations derived here.

In Chap. 2, a general derivation of the gyrokinetic equation is presented. Comparing

previous works, a straightforward way to derive the equation is adopted. After obtaining

the general forms, the specific set of gyrokinetic equations are formulated on the assump-

tions usually employed in the analysis of the micro-instabilities. In Chap. 3, introducing

a reference frame in the formulation procedure, improved gyrokinetic equation still valid

for large equilibrium electric fields is presented. The criterion for the appropriate choice

of the reference frame is discussed and a practically most suitable one is obtained. The

validity of the resulting equations is confirmed by numerical comparisons with the full-

kinetic equations of motion, or the original Newton’s equations.

In Chap. 4, a kinetic model of the magnetized sheath plasma formed in front of a

wall is presented. The gyrokinetic equations obtained in Chap. 3 is employed here and

modified expressions for the sheath plasma are used. A criterion for the stable formation

of the sheath in magnetic fields is derived. The validity of the model is investigated

by numerical comparisons with the results of a full-kinetic particle-in-cell simulation.

The parameter dependences of the electric field at the wall surface is studied by using

numerical solutions of the present sheath model. In Chap. 5, parameter dependences of

the incident angle of ions to the wall is studied by using the numerical codes developed

in Chap. 4.

In Chap. 6, the summary of this thesis and future works are presented.
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Chapter 2

Derivation of the gyrokinetic equations

2.1 Introduction

The concept of the gyrophase-averaging is introduced at the first time by Rutherford and

Frieman [2], and Taylor and Hastie [3]. They apply the gyrophase-averaging technique

to the WKB expression of the perturbation potential and distribution function and obtain

the reduced kinetic equation decoupled from the fast gyrating motion. The procedure in

their derivations is called a recursive method and employed in many gyrokinetic analy-

ses [4, 11–13]. One of the advantages of the gyrokinetics is separation of the time scale

which enables one to solve only the slow dynamics. The dominant motion of a particle

in most of the fusion plasmas is the cyclotron motion characterized by the gyrofrequency

Ω = qB/m and the gyroradiusρ = v⊥/Ω. In the case of the micro-instabilities such as

ion-temperature-gradient (ITG) modes, which are believed to be a essential cause of the

anomalous transport in the magnetically confined plasmas, the characteristic frequency

is usually much smaller than the gyrofrequency. The separation and averaging of the

fast gyration provides the slow dynamics of the plasma such as drift motions in phys-

ically clear form in the resulting kinetic equation. The gyrophase-averaging procedure

in the recursive formulation also reduces the dimensions of the distribution function, i.e.

the gyrophase dependence is eliminated. This is another advantage of the gyrokinetics

especially for the simulation studies. The reduction of the computational cost is quite

important issue in simulation studies because the statistical accuracy can be improved by

using larger number of particles in the particle simulations and the spatial resolution can

be improved also in the Vlasov simulations. The recursive formulation is used for the

analytical and simulation studies mainly in the 1970s and 1980s.

In 1979, Littlejohn introduced a new approach [16, 17] in the plasma physics, which

enables one to treat the particle dynamics rigorously and to decouple the drift motions

with the aid of the the differential geometry. The advantage over the previous formulation
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is the completeness and unambiguous in the derivation of the higher order nonlinear terms.

The derivation starts from a Hamiltonian representation of a particle dynamics, and then

the gyrophase and the magnetic moment are determined to be canonical conjugate through

the Darboux transformation, and finally the gyrokinetic Hamiltonian is determined to be

independent of the gyrophase through the Lie transformation. Since his formulation was

for only the equilibrium potentials, the generalization for the perturbation potentials was

made by Dubin [14] and Hahm [15].

In 1982, Littlejohn introduced another formulation method [6,7] using the phase space

Lagrangian, or 1-form, instead of the Hamiltonian. The efficiency of this representation

in the Lie perturbation analysis [21] took the place of the Hamiltonian formulation. The

generalization for the perturbation potentials was made by Hahm [15] and Brizard [18]. A

closed set of gyrokinetic equations, i.e. equations of motion and the Maxwell’s equations,

was systematically derived by Brizard [18] and Qin [19, 20] with the aid of the pullback

transformation. A brief description of the fundamental concept in the modern derivation,

especially the Lagrangian formulation, is presented below.

The basic idea of the modern gyrokinetic theory is that if one chooses an appropriate

coordinate system, the equations of motion can be reduced. The coordinate systems used

in the gyrokinetic theory are shown in Fig.2.1. The dashed curve represents the trajectory

of a charged particle in a given electromagnetic fields;B ∝ ẑ andE ∝ (xx̂+yŷ)/
√

x2 + y2.

The dotted and solid curves correspond to those of the guiding-center and the gyrocenter.

The trajectory of the guiding-center does not include the gyration due to the Lorentz force.

A small oscillatory component, however, remains in the dynamics of the guiding-center.

On the other hand, the motion of the gyrocenter is reduced to a simpleE×B drift motion

along the contour of the electric potential. The goal of the gyrokinetic theory is to deter-

mine the most appropriate coordinate system, i.e. gyrocenter coordinate, with the aid of

mathematics and the analytic mechanics such as differential geometry, 1-form representa-

tions of the particle dynamics, the Lie perturbation analysis and pullback transformation.

Before dealing with the particle motion in electromagnetic fields, we discuss a simple dy-

namics related with a harmonic oscillator. Observing a simple example of determining a

suitable coordinate system will be helpful in the later discussion of the gyrokinetic theory.

The dynamics of a harmonic oscillator is described by the 1-form,γ = vdx− (v2/2 +

ω2x2/2)dt, where the position and velocity of a particle are denoted byx and v. The

equations of motion are derived by the Euler-Lagrange equation as ˙x = v andv̇ = −ω2x.

This simultaneous differential equation can be easily solved and yield sinusoidal solu-

tions. We can, however, obtain more straightforward equations where the two coor-

dinate variables evolves independently each other through a coordinate transformation;

x =
√

2µ/ω sinθ andv =
√

2ωµ cosθ. This transformation yields a new expression of the

12
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Figure 2.1: Schematic diagram of three coordinate systems; particle (dashed curve),

guiding-center (dotted curve) and gyrocenter (solid curve). The coordinate transforma-

tions from the particle to the guiding-center and from the guiding-center to the gyrocenter

are called guiding-center transformation and Lie transformation, respectively.

1-formγ = µdθ−ωµdt+d(µ sin 2θ/2). Since the exterior derivative of a scalar field does

not affect the dynamics, the 1-form is reduced toγ = µ dθ − ωµdt, i.e. gauge transforma-

tion. The new 1-form yields quite simple equations of motion; ˙µ = 0 andθ̇ = ω. Since the

1-form does not includeθ dependence, each coordinate variables evolve independently.

This fact represents the advantage of the new coordinate system (µ, θ) over the original

one. The present coordinate system correspond to the guiding-center coordinate system

in the gyrokinetic theory. Although it is sufficient for the constantω, or uniform fields in

the gyrokinetic theory, it is not the best in more general cases as is shown in the Fig.2.1.

We consider another example of more general one. If the Hamiltonian of the harmonic

oscillator acquires a perturbation proportional to a small parameterε, an example of such

1-forms is given byγ = µθ−ω(µ− ε cosθ) dt. In this case, the coordinate transformation,

µ̄ = µ − ε cosθ, can eliminate theθ dependence in the 1-form;γ = (µ̄ − ε cosθ) dθ −
ωµ̄ dt = µ̄ dθ − ωµ̄dt + d(ε sinθ). The new coordinate system (¯µ, θ) corresponds to the

gyrocenter coordinate. Although in this simple example theθ dependence is completely

eliminated through the coordinate transformation, the dynamics of a charged particle in

nonuniform fields involves more complicated coupling between the gyration and potential

variation, and thus the determination of the appropriate coordinate system requires a more

elegant mathematical technique. In gyrokinetic theory, the Lie transformation technique

[18, 21] is employed because of its useful feature as a near-identity transformation. A

Lie transformation represents a transport along a flow generated from a vector fieldg

and is usually written as an exponential map, exp(εLg), with the Lie derivative operator

Lg = ig(d f) − d(ig f ). The generating vector fieldg is called a Lie generator. In the

example of the perturbed harmonic oscillator, the corresponding Lie generator is given

by g = − cosθ ∂θ. Using the Lie transformation, the new coordinate ¯µ and 1-form are
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written asµ̄ = exp(εL)µ = µ − ε cosθ andγ̄ = exp(−εL)γ = µ̄ dθ − ωµ̄ dt + dS, where

the gauge function is denoted byS. In the gyrokinetic theory, the 1-form of a charged

particle, the Lie generator and the gauge function are expanded in power series of a small

parameterε. Using the Taylor expanded expression of the Lie transform operator, the

Lie generator and the new coordinate system are determined order by order to eliminate

gyrophase dependences in the original 1-form.

The detailed discussions of the derivation is presented here. In Sec.2.2, the guiding-

center coordinate is introduced in the 1-form of a charged particle. The preliminary cal-

culation for the Lie perturbation analysis is carried out and the zeroth order drift-kinetic

equations are presented. The differences in the previous derivations by Littlejohn, Brizard

and Qin are also described. In Sec.2.3, the Lie generator and the gyrocenter coordinate

are determined and the first order gyrokinetic equations are presented. The charge and

current densities written by the gyrocenter distribution function are also obtained. Fi-

nally, conclusions are presented in Sec.2.4.

2.2 Guiding-center transformation

2.2.1 Guiding-center coordinate

The fist step in the derivation of the gyrokinetic equations is coordinate transformation

to the guiding-center systemZ = (Z0,Z1, . . . ,Z6) = (t,X,Θ′, v⊥, v‖). Definitions intro-

duced by Littlejohn [6, 7] and Qin [19, 22, 28] and by Brizard [18] differs. In the former

definition the position of the guiding-center is explicitly defined, while in the latter only

the velocity space variables,Θ, v⊥ andv‖ are defined and the guiding-center position is

recovered through the Lie transformation. Although Brizard use the Lie transformation

for the guiding-center transformation to obtain the higher order drift-kinetic equations, it

can be omitted and a simple expression can be used for the guiding-center position. We

define the guiding-center coordinate variables as inverse transformations;

x ≡ X +
mv⊥

qB(X)
â′(X,Θ′), (2.1)

v ≡ v‖b̂(X) + v⊥ĉ′(X,Θ′). (2.2)

Each quantity in the right hand side is a function of the new coordinate variables (t,X,Θ′, v⊥, v‖).

The meaning of the superscript ‘′ ’ in these equations is clarified in Sec.2.2.2. The paral-

lel and perpendicular velocities are given byv‖ ≡ v · b̂ andv⊥ ≡
∣∣∣b̂ × v × b̂

∣∣∣, respectively.

A set of the orthonormal vectorŝa′, b̂ andĉ′ is introduced to define the gyrophaseΘ′

b̂ ≡ B
B
, (2.3)
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Figure 2.2:Definition of the gyrophase. An unit vectorû is used as the base direction.

ĉ′ ≡ û′ cosΘ′ −
(
b̂ × û′

)
sinΘ′, (2.4)

â′ ≡ û′ sinΘ′ +
(
b̂ × û′

)
cosΘ′, (2.5)

where the magnetic fieldB is equilibrium one. These vectors satisfy the relationb̂ = ĉ′×â′

and thuŝc′ and â′ makes the perpendicular plane to the magnetic field. The unit vector

û′ is normal to the magnetic field and represents the base direction for the gyrophase, i.e.

ĉ′|Θ′=0 = û′. The vector̂c′ andâ′ are utilized as the direction of the perpendicular velocity

and the gyroradius vector. These newly introduced vectors are illustrated in Fig.2.2. In

most of the gyrokinetic study, the base direction vectors are denoted byê1 andê2, but we

useû′ here to emphasize the role as the base direction of the gyrophase. One can replace

û′ andb̂ × û′ with ê1 andê2.

2.2.2 Gyrogauge transformation

The exterior derivative of the vectorâ′, b̂ andĉ′ are calculated as

db̂ = dX · ∇b̂ + dt
∂b̂
∂t
, (2.6)

dĉ′ = −
[
dΘ′ − dû′ ·

(
b̂ × û′

)]
â′ −

(
db̂ · ĉ′

)
b̂, (2.7)

dâ′ =
[
dΘ′ − dû′ ·

(
b̂ × û′

)]
ĉ′ −

(
db̂ · â′

)
b̂. (2.8)

These calculations gives the relation

dâ′ · ĉ′ = −dĉ′ · â′ = dΘ′ + RX · dX + Rtdt, (2.9)

where we introduceRX ≡ ∇ĉ′ ·â′ = ∇û′ ·
(
b̂ × û′

)
andRt ≡ (∂ĉ′/∂t)·â′ = (∂û′/∂t)·

(
b̂ × û′

)
,

which do not depend on the gyrophase. The infinitesimal changedâ′ · ĉ′ represents the

variation of the angle which the vectorâ′ has during the infinitesimal period of time,dt,

and consists of the contributions of the gyrophase,dΘ, and spatial-temporal variation of
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the base direction,RX · dX + Rtdt. The latter contribution is caused by the arbitrariness

in the definition of the base direction for the gyrophase, in other words a gyrophase sym-

metry existing in the dynamics. While Brizard and Qin proceed calculations usingRX

andRt, Littlejohn removes the arbitrariness from the definition of the gyrophase through

the gyrogauge transformation [17, 18] at the end of the formulation. According to the

formulations by Brizard and Qin, this arbitrariness just causes an offset in the gyrophase

and does not affect the resulting equations of motion physically. Although that fact imply

that the gyrogauge transformation is not the essential step in the formulation, we utilize

it before the Lie transformation because terms related toRX andRt are canceled and the

following calculations become simple.

We introduce a new gyrophaseΘ as the angle pushed forward by a functionϕ(t,X)

from the original angleΘ′;

Θ ≡ Θ′ + ϕ. (2.10)

In order to remove the arbitrariness from the gyrophase, the offset of the angleϕ is deter-

mined so that the infinitesimal change of the angle which the new orthonormal vectors

ĉ ≡ û cosΘ −
(
b̂ × û

)
sinΘ, (2.11)

â ≡ û sinΘ +
(
b̂ × û

)
cosΘ, (2.12)

have during the infinitesimal period reduces to only the contribution of the new gyrophase;

dâ · ĉ = dΘ. The new base direction̂u used in the definitions of the vectorĉ and â is

defined byû ≡ û′ cosϕ + b̂ × û′ sinϕ. From these equations, the exterior derivative ofϕ

is determined;dϕ = dΘ − dΘ′ = dâ · ĉ − (dâ′ · ĉ′ − RX · dX − Rtdt) = RX · dX + Rtdt.

Integratingdϕ, we obtain the functionϕ as

ϕ =

∫ t

0

(
RX · dX

dt
+ Rt

)
dt. (2.13)

Although Littlejohn uses slightly different expression, which has an additional term
∫
∇×

b̂/2 · dX, the difference is not essential because the additional term can be recovered

through the Lie transformation later and does not make the calculation complicated at all.

As long as one uses the new orthonormal vectorsâ, b̂, ĉ, the vectorRX andRt related to

the arbitrariness do not appear in calculations.

The infinitesimal change of the new base direction vectorû introduced through the

gauge transformation can be written asdû = −
(
db̂ · û

)
b̂, or explicitly

dû
dt

= −
(
dX
dt
· ∇b̂ · û +

db̂
dt

)
b̂. (2.14)

This differential equation coincides with the ‘rotationless’ transport equation introduced

by Littlejohn [42]. We use the new gyrophaseΘ, the orthonormal vectorŝc andâ and the
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direction vector̂u in the remainder of this work instead of the corresponding vectors with

the superscript ‘′ ’. We note that the vector̂u differs for each particle.

2.2.3 Potential perturbation and orderings

We introduce the potential perturbations as follows;

φ = φ0 + φ1 (2.15)

A = A0 + A1 (2.16)

The subscripts 0 and 1 represent the equilibrium and perturbation components, respec-

tively. The drift-kinetic orderings,

ω0

Ω
∼ 0, k⊥0ρ ∼ εd, k‖0ρ ∼ εd,

∣∣∣b̂ × ∇φ0

∣∣∣
B0

∼ εdvt, (2.17)

are applied to the equilibrium potentials. The gyrofrequency and gyroradius are denoted

by Ω ≡ qB0/m andρ ≡ v⊥/Ω, respectively. Although we neglect the time dependence of

the equilibrium potentials here, slow variations, i.e.ω0/Ω ∼ εd, can be treated in the same

way. The gyrokinetic orderings

ω1

Ω
∼ εg, k⊥1ρ ∼ 1, k‖1ρ ∼ εg,

∣∣∣b̂ × ∇φ1

∣∣∣
B0

∼ εgvt, (2.18)

are similarly applied to the perturbation components. Although we assume that the time

scale of the perturbation is much longer than that of the gyration, fast variations, i.e.

ω0/Ω ∼ 1, can be treated in the same way [19,23].

2.2.4 Guiding-center 1-form

The fundamental 1-form of a single charged particle defined in the coordinate system

z = (z0, z1, . . . , z6) = (t, x, v) is given by

γ ≡ [
mv + qA(x)

] · dx −
[m

2
v2 + qφ(x)

]
dt. (2.19)

It can be rewritten in the guiding-center coordinate system introduced in Sec.2.2.1as

γ =
[
qA(X + ρâ) + mv⊥ĉ + mv‖b̂

]
· d(X + ρâ) −

[m
2

(
v2
‖ + v2

⊥
)

+ qφ0(X + ρâ)
]
dt. (2.20)

From a guiding-center representation of the 1-formdx = d(X + ρâ),

dx =

(↔
I − ρ∇ ln B0â− ρ∇b̂ · âb̂

)
· dX + ρĉdΘ +

â
Ω

dv⊥, (2.21)
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we calculatêc · dx andb̂ · dx asĉ · dx = ĉ · dX + ρdΘ andb̂ · dx =
(
b̂ − ρ∇b̂ · â

)
· dX,

respectively.

The calculation ofA0 · dx is rather complicated because of the dependences of the

vector potentialA0 on the velocity space variables. First, using the gauge transformation

we obtainA0 ·dx = A0 ·dX−dA0 ·ρâ+d (A0 · ρâ). Second, since the equilibrium potential

satisfies the drift-kinetic orderings, the termA0(X + ρâ) can be Taylor expanded withεd;

A0(X + ρâ) = A0 + ρâ · ∇A0 + ρ2ââ : ∇∇A0/2 + O(ε3
d). Each term is reduced through the

gauge transformation as

d (ρâ · ∇A0) · ρâ = −1
2

[
ρâ× d(ρâ)

] · ∇ × A0 +
ρ2

2
â · d∇A0 · â + d

(
ρ2â · ∇A0 · â

)
,

d

(
ρ2

2
ââ : ∇A0

)
· ρâ, = −1

3
ρâ · ∇(∇ × A0) · [ρa× d(ρâ)

]
+
ρ2

6
ââ : d(∇∇A0) · ρâ

+ d

(
ρ2

3
ââ : ∇∇A0 · ρa

)
,

where we used the following relations;

d
(
ρ2â · ∇A0 · â

)
= ρâ · ∇A0 · d(ρâ) + d(ρâ) · ∇A0 · ρâ + ρ2â · d(∇A0) · â,

[
ρâ× d(ρâ)

] · ∇ × A0 = ρâ · ∇A0 · d(ρâ) − d(ρâ) · ∇A0 · ρâ,

d
(
ρ3ââ : ∇∇A0 · â

)
= ρâρâ : ∇∇A0 · d(ρâ) + 2ρâd(ρâ) : ∇∇A0 · ρâ

+ ρ2ââ : d(∇∇A0) · â,
ρâ · ∇(∇ × A0) · [ρa× d(ρâ)

]
= ρâρâ : ∇∇A0 · d(ρâ) − ρâd(ρâ) : ∇∇A0 · ρâ.

Third, using the relationsdA0 = dX · ∇A0 andâ · ∇A0 − ∇A0 · â = (∇ × A0) × â = −B0ĉ,

we obtain

qA0(x) · dx =

(
qA0 −mv⊥ĉ +

qρ2

2
â · ∇B0 × â

)
· dX +

mv⊥
2

[
â× d(ρâ)

] · b̂

+
mv⊥ρ
2B0

â · ∇B0 · [â× d(ρâ)
] − qρ2

6
ââ : d(∇∇A0) · ρâ + dS + O(ε3

d),

where the gauge functionS is given byS ≡ qρA0(x) · â−qρ2â∇A0 · â−qρ3ââ : ∇∇A0 ·a/3.

Form the identitŷa · ∇B0 × â = B0â · ∇b̂ · ĉb̂ − â · ∇B0ĉ, we obtain the gauge transformed

expression of the 1-formqA0 · dx up to the first order;

qA0(x) · dx =

[
qA0 −mv⊥ĉ +

m2v2
⊥

2qB0

(
â · ∇b̂ · ĉb̂ − â · ∇ ln B0ĉ

)]
· dX

− m2v2
⊥

2qB0
(1 + ρâ · ∇ ln B0) dΘ + dS + O(ε2

d). (2.22)
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In summary, the fundamental 1-form in the guiding-center coordinate system is given

by

Γ = ΓX · dX + ΓΘ dΘ + Γµ dµ + Γv‖ dv‖ + Γt dt, (2.23)

ΓX = qA0 +
mµ
q

(
â · ∇b̂ · ĉb̂ − â · ∇ ln B0ĉ

)
+ mv‖b̂ −mρv‖∇b̂ · â,

+ qA1 − q
2
ρA1 · ∇ ln B0â− qρA1 · ∇b̂ · âb̂,

ΓΘ =
mµ
q

(1− ρâ · ∇ ln B0) + qρA1 · ĉ,

Γµ =
1
v⊥

A1 · â,
Γv‖ = 0,

Γt = −
[m

2
v2
‖ + B0µ +

m
2

D2 + qφ0 + qφ1

]
,

where the magnetic moment

µ ≡ mv2
⊥

2B0
(2.24)

has been introduced. The potentials except the equilibrium vector potential in the right

hand side, i.e.A1, φ0 andφ1, are evaluated at the particle positionX + ρâ.

2.2.5 Drift-kinetic equations

The drift-kinetic equations can be obtained from the guiding-center 1-form, Eq. (2.23),

by neglecting the potential perturbation or settingεg = 0. The higher order calculation

requires the Lie perturbation analysis as Brizard [18] did. We take only the zeroth order

terms in the 1-form;

Γdrift =
(
qA0 + mv‖b̂

)
· dX +

m
q
µdΘ −

[
B0µ +

m
2
v2
‖ +

m
2

D2 + q 〈φ0〉
]
dt. (2.25)

The Lagrange and Poisson tensors are calculated as

↔
ω =



−qB∗ ×
↔
I 0 0 −mb̂

0 0 −m/q 0

0 m/q 0 0

mb̂ 0 0 0


, (2.26)

↔
σ =



b̂ ×
↔
I /qB∗‖ 0 0 B∗/mB∗‖
0 0 q/m 0

0 −q/m 0 0

−B∗/mB∗‖ 0 0 0


. (2.27)
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The Euler-Lagrange equations yield the drift-kinetic equations of motion;

dX
dt

=
1
B∗‖

[
B∗v‖ + b̂ ×

(
∇φ0 +

µ

q
∇B0

)]
, (2.28)

dΘ

dt
= Ω, (2.29)

dµ
dt

= 0, (2.30)

dv‖
dt

= − qB∗

mB∗‖
·
(
∇φ0 +

µ

q
∇B0

)
, (2.31)

where a modified magnetic field is denoted byB∗;

B∗ ≡ B0 +
mv‖
q
∇ × b̂ = B∗‖ b̂ +

mv‖
q

b̂ ×
(
b̂ · ∇b̂

)
, (2.32)

B∗‖ ≡ b̂ · B∗ = B0 +
mv‖
q

b̂ · ∇ × b̂. (2.33)

From the these equations, the velocity of the guiding-center is rewritten as

dX
dt

= v‖b̂ +
1

1 + (v‖/Ω)b̂ · ∇ × b̂


1
B0

b̂ × ∇φ0 +
µ

q
b̂ × ∇ ln B0 +

v2
‖

Ω
b̂ ×

(
b̂ · ∇b̂

) . (2.34)

This expression implies that the drift-kinetic equations derived here includeE×B, gradB

and curvature drift motions. These drift velocities, however, differ from the familiar ex-

pression by the factor 1/
(
1 + (v‖/Ω)b̂ · ∇ × b̂

)
. This correction comes from the coupling

of parallel motion and the magnetic shear along the magnetic field. If the magnetic field

rotates spatially along the magnetic field itself in the same direction as the particle gyra-

tion, the effective gyrofrequency is reduced and thus the drift velocity becomes slower.

The Bãnos drift [24] does not appear in the zeroth order equations. The detailed reason

of the absence of the polarization drift is discussed in Sec.2.3.5. From the equations of

motion, the drift-kinetic Vlasov equation is obtained;

dF
dt

+
dX
dt
· ∂F
∂X

+
dΘ

dt
∂F
∂Θ

+
dv‖
dt
∂F
∂v‖

= 0. (2.35)

The drift-kinetic equations derived here satisfy the Liouville’s theorem

∂

∂Zi

(
B∗‖Ż

i
)

=
∂

∂t

(
B∗‖
∂t
∂t

)
+ ∇ ·

(
B∗‖

dX
dt

)
+

∂

∂Θ

(
B∗‖

dΘ

dt

)
+

∂

∂V‖

(
B∗‖

dV‖
dt

)
= 0. (2.36)

It can be easily confirmed using the relations

B∗‖
dX
dt

=
1
q
∇ ×

(
Γ′t b̂

)
− 1

m

∂Γ′tB
∗

∂v‖
,

B∗‖
dv‖
dt

=
1
m
∇ · (Γ′tB∗

)
.
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This fact implies that the phase-space volume is given byB∗‖/m. From the Liouville’s

theorem, We can obtain the conservation form of the Vlasov equation;

∂

∂t

(
B∗‖F

)
+ ∇ ·

(
B∗‖F

dX
dt

)
+

∂

∂Θ

(
B∗‖F

dΘ

dt

)
+

∂

∂V‖

(
B∗‖F

dV‖
dt

)
= 0. (2.37)

2.3 Gyrokinetic equations

2.3.1 Lie perturbation analysis

In this section, we introduce the Lie transformation to eliminate the gyrophase depen-

dences in the 1-form in the guiding-center coordinate system. First, we rewrite the

guiding-center 1-form in power series ofεg;

Γ = Γ0 + εgΓ1 + ε2
gΓ2 + · · · , (2.38)

Γ0 =
(
qA0 + mv‖b̂

)
· dX +

m
q
µ dΘ −

[m
2
v2
‖ + B0µ + qφ0

]
dt,

Γ1 = qA1 · dX + qρA1 · ĉdΘ +
1
v⊥

A1 · âdµ − qφ1(X + ρâ)dt,

Γ2 =

[
mµ
q

(
â · ∇b̂ · ĉb̂ − â · ∇ ln B0ĉ

)
−mρv‖∇b̂ · â

]
· dX

− mµ
q
ρâ · ∇ ln B0 dΘ − qρâ · ∇φ0 dt,

where we assume that the spatial scale of the equilibrium fields are much longer than the

gyroradius, orεd ∼ ε2
g. This assumption is justified for large devices where the plasma

size is extremely larger than the gyroradius.

The Lie transformation is constructed from the Lie generator expanded in the power

series ofεg;

g ≡ εgg1 + ε2
gg2 + · · · . (2.39)

The time component of the Lie generator is set to zero because it is convenient to keep

the time variable unchanged, i.e.g0
i = 0. The guiding-center coordinate variablesZi and

1-formΓ are transformed to the new coordinateZ̄ and 1-formΓ̄;

Z̄ = · · · exp
(
ε2

gLg2

)
exp

(
εgLg1

)
Z, (2.40)∑

n

Γ̄n = · · · exp
(
−ε2

gLg2

)
exp

(
−εgLg1

)∑

m

Γm + dS1 + dS2 + · · · , (2.41)

where the gauge functions and Lie derivative operators are denoted bySn andLgn, respec-

tively. Although a Lie derivative operator is given byLg f = igd f − d(ig f ) for a vector

field g, The second term,−d(ig f ), vanishes when it operates on a scalar function and also
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does not affect the dynamics when it operates on the fundamental 1-form. We, therefore,

adopt a reduced form,Lgψ = igdψ. The gyrocenter 1-form is calculated from the Lie

generator as

Γ̄0 = Γ0, (2.42)

Γ̄1 = Γ1 − ig1dΓ0 + dS1, (2.43)

Γ̄2 = Γ2 − ig1dΓ1 +

(
1
2

(ig1d)2 − ig2d

)
Γ0 + dS2. (2.44)

Then-th order gyrokinetic 1-form can be written as

Γ̄n = Γn − igndΓ0 + Cn + dSn, (2.45)

where the termCn represents all the remaining components coming from the higher order

1-forms,Γ1, Γ2, . . . . Then-th order 1-form can be separated into the time component and

the others;

Γ̄n0 = Γn0 − g j
n

(
∂Γ0t

∂Z̄ j
− ∂Γ0 j

∂t

)
+ Cn0 +

∂Sn

∂t
, (2.46)

Γ̄ni = Γni − g j
nω ji + Cni +

∂Sn

∂Z̄i
. (2.47)

Using the relationsigndΓ0 = g
j
nω ji dzi andσi jω jk ≡ δi

j, we can solve Eq. (2.47) for the Lie

generator;

g0
n = 0, g j

n = σi j
(
Γni − Γ̄ni + Cni + ∂iSn

)
. (2.48)

Substituting it to Eq. (2.46), we obtain

Γn0 − Γ̄n0 + Cn0 +
∂Sn

∂t
=

(
Γni − Γ̄ni + Cni +

∂Sn

∂Z̄i

)
σi j

(
∂Γ00

∂Z̄ j
− ∂Γ0 j

∂t

)
. (2.49)

Using a vector fieldV0 created by the zeroth order equations of motion,

V0
0 = 1, Vi

0 = σi j

(
∂Γ00

∂Z̄ j
− ∂Γ0 j

∂t

)
, (2.50)

the determining equation of the gauge function is obtained as

iV0dSn =
dSn

dt
= Vi

0

∂Sn

∂Z̄i
= −Vi

0

(
Γni − Γ̄ni + Cni

)
. (2.51)

The gauge function is solved by integrating the right hand side along the zeroth order

motion.

Since we obtain all the relations between the new gyrocenter 1-form, Lie generator

and gauge function, the gyrocenter 1-form can be determined to be a suitable form. We
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require the 1-form to be zero except the time component. This form does not change

the Poisson tensor from that of the zeroth. Then-th gyrokinetic 1-form is, therefore,

determined by

Γ̄n ≡ Vi
0 〈Γni + Cni〉 dt. (2.52)

The new 1-form has only the gyroaveraged components of the guiding-center 1-form to

be independent of the gyrophase. The remainingΘ dependent components are put into

the gauge function;

Vi
0

∂Sn

∂Z̄i
= −Vi

0

(
Γ̃ni + C̃ni

)
. (2.53)

From the gauge function, The Lie generator is determined as

g0
n = 0, g j

n = σi j (Γni + Cni + ∂iSn) . (2.54)

We use the following notation here to separate the gyroaveraged component and gyrophase-

dependent component;

〈ψ〉 ≡ 1
2π

∮
ψ dΘ, ψ̃ ≡ ψ − 〈ψ〉 . (2.55)

2.3.2 First order analysis

We carry out the procedure presented in Sec.2.3.1and obtain the first order gyrokinetic

equations of motion in this section. Although the second order analysis is omitted here,

we can carry out in the same way. First, the zeroth order 1-form and the its Hamiltonian

flow are given by

Γ̄0 =
(
qA0 + mv̄‖b̂

)
· dX̄ +

m
q
µ̄dΘ̄ −

[m
2
v̄2
‖ + Bµ̄ + qφ0

]
dt, (2.56)

V0 =
∂

∂t
+

1
B∗‖

[
B∗v̄‖ + b̂ × ∇

(
φ0 +

B0µ̄

q

)]
· ∂
∂X̄

+ Ω
∂

∂Θ̄
− qB∗

mB∗‖
· ∇

(
φ0 +

B0µ̄

q

)
∂

∂v̄‖
. (2.57)

The first order 1-form is determined from Eq. (2.52) as

Γ̄1 = −q
〈
φ1 −

(
v̄‖b̂ + v̄⊥ĉ

)
· A1

〉
dt. (2.58)

From the zeroth order flowV0 and the perturbation component of the first order 1-form

Γ̃1 = qÃ1 · dX + qρÃ1 · ĉdΘ +
1
v⊥

Ã1 · âdµ − qφ̃1 dt, (2.59)

the determining equation of the first order gauge function is obtained as

∂S1

∂t
+VX̄

0 ·
∂S1

∂X̄
+VΘ̄

0

∂S1

∂Θ̄
+Vv̄‖

0

∂S1

∂v̄‖
= qφ̃1 − qVX̄

0 · Ã1 − qρVΘ̄
0 Ã1 · ĉ. (2.60)
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Since obtaining the exact solution of this differential equation takes much time in nu-

merical calculation, some approximations are applied to it. The Hamiltonian flowV0 is

approximated to the dominant components, i.e. gyration, parallel motion and time evolu-

tion;

V0 ' ∂

∂t
+ v̄‖b̂ · ∂

∂X̄
+ Ω

∂

∂Θ̄
. (2.61)

The derivative of the gauge functionS1 is approximated as

dS1 ' ∂S1

∂Θ̄
dΘ̄. (2.62)

Using these approximations, we can obtain the solution of the gauge function as

S1 =
q
Ω

∫ [
φ1 − (v⊥ĉ + v‖b̂) · A1 −

〈
φ1 − (v⊥ĉ + v‖b̂) · A1

〉]
dΘ + ∆, (2.63)

where the constant of integration is denoted by∆. The constant is caused by the approxi-

mation employed here, i.e. we ignore the dependences ofS1 to the other coordinate vari-

ables such ast, X, µ andv‖. Originally, the gauge function is determined by the integral

along the Hamiltonian flow, or the particle trajectory, but now the path of integration is re-

placed with a mere gyration. The difference form the open path to close one results in the

constant of integral instead of the initial value. Although the constant could be arbitrary,

we have to choose the most appropriate one to reduce the error due to the approximation.

Taking the gyroaverage of the original equation (2.60), we obtain the time evolution of the

gyroaveraged component of the gauge function asd 〈S1〉 /dt = 0. This relation indicates

that the gyroaveraged component should not change in time. We, therefore, choose the

constant of integral to make the gyroaveraged gauge function vanish;

S1 =
q
Ω

∫ Θ

0
ψ̃1(Θ

′) dΘ′ −
〈

q
Ω

∫ Θ

0
ψ̃1(Θ

′) dΘ′
〉

=
q

2πΩ

∫ Θ+2π

Θ

(Θ′ − Θ − π)ψ1(Θ
′)dΘ′, (2.64)

where we use the notation

ψ1 ≡ φ1(X + ρâ) − (v⊥ĉ + v‖b̂) · A1(X + ρâ). (2.65)

In the second equality in Eq. (2.64), the integration by part is applied. From the gauge

function, the Lie generator is determined as

gt
1 = 0, g

j
1 = σi j (Γ1i + ∂iS1) . (2.66)

The gauge functionS1 is solved here by assuming|dS1/dt| ' |Ω∂S1/∂θ| � |∂S1/∂t +

v‖ ·∂S1/∂X|. This condition for the approximation can be relaxed by solving the determin-

ing equation ofS1, Eq. (2.60), in the following perturbative manner. The zeroth gauge
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function is defined as a solution of the equation,Ω∂ΘS(0)
1 = qψ̃1;

S(0)
1 =

q
2πΩ

∫ Θ+2π

Θ

(Θ′ − Θ − π)ψ1dΘ′. (2.67)

This solution is same as Eq. (2.64). The first order is determined by the equation,Ω∂ΘS(1)
1 =

qψ̃1 − (∂t + v‖b̂ · ∇)S(0)
0 ;

S(1)
1 = − 1

2πΩ

∫ Θ+2π

Θ

(Θ′ − Θ − π)


∂S(0)

1

∂t
+ v‖b̂ ·

∂S(0)
1

∂X

 dΘ′,

= − q
4π2Ω2

∫ Θ+2π

Θ

(Θ′ − Θ − π)
∫ Θ′+2π

Θ′
(Θ′′ − Θ′ − π)

(
∂ψ1

∂t
+ v‖b̂ · ∂ψ1

∂X

)
dΘ′′dΘ′,

=
q

4πΩ2

∫ Θ+2π

Θ

(Θ′ − Θ − π)2

(
∂ψ̃1

∂t
+ v‖b̂ · ∂ψ̃1

∂X

)
dΘ′. (2.68)

The second order is obtained similaly as

S(2)
1 =

q
12πΩ3

∫ Θ+2π

Θ

(Θ′ − Θ − 2π)(Θ′ − Θ − π)(Θ′ − Θ)

(
∂

∂t
+ v‖b̂ · ∂

∂X

)2

ψ̃1dΘ′. (2.69)

This expansion was introduced by Brizard [18] and applied to a calculation of the com-

pressional Alfv́en wave by Qin [19,20]. The resulting gauge functionS1 = S(0)
1 +S(1)

1 +S(2)
1

is given by

S1 =
q

2πΩ

∫ Θ+2π

Θ

(Θ′ − Θ − π)

[
1 +

Θ′ − Θ − π
2Ω

(
∂

∂t
+ v‖b̂ · ∂

∂X

)

+
(Θ′ − Θ − 2π)(Θ′ − Θ)

6Ω2

(
∂

∂t
+ v‖b̂ · ∂

∂X

)2 ψ̃1 dΘ′. (2.70)

In summary, the gyrocenter 1-form up to the first order is given by

Γ̄0 + Γ̄1 =
(
qA0 + mv̄‖b̂

)
· dX̄ +

m
q
µ̄ dΘ̄ −

[m
2
v̄2
‖ + B0µ̄ + qφ0 + q 〈ψ1〉

]
dt. (2.71)

The gauge function and the Lie generator are given by

S1 =
q

2πΩ

∫ Θ+2π

Θ

(Θ′ − Θ − π)ψ1(Θ
′)dΘ′, (2.72)

gX̄
1 = − 1

qB∗‖
b̂ ×

(
qA1 +

∂S1

∂X

)
− B∗

mB∗‖

∂S1

∂v‖
, (2.73)

gΘ̄
1 = − q

m

(
1
v⊥

â · A1 +
∂S1

∂µ

)
, (2.74)

g
µ̄
1 =

q
m

(
qρĉ · A1 +

∂S1

∂Θ

)
, (2.75)

g
v̄‖
1 =

B∗

mB∗‖
·
(
qA1 +

∂S1

∂X

)
. (2.76)
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The Lie generator is sometimes further approximated as

g1 ' − 1
B0

b̂ × A1 · ∂
∂X
− q

mv⊥
â · A1

∂

∂Θ
+

q
m

b̂ · A1
∂

∂v‖

+
q2

mΩ

(
φ̃1 − v‖b̂ · Ã1 + v⊥ 〈ĉ · A1〉

) ∂

∂µ
. (2.77)

2.3.3 Second order analysis

The second order 1-form is given by

Γ̄2 = iV0

〈
Γ2 − ig1dΓ1 +

1
2

(
ig1d

)2
Γ0

〉
dt

= iV0

〈
Γ2 − ig1dΓ̄1 − 1

2

(
ig1d

)2
Γ0

〉
dt, (2.78)

where the relation,̄Γ1 = Γ1 − ig1dΓ0 + dS1, is use. Here the first term is calculated as

iV0 〈Γ2〉 '
mv̄‖µ̄

q

〈
â · ∇b̂ · ĉ

〉
= −mv̄‖µ̄

2q
b̂ · ∇ × b̂, (2.79)

where we make the approximation,VX̄
0 ' v̄‖b̂. The second term is calculated as

− iV0

〈
ig1dΓ̄1

〉
' −q2

m

〈
b̂ · A1

〉2 − q3v̄⊥
mΩ
〈ĉ · A1〉 ∂ 〈ψ1〉

∂µ̄
− q

B∗‖
b̂ × 〈A1〉 · ∇ 〈ψ1〉 .(2.80)

The third term is expanded as

− 1
2

iV0

〈(
ig1d

)2
Γ0

〉
' −1

2

(
i∂t + Ωi∂Θ̄

)

×
〈
ig1d

(
m
q
g
µ̄
1 dΘ̄ − m

q
gΘ̄

1 dµ̄ − B0g
µ̄
1 dt−mv̄‖g

v̄‖
1 dt

)〉
. (2.81)

It is approximated further as

− 1
2

iV0

〈(
ig1d

)2
Γ0

〉
' B0

2

〈
gΘ̄

1

∂g
µ̄
1

∂Θ̄
− gµ̄1

∂gΘ̄
1

∂Θ̄

〉
+

m
2

〈
g
v̄‖
1

2
〉

+
mv̄‖
2

〈
gθ̄1
∂g

v̄‖
1

∂θ̄

〉

' −B0

〈
g
µ̄
1

∂gΘ̄
1

∂Θ̄

〉
+

q2

2m

〈
A2

1‖
〉
− qv̄‖

2B0

〈
â · A1ĉ · ∇A1‖

〉
. (2.82)

Therefore, the second order 1-form is obtained as

Γ̄20 = −mv̄‖µ̄
2q

b̂ · ∇ × b̂ − q2

2m

〈
A2

1‖
〉
− q3v̄⊥

mΩ
〈ĉ · A1〉 ∂ 〈ψ1〉

∂µ̄
− q

B∗‖

(
b̂ × 〈A1〉

)
· ∇ 〈ψ1〉

− B0

〈
g
µ̄
1

∂gΘ̄
1

∂Θ̄

〉
− qv̄‖

2B0

〈
â · A1ĉ · ∇A1‖

〉
. (2.83)
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If the compressional component of the magnetic perturbation is negligible, i.e.A1⊥ ' 0,

the 1-form is further reduced to

Γ̄20 = −mv̄‖µ̄
2q

b̂ · ∇ × b̂ − q2

2m
〈
A1‖

〉2
+

q3

2mΩ

∂

∂µ̄

〈(
φ̃ − v̄‖Ã1‖

)2
〉
. (2.84)

The first term in the right hand side implies the recovery of the Baños drift.

2.3.4 Gyrokinetic equations

In the preceding sections we have obtained the fundamental 1-form for the gyrocenter

coordinate system. The gyrokinetic equations of motion are easily obtained from the

HamiltonianH ≡ −Γ̄00− Γ̄10− Γ̄20 and the Poisson tensors, Eq. (2.27), as

dX̄
dt

=
1

qB∗‖
b̂ × ∂H

∂X̄
+

B∗

mB∗‖

∂H
∂v̄‖

, (2.85)

dΘ̄

dt
=

q
m
∂H
∂µ̄

, (2.86)

dµ̄
dt

= − q
m
∂H

∂θ̄
= 0, (2.87)

dv̄‖
dt

= − B∗

mB∗‖

∂H

∂X̄
. (2.88)

The linearized gyrokinetic equations of motion are given by

dX̄
dt

=
1
B∗‖

[
B∗v̄‖ + b̂ × ∇

(
φ0 + 〈ψ1〉 + µ̄

q
B0

)]
, (2.89)

dΘ̄

dt
= Ω +

q2

m
∂ 〈ψ1〉
∂µ̄

, (2.90)

dµ̄
dt

= 0, (2.91)

dv̄‖
dt

= − qB∗

mB∗‖
· ∇

(
φ0 + 〈ψ1〉 + µ̄

q
B0

)
. (2.92)

Using the gyrocenter distribution function̄F(X̄, Θ̄, µ̄, v̄‖), the general gyrokinetic Vlasov

equation is written as

dF̄
dt

+
dX̄
dt
· ∂F̄

∂X̄
+

dΘ̄

dt
∂F̄

∂Θ̄
+

dv̄‖
dt
∂F̄
∂v̄‖

= 0. (2.93)

The distribution function used here is a six dimensional function of the gyrocenter coordi-

nate variables. In order to reduce the numerical calculation cost, the distribution function

is separated into the gyroaveraged component and the remaining gyrophase dependent
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component;F̄ =
〈
F̄
〉

+ ˜̄F. Since the equations of motion are independent of the gy-

rophase, the Vlasov equation is decoupled in the following two equations;
(

d
dt

+
dX̄
dt
· ∂
∂X̄

+
dv̄‖
dt

∂

∂v̄‖

) 〈
F̄
〉

= 0,
(

d
dt

+
dX̄
dt
· ∂
∂X̄

+
dΘ̄

dt
∂

∂Θ̄
+

dv̄‖
dt

∂

∂v̄‖

)
˜̄F = 0.

In the collisionless limit, one can ignore the latter equation by setting˜̄F ≡ 0 at the be-

ginning of calculations, i.e.̄F =
〈
F̄
〉
, because of the conservation propertyd˜̄F/dt = 0.

Therefore, the reduced equation describing the evolution of the five dimensional distribu-

tion functionF̄(t, X̄, µ̄, v̄‖),

dF̄
dt

+
dX̄
dt
· ∂F̄

∂X̄
+

dv̄‖
dt
∂F̄
∂v̄‖

= 0, (2.94)

is usually called the gyrokinetic Vlasov equation.

2.3.5 Pullback

A closed set of equations describing a plasma consists of the equations of motion, or

Vlasov equation, and the Maxwell’s equations. Since the Vlasov equation has been ob-

tained, the remaining task we have to do is to write the Maxwell’s equations in terms of

the gyrocenter distribution function̄F. In other words, the charge and current densities

have to be derived from the gyrocenter distribution function. This can be curried out with

the aid of the pullback technique introduced by Brizard [18] and Qin [20].

If the particle, guiding-center and gyrocenter variables,z, Z, Z̄ represent the same

position in the phase space, a distribution function can be expressed by each coordinate

variable without any loss of accuracy;

f (z) ≡ F(Z) ≡ F̄(Z̄), (2.95)

because the distribution function is a scalar field in the phase space. Using the Lie trans-

formation introduced in Sec.2.3.1, the guiding-center distribution can be expressed in

terms of the gyrocenter one;

F(Z) = F̄(Z̄) = F̄
(
exp

(
Lg

)
Z
)

=
[
exp

(
Lg

)
F̄
]
(Z)

= F̄(X,Θ, µ, v‖) + gi
1

∂F̄

∂Z̄i
+ · · · . (2.96)

An observable macroscopic quantitȳλ(x) are calculated from the microscopic quantity

λ(x, v) through the integral over the phase space;

λ̄(x) =

∫
λ(x′, v′) f (x′, v′)δ(x′ − x) d3x′d3v′. (2.97)
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This integral can be rewritten as the integral in the guiding-center coordinate.

λ̄(x) =

∫
Λ

(
X,Θ, µ,V‖

)
F

(
X,Θ, µ,V‖

)
δ (X + ρâ− x)

B∗‖
m

d3XdΘdµdv‖. (2.98)

Using the pullback expression of the distribution function, Eq. (2.96), the macroscopic

quantity λ̄ is expressed in terms of the gyrocenter distribution function We, therefore,

obtain the charge and current densities up to the first order as

%(x, t) =

∫
q

(
F̄ + gi

1

∂F̄

∂Z̄i

)
δ
(
X +

v⊥
Ω

â− x
) B∗‖

m
d3XdΘdµdv‖, (2.99)

j (x, t) =

∫
q
(
v‖b̂ + v⊥ĉ

) (
F̄ + gi

1

∂F̄

∂Z̄i

)
δ
(
X +

v⊥
Ω

â− x
) B∗‖

m
d3XdΘdµdv‖. (2.100)

We present four useful expressions employed in the gyrokinetic analysis of the micro-

instabilities. The general form of the charge density under the assumption of the electro-

static plasma is given by

%(x, t) =

∫
q

(
F̄ +

qφ̃1

B0

∂F̄
∂µ̄

)
δ
(
X +

v⊥
Ω

â− x
) B∗‖

m
d3XdΘdµdv‖. (2.101)

This expression uses some approximations described above, but can be used for general

purposes such as analytical modelings and numerical simulations of micro-instabilities. If

additional assumptions can be applied to the plasma, more simple expressions are avail-

able.

The simplest expression is obtained by the long-wavelength approximation,v⊥/Ω �
|∇ ln φ1|−1;

%(x) '
∫

q

〈
F̄ + ρâ · ∇F̄ +

ρ2

2
ââ : ∇∇F̄

+
q
B0
ρâ · ∇ (φ1 − ρâ · ∇φ1)

(
∂F̄
∂µ
− ρâ · ∇∂F̄

∂µ

)〉 B∗‖
m

2πdµ,dv‖

=

∫
q

〈
F̄ +

ρ2

2
ââ : ∇∇F̄ − qρ2

B0
â · ∇

(
∂F̄
∂µ

â · ∇φ1

)〉 B∗‖
m

2πdµ, dv‖

= qN +
q

2mΩ2
∇2
⊥P +

q2

mΩ2
∇⊥(N∇⊥φ1), (2.102)

where the gyrocenter densityN and pressureP are introduced as follows;

N(X̄) ≡
∫

F̄(t, x, µ̄, v̄‖)
B∗‖
m

2πdµ̄, dv̄‖, (2.103)

P(X̄) ≡
∫

B0µ̄F̄(t, x, µ̄, v̄‖)
B∗‖
m

2πdµ̄,dv̄‖. (2.104)

The physical meaning of each term in Eq. (2.102) is understood as follows. The first

term N represents the density of the gyrocenter, the second term represents the finite
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Larmor radius (FLR) effect and the third term represents the polarization density. It can be

interpreted as the induced charge density,−∇⊥ ·
[
qN∆p

]
, which caused by the polarization

shift, ∆p = qE1/mΩ2, due to the perpendicular perturbation electric field,E1 = −∇⊥φ1. In

other words, the time variation of the polarization density,d%p/dt = −∇ · jp, is caused by

the current due to the polarization drift,jpol = qN(q/mΩ2)dE1/dt. As is shown in these

observations, the polarization drift does not appear in the equations of motion, but in the

density as an induced charge by the electric field. This apparently contradicted result is

caused by the definition of the guiding-center coordinate. We constructed the guiding-

center from only the magnetic field and the velocity and did not use the electric field.

Consequently, the position of the guiding-center does not shift or drift if only the electric

field changes. Since the gyrocenter transformation is an optimization to the guiding-center

coordinate to decouple the gyrophase dependences, the gyrocenter position also does not

have the polarization drift. The polarization effect dropped from the equations of motion

appears as the polarization density through the coordinate transformation,

x = X + ρâ = X̄ + ρâ− q
mΩ2

∇⊥φ1. (2.105)

Another useful expression is obtained for the uniform plasma. When the distribution

function is given by the sum of an uniform equilibrium Maxwellian and a perturbation,

F̄ = F̄0 + δF̄
(
t, X̄, µ̄, v̄‖

)
, F̄0 = n0

m
2πT

exp

(
−mv2

⊥
2T

)
, (2.106)

the perturbation charge density is calculated up to the first order of the perturbation as

%(x) = qn0 +

∫
q
〈
δF̄(x − ρâ) − q

T
F̄0

[
φ(x) − 〈φ〉 (x − ρâ)

]〉 B∗‖
m

2πdµ̄,dv̄‖. (2.107)

It is usually represented in the Fourier space;

%(k) = qn0 +

∫
qJ0(k⊥ρ)δF̄(k, µ, v‖)

B∗‖
m

2π dµdv‖ − q2n0

T

[
1− Γ0(k

2
⊥ρ

2
t )
]
φ1(k), (2.108)

where the thermal gyroradiusρt and the functionΓ0 are introduced asρt ≡
√

T/m/Ω and

Γ0(z) ≡ I0(z) exp(−z), respectively. We denote the Bessel and modified Bessel functions

by J0 and I0. The Pad́e approximation of the functionΓ0, Γ0(z) ' 1/(1 + z) or 1− Γ0(z) '
z/(1+(3/4)z), is sometimes employed in numerical calculations. According to Dubin [14]

and Hahm [15], a more general expression for a nonuniform plasma is given by

%(k) = qn0 +

∫
qJ0(k⊥ρ)δF̄(k, µ, v‖)

B∗‖
m

2π dµdv‖ − q2n0

T

[
1− Γ0(k

2
⊥ρ

2
t )
]
φ1(k)

− q2n0

T

[
Γ1(k

2
⊥ρ

2
t ) − Γ0(k

2
⊥ρ

2
t )
]
ik⊥ · ln∇n0ρ

2
t φ1(k). (2.109)
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2.4 Conclusions

The general derivation of the modern gyrokinetic equations was presented. The mod-

ern gyrokinetic theory has started from the early works by Littlejohn, which presents

the advantages of the Lie perturbation analysis in the rigorous and mathematically clear

treatment of the particle dynamics in an externally applied magnetic field. Brizard and

Qin applied the Lie transformation technique for the perturbation electromagnetic field

and obtained the closed set of the gyrokinetic equations in the context of plasma physics.

Although their goal was same, their calculation processes were slightly different in the

introduction of the guiding-center coordinate. We chose the most straightforward way in

this work.

First in Sec.2.2.1, the guiding-center position was used to evaluate the equilibrium

magnetic field in the definition of the guiding-center coordinate instead of the particle

position. This treatment is same as Qin’s formulation and makes the preliminary calcula-

tion for the Lie perturbation analysis much simple. Second in Sec.2.2.2, the gyrogauge

transformation was utilized to exclude the arbitrariness in the definition of the gyrophase

in the same way as Littlejohn did. Although this process is not essential in the formu-

lation, the suppression of the physically unnecessary terms related to the arbitrariness is

desirable for the general derivation in the case of nonuniform magnetic fields. Third in

Sec.2.2.4, we carried out only the gauge transformation in the preliminary stage as Qin

did. The simple guiding-center coordinate adopted in this work does not provide the true

adiabatic constant, i.e. the magnetic moment. Although Brizard employed the Lie per-

turbation analysis twice to obtain the guiding-center and gyrocenter coordinates, the first

one can be omitted because it is sufficient to carried out the Lie transformation once at the

last of the derivation to obtain the true adiabatic quantity.

In Sec.2.3, the general expressions of the gyrokinetic equations up to the second order

were obtained. The perturbation potentials are assumed to satisfy the gyrokinetic ordering

in Sec.2.2.3. The gauge function used to determine the Lie generator and the gyrocenter

coordinate is approximated under the gyrokinetic ordering in Sec.2.3.2. In addition to

a commonly used expression of the gauge function, we obtained a more rigorous one,

which relaxes the restriction on the time scale,ω/Ω � 1, and enables one to treat more

short time-scale dynamics such as the compressional Alfv́en wave [19,20]. If much more

high frequency one such as the ion cyclotron wave has to be taken into account, funda-

mental improvements should be made. An attempt for the implementation in a numerical

simulation is found in Ref. [23].

The general expression of the charge and current densities were obtained in Sec.2.3.5

through the pullback transformations of the distribution function. We confirmed that the
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conventional expressions of the charge density were recovered under the corresponding

assumptions. Although a closed set of the gyrokinetic equations was presented, the con-

servation of the plasma energy was not provided here. Additional discussion using the

field theory [25] may required to obtain the conservation law. Recently, a modern rep-

resentation of the field theory is studied by Brizard [26, 27] and Qin [28, 29]. The self-

consistency of the gyrokinetic theory will be an important topic of further studies.
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Chapter 3

Refinement of the gyrokinetic equations

with large flow shears

3.1 Introduction

Understanding the role of flow shears in the turbulent transport is one of the major issues

in tokamak plasmas. The stabilizing effect [30–34] of theE×B flow shears on the toroidal

ion-temperature-gradient (ITG) mode and various drift waves is believed to be one of the

essential elements in the core and edge transport barriers. The existence of large flow

shears associated with the short scale-length is a characteristic feature of the edge plasmas.

In addition to the relatively short time-scale dynamics such as the micro-instabilities, the

pedestal plasmas involves the longer time-scale equilibrium dynamics such as the edge

localized modes (ELMs) and the L-H transition. In order to treat the multi-scale physics

like the micro-instabilities and the equilibrium dynamics, a global full-f simulation is

required for the understanding of the pedestal physics. Recently the development of such

simulation codes [35,36] has started. They employ the gyrokinetic equations [18,19,37]

as the fundamental equations to describe the low frequency behavior of plasmas. The most

distinct advantage of the gyrokinetic theory is in the separation of the time scale between

the fast gyrating motion of particles and the relatively slow drift motions. Discarding

the gyrating motion and the gyrophase dependence of the velocity distribution functions,

one can choose much larger time-step than the gyroperiod in a simulation. It is also a

benefit that the gyroaveraged expressions of the potentials and other physical quantities

can reduce the numerical noise caused by the discreteness of the particles and the spatial

grids.

The modern derivation of gyrokinetic equations has been developed with the aid of

mathematics and the analytic mechanics such as 1-form representations of the particle dy-

namics, the Lie perturbation analysis and pullback representations. The commonly used
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procedures in the derivation are understood as two steps of coordinate transformations

and the formulation of the Maxwell’s equations on the new coordinate. The first transfor-

mation introduces the guiding-center position, the gyrophase and the magnetic moment.

The second one decompose the gyrophase dependences in the 1-form through successive

Lie transformations. The gyrophase dependences in the original equations of motion are

removed and thus the gyration and the drift motion are decoupled. The Vlasov equation

and the Maxwell’s equations expressed by pullbacks in the new coordinate enable one to

treat the low frequency phenomena without resolving the fast gyrations of particles.

The improvement of the gyrokinetics for the strongE × B drift flow was provided by

Littlejohn [17] for the first time and extended for the plasma with potential perturbations

by Brizard [38], Hahm [39] and Qin [40]. Applications to the global linear analysis of

ITG modes have been also made [31, 32]. We note that the gyrokinetic equations based

on the conventional recursive method [2,3,11–13] also has been formulated for large flow

shears by Sugama and Horton [41]. Although the formulation by Littlejohn slightly differs

from others because of the difference in the expression of mechanics, their basic concepts

are same. They introduced a reference frame moving with theE × B drift velocity in the

guiding-center coordinate and decomposed the drift motion and the gyration not in the

first order equations of motion but in the zeroth order equations. The physical meaning

of this treatment is easily understood in an ideal case as follows. If the reference frame is

moving with a constant velocityD and the electromagnetic fields are uniform, the Galilei

transformation withD yields an uniform induced electromotive force,qv × B. If the

velocity D is given by theE × B drift velocity, E × B/B2, the perpendicular components

of the electric field is canceled, and the particle simply gyrates as if the electric field is

not applied from the beginning. In this case, the drift motion is successfully decomposed

from the particle motion and included in the zeroth order equations of motion.

In the case of a general electric field, however, the velocityD = E×B/B2 acquires the

gyrophase dependence through the coupling of the gyration and spatial variation of the

potential throughE = −∇φ(x). This dependence makes the derivation of the gyrokinetic

equations complicated [17]. On the other hand, if the velocityD is defined as theE × B

drift velocity measured at the guiding-center position as is common in the previous works

[38–40], it differs from the averaged drift velocity of the gyrating particle in case of the

nonuniform electric fields. In order to obtain the most appropriate zeroth order equation

of motion, refinement of the velocity of the reference frame is necessary.

In the present study, using the conservation property of the magnetic moment as the

criterion of the accuracy of the zeroth order equation of motion, we examine several

kinds of drift velocities including the previous expression and obtain the practically most

accurate expression of the velocityD. The advantages of our gyrokinetic equations of
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motion are verified through comparisons between the numerical solutions of the previous

gyrokinetic equations and ours.

In Sec.3.2, the guiding-center coordinate variables are introduced in the 1-form for a

single particle. An equilibrium drift velocityD is also introduced in the transformation

of the velocity coordinates so that the particle motion becomes a nearly simple gyration

in the reference frame. In Sec.3.3, the criterion to choose the appropriate velocityD is

discussed. After examining several possible choices forD, a most practical expression

is determined. The rest of the standard procedures, Lie perturbation analysis and the

formulation of field equations, are curried out and the gyrokinetic equations are obtained

in Sec.3.5. The accuracy of the resultant equations are compared with those of Qin’s

formulation [40] in Sec.3.6. Finally, conclusions are presented in Sec.3.7.

3.2 Preliminary transformation

The first step in the derivation of gyrokinetic equations is a guiding-center transformation

introducing a guiding-center positionX, a gyrophaseΘ, a perpendicular velocityV⊥ and

a parallel velocityV‖. In the conventional derivations [18, 19, 37], the velocity is simply

separated into the perpendicular and parallel components, i.e.v⊥ ≡
∣∣∣∣b̂ ×

(
v × b̂

)∣∣∣∣ andv‖ ≡
v · b̂, where the unit vector̂b represents the magnetic field direction. In the gyrokinetic

theory for largeE×B drift flow shears [17,38–40], however, the velocity space is defined

on a reference frame moving with a equilibrium flow velocityD. The vector field of

the flow plays an essential role in the improvement of the theory and is discussed in

Sec.3.3. In order to distinguish the modified velocity space variables from those on

the stationary frame,v⊥ andv‖, we denote the new velocity components in the moving

frame as capital letters,V⊥ andV‖. We note that if the velocityD is zero everywhere, the

modified gyrokinetic theory coincides that of usual ordering, i.e. the equilibrium flow is

much slower than the thermal velocity. In this case the guiding-center velocity variables

also coincide, orV⊥ = v⊥ andV‖ = v‖.

We assume that the equilibrium flow is a function of the guiding-center positionX

to avoid undesirable complexities due to the dependences on the velocity space such as

∂D/∂V‖. The guiding-center transformation is defined as inverse coordinate transforma-

tions;

x ≡ X +
mV⊥

qB(X)
â′(X,Θ′), (3.1)

v ≡ D(X) + V⊥ĉ′(X,Θ′) + V‖b̂(X), (3.2)

where the gyrophaseΘ′, the orthonormal vectorŝb ≡ B/B, ĉ′ ≡ ê1 cosΘ′ − ê2 sinΘ′ and

â′ ≡ ê1 sinΘ′+ê2 cosΘ′ are introduced. The perpendicular unit vectorsê1 andê2 are func-
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tions of the guiding-center positionX and assumed to be given beforehand. Since their

definitions are arbitrary unless they have any singularities, the gyrogauge transforma-

tion [17,18],Θ ≡ Θ′ + ϕ, is introduced to remove the arbitrariness in the definition of the

gyrophaseΘ′. The gyrogaugeϕ is given byϕ ≡
∫ t

0
[(dX/dt) · ∇ê1 · ê2 + (∂ê1/∂t) · ê2] dt.

We denote the new direction vectorsĉ(X,Θ) ≡ ĉ′(X,Θ − ϕ) andâ(X,Θ) ≡ â′(X,Θ − ϕ)

simply by ĉ and â in the remainder of this chapter. The usage of the new gyrophase

Θ ensures the the uniqueness of the base direction for the gyrophaseΘ. The relation,

dâ · ĉ = dX · ∇â · ĉ + dt(∂â/∂t) · ĉ = dΘ is utilized later in the gauge transformation of

1-form to simplify the calculations.

Although the definition of the guiding-centerX does not have the explicit dependence

on D, a difference arise from the modification of the perpendicular velocityV⊥. When

the guiding-center position forD = 0 is denoted byX′, the difference from the present

guiding-center position is written as∆p ≡ X − X′ ' (m/qB)b̂ × D, where we used the

approximationB(X) ' B(X′). If the velocityD is given by the simpleE×B drift velocity,

the quantity∆p is reduced to∆p = −m∇⊥φ/qB2. The fact that its derivative with respect

to time coincides the polarization drift velocity,vp ≡ −(d/dt)m∇⊥φ/qB2, indicates that

the modified guiding-center coordinateX recovers the polarization drift due to the equi-

librium electric fields in the zeroth order equations of motion, i.e.dX/dt− dX′/dt = vp.

In order to separate the fundamental 1-form for a single charged particle,

γ ≡ [
qA(x) + mv

] · dx −
[m

2
v2 + qφ(x)

]
dt, (3.3)

into zeroth, first and successive higher order components, we introduce the perturbation

potentials,φ = φ0 + φ1 andA = A0 + A1, and the following orderings;

φ1 ∼ ε
mv2

t

q
, A1 ∼ εmvt

q
, (3.4)

where quantitym, q and vt are mass, charge and thermal speed of the particle species,

respectively. The frequency of the perturbationω is assumed to be much lower than the

gyrofrequencyΩ; ω ∼ εΩ. The equilibriumE×B drift speed is assumed to be comparable

to the thermal speed at most, and the the spatial scale of equilibrium magnetic field is

assumed to be a second order quantity;

E0

B0
∼ vt,

|∇B0|
B0
∼ ε2 vt

Ω
. (3.5)

The time scale of the equilibrium potentials are assumed as

∂φ0

∂t
∼ ε2v2

t B0,
∂A0

∂t
∼ 0. (3.6)
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From the fundamental 1-form, Eq. (3.3), and the above orderings, the 1-form in the

guiding-center coordinate can be written order by order;

γ0 =
(
qA0 + mV‖b̂ + mD

)
· dX +

m
q
µdΘ

−
[m

2
V2
‖ + B0µ +

m
2

D2 + qφ̄0

]
dt, (3.7)

γ1 = (qA1 −mρ∇D · â) · dX + qρA1 · ĉdΘ +
1

V⊥
A1 · âdµ

−
[
qφ̃0 + mV⊥D · ĉ + qφ1(X + ρâ)

]
dt, (3.8)

γ2 =

[
mµ
q

(
â · ∇b̂ · ĉb̂ − â · ∇ ln B0ĉ

)
− mV⊥V‖

Ω
∇b̂ · â

]
· dX

− mµ
q
ρâ · ∇ ln B0 dΘ −mρ

∂D
∂t
· âdt, (3.9)

The higher order components,γ3, γ4, . . ., are omitted. Gyroaveraged quantities and their

corresponding perturbation components for the electromagnetic potentials,ψ = φ0, φ1 or

A1, are denoted bȳψ ≡
∮
ψ(X + ρâ) dΘ/2π andψ̃ ≡ ψ(X + ρâ)− ψ̄. Here the perturbation

of the equilibrium potential is expressed asφ̃0 instead of the Taylor expanded one,φ̃0 '
ρâ · ∇φ0. Although the latter form is commonly used in the previous works [38–40], the

former exact form without the Taylor expansion are desirable in the case of the present

ordering,E0/B0 ∼ vt. The gyroradius and the direction of the equilibrium magnetic field

atX are denoted byρ ≡ mV⊥/qB0(X) andb̂ ≡ B0/B0, respectively. The magnetic moment

µ ≡ mV2
⊥/B0 has been introduced and the gauge transformation,γ 7→ γ + dS, has been

applied to simplify the expressions.

From the truncated zeroth order 1-form under the assumption of the drift-kinetic or-

deringk⊥ρ ∼ ε � 1;

γdrift =
(
qA0 + mV‖b̂ + mD

)
· dX +

m
q
µdΘ

−
[m

2
V2
‖ + B0µ +

m
2

D2 + qφ0

]
dt, (3.10)

we can obtain the zeroth order drift-kinetic equations

dX
dt

=
1
B∗‖

[
B∗V‖ + b̂ ×

(
∇φ0 +

µ

q
∇B0 +

m
2q
∇D2 +

m
q
∂D
∂t

)]
, (3.11)

dΘ

dt
=

qB0

m
, (3.12)

dµ
dt

= 0, (3.13)

dV‖
dt

= − qB∗

mB∗‖
·
(
∇φ0 +

µ

q
∇B0 +

m
2q
∇D2 +

m
q
∂D
∂t

)
, (3.14)
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where a modified magnetic field is introduced as

B∗ ≡ ∇ ×
(
A0 +

mV‖
q

b̂ +
m
q

D
)

(3.15)

= B∗‖ b̂ + (mV‖/q)b̂ ×
(
b̂ · ∇b̂

)
+ (m/q)∇ × D|⊥, (3.16)

where the parallel component ofB∗ is denoted byB∗‖ ≡ b̂ · B∗. If the velocityD is given

by the simpleE × B drift velocity, it is confirmed that the polarization drift is recovered

as
m

qB∗‖
b̂ × ∂D

∂t
+

mV‖
qB∗‖
∇ × D|⊥ = − 1

B∗‖Ω

(
∂∇⊥φ0

∂t
+ V‖b̂ · ∇∇φ0|⊥

)
(3.17)

The velocity of the guiding-center, therefore, involvesE×B, gradB, curvature and polar-

ization drifts due to the temporal variation ofφ0 and due to the parallel motion. Although

we omitted the Bãnos drift [24] in the above equations, it can be recovered from the sec-

ond order 1-form. The phase space volume is calculated asB∗‖/m and the Liouville’s the-

orem is confirmed; (∂/∂Zi)
(
B∗‖Ż

i/m
)

= 0, where the coordinate variables, (t,X,Θ, µ,V‖),

are denoted byZi for i = 0,1, . . . , 6.

3.3 Equilibrium drift velocity

In this section, we discuss how the equilibrium drift velocityD should be chosen. The

introduction of the vector fieldD in Sec.3.2 is aimed at decomposing the circular gyra-

tion from the particle dynamics. Therefore, one might expect the drift velocity obtained

from the drift-kinetic equation (3.11) to be the best choice ofD. The dependences to the

velocity space, however, cause difficulties in the calculations, i.e. the fundamental 1-form

acquires some additional terms such as∂D/∂µ and∂D/∂V‖. In order to keep the complex-

ities in the same level as the previous study by Qin [40], we assume that the vector field

D is an only function of the guiding-center positionX. From the guiding-center velocity,

Eq. (3.11), and this assumption, we can obtain the practically most precise drift velocity;

D ≡ b̂

1 + b̂ · ∇ × D/Ω
×

(∇φ0(X)
B0

+
∇D2

2Ω

)
. (3.18)

Using the identity equationD × ∇ × D = ∇D · D − D · ∇D, we can obtain the relation

(∇φ0

B
+ D · ∇D

Ω

)
− 1

1 + b̂ · ∇ × D/Ω

(∇φ0

B
+
∇D2

2Ω

)

=
b̂

1 + b̂ · ∇ × D/Ω

(∇φ0

B
+
∇D2

2Ω

)
· ∇ × D. (3.19)
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The vector product witĥb yields a mathematically equivalent form to Eq. (3.18),

D ≡ b̂ ×
(∇φ0

B0
+ D · ∇D

Ω

)
. (3.20)

Since the definition in the previous study is given byDQin ≡ b̂ × ∇φ0/B, the modification

introduced into our definition is the second term in the right hand side in Eq. (3.20).

The physical meaning of Eq. (3.20) is easily understood through the vector product

with the magnetic field;

mD · ∇D|⊥ = qD × B0 − q∇⊥φ0. (3.21)

This equation represents the perpendicular force balance in the stationary flow. The con-

vection term in the left hand side is missing inDQin. A similar equation,u · ∇u =

Ωu × b̂ − (Ω/B0)∇φ0 − ∇P/mN, is discussed by Brizard [38] in the formulation of the

gyrokinetic Vlasov equation for the plasma with toroidal rotation. Since their main in-

terest is in the toroidal flow, their equilibrium velocity includes the parallel flow and they

adopt an approximated expression of the flow,u0 = u0‖b̂ + b̂×∇φ0/B0, as the vector field

D. Although the equilibrium parallel flow can be included in the definition ofD, we omit

it for the clearness in the examination of the equilibrium perpendicular drift velocity.

One of the straightforward ways to examine the properness of this choice is to verify

the conservation property of the magnetic momentµ. Since the gyrophase dependence is

truncated in the drift-kinetic 1-form, Eq. (3.10), the drift-kinetic equation (3.13) conserves

the magnetic moment. The general equation of motion, however, does not conservesµ;

dµ
dt

= qV⊥

(
D · â− ĉ · ∇φ0

B0
− Ẋ · ∇D

Ω
· ĉ

)
, (3.22)

because of the gyrophase dependence in the general 1-form

γ =
(
qA0 + mV‖b̂ + mD −mρ∇D · â

)
· dX +

mµ
q

dΘ

−
[m

2
V2
‖ + Bµ +

m
2

D2 + mV⊥D · ĉ + qφ0(X + ρâ)
]
dt, (3.23)

where we neglect∇B0, ∇b̂ and the perturbation potentials. If the gyration and the drift

motion are decoupled well, the value ofdµ/dt should be small. We calculatedµ/dt for

three choices ofD. The first is zero velocity case, which corresponds to the conventional

formulation with the equilibrium potentialφ0 but without special treatments for the large

flow. The time derivative ofµ becomes

dµ
dt

= −qV⊥
B

ĉ · ∇φ0. (3.24)
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If the electric field is large,E0/B0 ∼ vt, the variation of the magnetic moment becomes

the same order asµ itself. In other words, the electric field has to be as small as the

perturbation potentialφ1 in this case. The second is the simpleE×B drift velocity, which

corresponds to Qin’s formulation;

dµ
dt

= −qV⊥
B

ĉ · ∇(φ0 − φ0(X)) − qV⊥Ẋâ :
∇∇φ0(X)

B
, (3.25)

Since the most part of the electric field is canceled, it is applicable for a strong electric field

in this case. The second derivative ofφ, however, appears indµ/dt and can be significant

if the potential contour has a large curvature. The last is our definition, Eq. (3.20);

dµ
dt

= −qV⊥

(∇(φ0 − φ0(X))
B

+ (Ẋ − D) · ∇D
Ω

)
· ĉ, (3.26)

Since the velocity of the guiding-centerẊ can be approximated aṡX ' V‖B∗/B∗‖ + D, the

second term proportional to∇D is considerably reduced. From the above observations,

we confirm that the refinement of the gyrokinetic equations is achieved through our new

choice of the vector field, Eq. (3.20). Numerical verifications of the new equilibrium

velocity are given in Sec.3.6.

3.4 Solution of the equilibrium velocity

We discuss the solution of Eq. (3.20) here. Since there is no analytic expression of the

general solution, we have to employ a numerical solver for the general potential profile.

We can, however, obtain the solution for special cases. First we consider the potential

profile with plain contours. The electric field is written asE ≡ E(X · n̂)n̂ with the normal

vectorn̂. In this case, the solution is given by the ordinaryE × B drift velocity.

D = b̂ × ∇φ0

B
. (3.27)

The solution is confirmed by the relationD · ∇D = (E/B)(n̂ × b̂) · ∇(E/B)(n̂ × b̂) = 0.

Second we consider a more practical potential profile with circular contours. We

rewrite Eq. (3.20) in a new orthogonal coordinate system where the base vectors are given

by

ei =
(
b̂, ∇⊥φ0, b̂ × ∇⊥φ0

)
, (3.28)

ei =

(
b̂,
∇⊥φ0

|∇⊥φ0|2
b̂ × ∇⊥φ0

|∇⊥φ0|2
)
. (3.29)
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Using these bases, Eq. (3.20) is decomposed into

D0 = D · e0 = 0, (3.30)

D1 = D · e1 = −D · ∇D
Ω
· e2, (3.31)

D2 = D · e2 =
1
B

+ D · ∇D
Ω
· e1. (3.32)

If the vectorD is also written asD = Diêi = Diêi, Each component of the differential

equation is written as

(D1∂
1 + D2∂

2)D2 + E112(D1)
2 + (E212 + E122)D1D2 + E222(D2)

2 = −ΩD1, (3.33)

(D1∂
1 + D2∂

2)D1 + E111(D1)
2 + (E211 + E121)D1D2 + E221(D2)

2 = ΩD2 − Ω

B
,(3.34)

where the notation∂i ≡ êi · ∇ andEi jk ≡ ei · ∇ej · ek are introduced. In the case of the

potential with circular contours, the coefficientE222 vanishes because of the symmetry;

E222 = (b̂ × ∇φ0) · ∇ ln |∇⊥φ0|2 = 0. (3.35)

The first component of the vectorD, therefore, vanishes and the differential equation

reduces to

D0 = 0, D1 = 0,
1
B
− D2 +

E221

Ω
(D2)

2 = 0. (3.36)

This quadratic equation is solved as

D2 =
1
B

2

1 +
√

1− 4E221/BΩ
, (3.37)

The coefficientE221 is calculated as

E221 = e2 · ∇e2 · e1 =
∇φ0

|∇⊥φ0| · b̂ × ∇∇φ0 × b̂ · ∇φ0

|∇⊥φ0| . (3.38)

Since the potential with circular contours can be expressed asφ0(|r |) with the radial vector

r , the coefficientE221 is reduced to

E221 =
r
r
· b̂ ×

[(
φ′′0 −

φ′0
r

)
rr
r2

+
φ′0
r

↔
I

]
× b̂ · r

r
= −φ

′
0

r

∣∣∣∣∣b̂ ×
r
r

∣∣∣∣∣
2

, (3.39)

and thus the solution is given by

D =
2

1 +
√

1− 4C

b̂ × ∇φ
B

, C ≡ Er

rBΩ

∣∣∣∣∣b̂ ×
r
r

∣∣∣∣∣
2

, (3.40)

where the radial electric field is denoted byEr = −∂φ0/∂r. This velocity is larger

(smaller) than the simpleE × B drift velocity for positive (negative)qE by a factor of
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2/
(
1 +
√

1− 4C
)

and the polarization shift̂b × D/Ω is also larger (smaller). We note

that if the coefficientC is larger than 1/4, i.e. the electric field is too large, the velocity

D can not be defined. Above the marginal value, the trajectory of the particle diverges

exponentially.

Lastly, the numerical scheme for the general potential profile is presented. We used a

simple recurrence equation to solve the equilibrium drift velocity;

D0 = b̂ × ∇φ0

B
, (3.41)

Dn+1 = b̂ ×
(∇φ0

B
+ Dn+1 · ∇Dn

Ω

)
, (3.42)

where the gradient of the vectorDn(X) is calculated as

∇Dn(X) =
∑

i

ẑi
Dn

(
X + δẑi

)
− Dn

(
X − δẑi

)

2δ
. (3.43)

The small quantityδ is chosen to be much smaller than the scale length of the potential

φ0. Sufficient accuracy for general purposes can be obtained by two or three times of the

iteration.

3.5 Gyrokinetic equations

3.5.1 The general derivation of the gyrokinetic equations

The remaining procedures to obtain the gyrokinetic equations are the Lie perturbation

analysis and the formulation of the gyrokinetic Maxwell’s equations. Since these treat-

ments are essentially same as the previous works [17–19, 37–40], we omit detailed dis-

cussions and describe the outline and the results.

Successive Lie transformations are introduced;T ≡ · · · exp(ε2L2) exp(εL1). The i th

order operatorLi is a Lie derivative operator defined by ani th order Lie generatorgi;

Liv ≡ igi (dv). Although the correct Lie derivative has the formig(dv) + d(igv), we adopt

the truncated expression because the second term does not affect to scalars and resul-

tant equations of motion. In other words, the second termd(igv) is eliminated through

the gauge transformation. The guiding-center coordinate variablesZi = (t,X,Θ, µ,V‖)

are transformed to the gyrocenter coordinate variablesZ̄i = (t, X̄, Θ̄, µ̄, V̄‖); Z̄ = TZ =

· · · exp(ε2ig2d) exp(εig1d)Z, where the time variablet is not changed through the Lie trans-

formation. The 1-form in the guiding-center coordinate,γ = γ0 + εγ1 + ε2γ2 + · · ·, is also

transformed to the gyrokinetic 1-form,Γ = Γ0 + εΓ1 + ε2Γ2 + · · ·, in the gyrocenter coor-

dinate. The new 1-formΓ is determined by the Lie generatorgi and the gauge function
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Si;

Γ0 = γ0, (3.44)

Γ1 = γ1 − ig1dγ0 + dS1, (3.45)

Γ2 = γ2 − ig1dγ1 +
1
2

(
(ig1d)2 − ig2d

)
γ0 + dS2. (3.46)

The first order gauge functionS1 and the first order Lie generatorg1 are determined as

follows;

Vi
0

∂S1

∂Z̄i
= −Vi

0 (γ1i − 〈γ1i〉) , (3.47)

g
j
1 = σi j

(
γ1i +

∂S1

∂Z̄i

)
for j , 0, (3.48)

where the vector fieldVi
0 is defined as the flow created by the zeroth order equation of

motion;

Vi
0 = σi j

(
∂γ0 j

∂Z̄0
− ∂γ00

∂Z̄ j

)
. (3.49)

The time-component of the Lie generator,g0
1, is defined as zero, which corresponds to

the identical transformation for the variablet. The tensor
↔
σ represents the Poisson tensor

calculated from the zeroth order 1-form, Eq. (3.7);

↔
σ =



b̂ ×
↔
I /qB∗‖ 0 0 B∗/mB∗‖
0 0 q/m 0

0 −q/m 0 0

−B∗/mB∗‖ 0 0 0


. (3.50)

The gyrokinetic 1-form is obtained up to the first order;

Γ = Γ0 + Γ1 = γ0 −Vi
0 〈γ1i〉dt. (3.51)

This 1-form yields the gyrokinetic equations of motion

dZi

dt
= σi j

(
∂Γ j

∂t
− ∂Γ0

∂Z j

)
. (3.52)

The Vlasov equation and its conservation form are also obtained asŻi
(
∂F̄/∂Zi

)
= 0 and

(∂/∂Zi)
(
ŻiB∗‖ F̄

)
= 0, respectively.

The gyrokinetic expressions of Maxwell’s equations can be obtained by writing the

charge density and current density with the distribution function in gyrocenter coordinate.

The formulation is achieved by pullback technique introduced by Brizard [18] and Qin

[19,20]. When a physical quantity is given byλ(x, v), e.g.λ = q for the charge density and
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λ = qv for the current density, its moment is expressed asλ̄(x) =
∫
λ(x′, v′) f (x′, v′)δ(x′ −

x) d3x′d3v′. Thus, the pullback expression ofλ, Λ(Z) = λ(X + ρâ, v(Θ, µ,V‖)), yields

the averaged quantity in the guiding-center coordinate;λ̄(x) =
∫

Λ(Z′)F(Z′)δ(X′ + ρâ −
x)B∗‖/m d6Z′. The distribution functionF(Z) is that of guiding-center and also can be

written in the gyrocenter coordinate asf (z) = F(Z) = F̄(Z̄). The gyrocenter distribution

function F̄ is usually assumed to be independent of the gyrophaseΘ̄. From the pullback

expressions, we can write the moment integral of arbitrary physical quantities with the

gyrocenter distribution function̄F;

λ̄(x) =

∫
Λ(Z′)T ∗F̄(Z′)δ(X′ + ρâ− x)

B∗‖
m

d6Z′. (3.53)

3.5.2 Limiting case with electrostatic perturbation

We show the gyrokinetic equations with the electrostatic perturbation as an example of

limiting case. The equations of motion in this section are used in Sec.3.6 for numerical

verifications. We use some approximations commonly assumed in the analysis of the

micro-instabilities [39, 43, 44]. First, the vector field of the zeroth order,V0, used in the

determining equations of the gauge functionS1, Eq. (3.47), and the 1-form, Eq. (3.51), is

reduced toV0 ' (V̄‖b̂ + D)∂X̄ + Ω∂Θ̄ + ∂t. Second, we assume that the dependences of the

gauge functionS1 on the coordinate variables (X̄, µ̄, V̄‖, t) are much smaller than on the

gyrophasēΘ, i.e.dS1 ' ∂Θ̄S1dΘ̄.

Under these approximations, the gyrokinetic 1-form is obtained up to the first order

as

Γ =
(
qA0 + mV̄‖b̂ + mD

)
· dX̄ +

m
q
µ̄ dΘ̄

−
[m

2
V̄2
‖ + Bµ̄ +

m
2

D2 + qφ̄0 + qφ̄1

]
dt. (3.54)

Although this equation is almost same as the corresponding equations in the previous

works of Hahm [39] and Qin [40], there are two differences. One is the definition of

D from the simpleE × B drift velocity to the generalized one. The other difference

is the expression of the gyroaveraged equilibrium potentialφ0. Hahm and Qin employ

φ0 + (mµ/2q2)b̂ · ∇×D andφ0 + (µ/2qΩ)∇2
⊥φ0 as the gyroaveraged potential, respectively.

The term (mµ/2q2)b̂ · ∇ × D is also found in Brizard’s paper [38] and can be written as

(µ/2qΩ)∇2
⊥φ0 approximately. Since our expression of the gyroaveraged potential is also

approximated as̄φ0 ' φ0 + (µ/2qΩ)∇2
⊥φ0, these three expressions are essentially same.

Our equation, however, has an advantage in the rigorousness because of the absence of

the truncation due to the Taylor expansion.

44



The first order gauge function is obtained as

S1 =
q
Ω

Φ̃0 +
q
Ω

Φ̃1 − mρ
Ω

(
V̄‖b̂ + D

)
· ∇D · ĉ + mρâ · D, (3.55)

where the notatioñΦ ≡
∮
φ̃dΘ̄ −

〈∮
φ̃dΘ̄

〉
Θ̄

is introduced forΦ̃0 andΦ̃1. It is calculated

by the partial integral;

Φ̃ =
1
2π

∫ Θ+2π

Θ

(Θ′ − Θ − π)φ
(
X + ρâ(Θ′)

)
dΘ′. (3.56)

Using the definition of the velocity fieldD, Eq. (3.20), we can rewrite Eq. (3.55) in a

simpler form,

S1 =
q
Ω

Φ̃0 +
qρ
Ω

ĉ · ∇φ0 −
mV̄‖ρ

Ω
b̂ · ∇D · ĉ +

q
Ω

Φ̃1. (3.57)

The first two terms in Eq. (3.57) can be written also as

q
Ω

Φ̃0+
qρ
Ω

ĉ·∇φ0 =
1
2π

∫ Θ+2π

Θ

(Θ′−Θ−π)
[
φ0

(
X + ρâ(Θ′)

) − φ0(X) − â(Θ′) · ∇φ0(X)
]
dΘ′.

(3.58)

The previous expression given by Qin for the simple equilibrium velocityDQin ≡ b̂ ×
∇φ0/B is

S1 Qin =
q
Ω

Φ̃0 +
qρ
Ω

ĉ · ∇φ0 − V⊥
B2

DQin · ∇DQin · ĉ−
V⊥V‖
B2

b̂ · ∇DQin · c +
q
Ω

Φ̃1. (3.59)

The third term inS1 Qin has been canceled in our gauge functionS1. This fact shows that

the zeroth order equations of motion adopted here is more accurate than that of Qin’s

study. The first order Lie generatorg1 is calculated from this approximatedS1 as

gX̄
1 = − 1

qB∗‖
b̂ ×

[
−mρ∇D · â + ∇

(
q
Ω

Φ̃0 +
q
Ω

Φ̃1 +
qρ
Ω

ĉ · ∇φ0 −
mV‖ρ

Ω
b̂ · ∇D · ĉ

)]

− B∗

mB∗‖

(
−mρ

Ω
b̂ · ∇D · ĉ

)
, (3.60)

gΘ̄
1 = − q2

mΩ

(
∂Φ̃0

∂µ̄
+
∂Φ̃1

∂µ̄
+

1
qV⊥

ĉ · ∇φ0 −
mV‖
q2V⊥

b̂ · ∇D · ĉ
)
, (3.61)

g
µ̄
1 =

q2

mΩ

(
φ̃0 + φ̃1 − ρâ · ∇φ0 +

mρV‖
q

b̂ · ∇D · â
)
, (3.62)

g
V̄‖
1 =

B∗

mB∗‖
·
[
−mρ∇D · â + ∇

(
q
Ω

Φ̃0 +
q
Ω

Φ̃1 +
qρ
Ω

ĉ · ∇φ0 −
mV‖ρ

Ω
b̂ · ∇D · ĉ

)]
. (3.63)

Terms proportional toD · ∇D have been canceled also in the Lie generator.

From the gyrokinetic 1-form, the gyrokinetic equations of motion are obtained as

dX
dt

=
1
B∗‖

[
B∗V‖ + b̂ ×

(
∇φ̄0 + ∇φ̄1 +

µ

q
∇B0 +

m
2q
∇D2 +

m
q
∂D
∂t

)]
, (3.64)
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dΘ

dt
=

qB0

m
+

q2

m
∂φ̄0

∂µ̄
+

q2

m
∂φ̄1

∂µ̄
, (3.65)

dµ
dt

= 0, (3.66)

dV‖
dt

= − qB∗

mB∗‖
·
(
∇φ̄0 + ∇φ̄1 +

µ

q
∇B0 +

m
2q
∇D2 +

m
q
∂D
∂t

)
. (3.67)

The term proportional to∂D/∂t in Eq. (3.64) represents the polarization drift due to the

temporal variation of the equilibrium electric field. This term lacks in Hahm’s paper

[39] because of the assumption that the equilibrium potential is constant in time. The ¯µ

derivative of the gyroaveraged potential is also expressed as

∂φ̄

∂µ̄
=

1

qV̄⊥
〈â · ∇φ(X + ρâ)〉 =

1
B
〈ĉĉ : ∇∇φ(X + ρâ)〉 . (3.68)

If the spatial scale of the equilibrium potential is much larger than the gyroradius, we can

use approximated expressions,φ̄0 ' φ0 + (ρ2/4)∇2
⊥φ0 and∂φ̄0/∂µ̄ ' ∇2

⊥φ0/2B.

The particle density is calculated up to the first order as a pullback expression;

n(x) =

∫ (
F̄ + gX̄

1 ·
∂F̄
∂X

+ g
µ̄
1

∂F̄
∂µ

+ g
V̄‖
1

∂F̄
∂V‖

) B∗‖
m
δ(X + ρâ− x) d3XdΘdµdV‖. (3.69)

If we used the approximated expression of the Lie generator,g1 ' gµ̄1, as is often the case

with the most of the gyrokinetic analyses, the density equation is reduced to

n =

∫ (
F̄ + g

µ̄
1∂µ̄F̄

) B∗‖
m
δ(X + ρâ− x) d3XdΘdµdV‖. (3.70)

Using the partial integral for ¯µ and assuming that the spatial scale of the equilibrium

potential is much larger than the gyroradius, we can obtain the reduced expression

n ' N +
1

Ω2
∇⊥ · (U‖∇‖D)

+ Np, (3.71)

where we define the gyrocenter densityN, the parallel velocityU‖ and the polarization

densityNp due to the potential perturbation as

N ≡
∫

F̄
B∗‖
m
δ (X + ρâ− x) d3XdΘdµdV‖, (3.72)

U‖ ≡
∫

V‖F̄
B∗‖
m
δ (X + ρâ− x) d3XdΘdµdV‖, (3.73)

Np ≡
∫

q2

mΩ
φ̃1
∂F̄
∂µ̄

B∗‖
m
δ(X + ρâ− x) d3XdΘdµdV‖. (3.74)

The density equation for Qin’s equilibrium velocity is given by

nQin = N +
1

Ω2
∇⊥ ·

[(
NDQin + U‖b̂

)
· ∇DQin

]
+ Np. (3.75)
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The term proportional toD · ∇D has been canceled also in the equation of the density.

This relation gives the Poisson equation and thus we have obtained the whole set of the

gyrokinetic equations.

3.6 Numerical comparisons

In this section, numerical verifications are given to confirm the advantages of the present

equilibrium drift velocity. We solve the gyrokinetic equations of motion (3.64) – (3.67)

and compare the solutions with that of the full-kinetic equations and the previous gyroki-

netic equations for three kinds of potential profiles.

First, we examine the particle trajectories for the potentialφ0 = −Ey andφ1 = 0.

The solution of the new equilibrium drift velocity, Eq. (3.20), for the uniform electric

field is given by a simpleE × B drift velocity D = E/Bx̂ for B = Bẑ. Therefore, the

equations of motion for the previous definition ofD = DQin and our definition coincide

with each other for the uniform electric field. We solved the full-kinetic equations and

the gyrokinetic equations and plotted the particle position and the gyrocenter position in

Fig. 3.1. The initial position and velocity used in solving the gyrokinetic equations are

determined from those of the full-kinetic calculation through the coordinate transforma-

tion, X̄ = x − ρâ + gX
1 . The last termgX

1 comes from the Lie transformation between the

guiding-center and the gyrocenter coordinates. It represents a correction of the gyrocenter

position related to the perturbation generated from the nonuniformity of the equilibrium

potential and the particle gyration. The solution of the gyrokinetic equations are trans-

formed inversely to the particle positions,x = X̄ + ρâ − gX̄
1 , and plotted. The gyrating

curve labeled ”full” in Fig.3.1 represents the particle trajectory calculated from the full-

kinetic equations. The plus cross marks represent the particle positions calculated from

the gyrokinetic equations with and withoutD, respectively. From the fact that the particle

positions withD are just on the curve of the full-kinetic solution, while those ofD = 0 are

not, the effectiveness of the employment of the equilibrium drift velocityD for the strong

electric field is confirmed.

The upper and lower horizontal lines represent the trajectories of the gyrocenter with

and withoutD, respectively. The difference in the gyrocenter positions are caused by the

modification of the velocity space. Since the velocity in the gyrokinetics withD is defined

in the frame moving with the velocityD, the gyrocenter position shifts along the electric

field. The amount of the shift is given bŷb × D/Ω = E/BΩŷ and corresponds to the

polarization due to the equilibrium electric field.

Secondly, we use a potential profile with circular contours,φ0(r) = −Er. A parti-

cle drifts along the contour to the clockwise direction for a positiveE. The solution of
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Figure 3.1:Comparisons of particle trajectories calculated from the full-kinetic, gyroki-

netic equations with and withoutD. The curve labeled “full” represents the particle orbit

calculated from the full-kinetic equations of motion. The plus and cross marks corre-

spond to the solutions of the gyrokinetic equations with and withoutD, respectively. The

gyrocenter orbits with and withoutD are shown as dashed and dotted lines, respectively.

Eq. (3.20) for this potential is given by

D =
2

1 +
√

1− 4E/rBΩ
b̂ × ∇φ0

B
, (3.76)

where we denote the radius byr =
√

x2 + y2. In order to confirm the accuracy of the

equation in the nonuniform electric field, the conservation of the energy is examined.

There are two expressions for the energy according to the coordinate systems;

Hf (x, v) =
m
2
v2 + qφ0, (3.77)

Hg(X̄, µ̄, V̄‖) =
m
2

V̄2
‖ + Bµ̄ +

m
2

D2 + q 〈φ0〉 . (3.78)

The former is the Hamiltonian on the particle coordinate system and represents the energy

of the particle at the phase space position (x, v). The latter expression,Hg is the gyroki-

netic Hamiltonian on the gyrocenter coordinate system (X̄, Θ̄, µ̄, V̄‖). Since the description

of dynamics consists of the definition of the coordinate system and the equations of mo-

tion, or time derivative of the coordinate variables, the Hamiltonian becomes an invariant

if and only if the corresponding equations of motion are employed. Thus, the full-kinetic

equation conserves the particle energyHf but not the gyrokinetic energyHg, andvice

versafor the gyrokinetic equations. The reason for the nonconservation is that the gy-

rokinetic 1-form and the coordinate transformation between the particle and the gyrocen-

ter involves truncation errors through the Taylor expansions with respect toε. Therefore,

the degree of energy conservation is a suitable criterion to evaluate the accuracy of the

equations.
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Figure 3.2: Time evolution of the particle energyHf , Eq. (3.77), and the gyrokinetic

energyHg, Eq. (3.78). They are calculated from the full-kinetic equations (solid) and the

gyrokinetic equations with the equilibrium velocity fieldD (dashed) andDQin (dotted).

We employ two combinations of the energy expressions and equations of motion. One

is the ‘proper’ pair of the particle energy,Hf , and the full-kinetic equations of motion,

and alsoHg and the gyrokinetic equations. In this case, the energy is conserved rigor-

ously. From the numerical comparison with the full-kinetic one, the consistency of the

gyrokinetic equations are examined. The other combination, i.e.Hf and the gyrokinetic

equations, is useful to examine the accuracy of the equations of motion and the coordinate

transformations used in the calculation ofHf from the gyrokinetic coordinate variables.

Although the time evolution of the energy is not stationary, it does not have a secular

variation but oscillates with the gyrofrequency and its harmonics. The amplitude of the

oscillation is employed as the criterion of the accuracy.

We solve the full-kinetic and the gyrokinetic equations numerically and plot three

kinds of energy values in Fig.3.2. First is the particle energyHf calculated from the full-

kinetic solution. It is shown as a solid horizontal line labeled ‘Hf ’ in the figure. Second is

the gyrokinetic energyHg calculated from the gyrokinetic solution. The dashed and dot-

ted horizontal lines labeled ‘Hg’ represent the gyrokinetic energy for our equilibrium drift

velocity fieldD and that of Qin, respectively. Their conservation indicates the consistency

of the gyrokinetic equations derived here. The reduction of the derivation from the value

of the full-kinetic energy is also observed. The third energy value is the particle energyHf

calculated from the gyrokinetic solution. SinceHf is a function on the particle coordinate

system, it is evaluated with the particle coordinate variables transformed from the gyro-

center coordinate variables. The dashed and dotted oscillatory curves correspond to the

solutions obtained from the equations forD andDQin, respectively. Since the amplitude

of the energy oscillation for the presentD is reduced by a factor of three compared with
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Figure 3.3:Standard deviations of energy oscillations for theE×B drift velocity. Figures

(a), (b) and (c) correspond to three kinds of the initial positions of the particles,r/ρt =

25, 100 and 400, respectively. The cross, triangle and circle marks correspond to the

gyrokinetic equations forD = 0, the improved equations of Qin and the equations derived

here, respectively.

that for the previousDQin, we confirm that the refinement of the gyrokinetic equations has

been achieved by the new equilibrium velocity.

In order to study the dependence of the error on the various plasma parameters, we

plot the standard deviations of the energy oscillation for variousE, B, vt and the initial

velocity in Fig.3.3. The standard deviationσ is normalized by the perpendicular energy

Bµ and can be interpreted as a relative error. The horizontal axis represents theE×B drift

velocity normalized by the thermal velocity. Fig.3.3(a), (b) and (c) correspond to three

kinds of initial positions of the particle,r/ρt = 25, 100 and 400, respectively. The cross,

triangle and circle marks correspond to the gyrokinetic equations forD = 0, the improved

equations of Qin and the equations derived here, respectively. The broad distributions in

σ/Bµ, especially for the equations forD = 0, are caused by the thermal spread in the

perpendicular velocity space, which has a Maxwellian distribution. The relative error of

the equations forD = 0 does not depend on the initial position, which corresponds to the

curvature of the potential contour in this case, while the error of the improved equations

with D decreases for smaller curvature. This fact indicates that the error in the equations

for D = 0 depends on the electric field strength, while that of the equations withD depends

on the second derivative ofφ0 rather than the first derivative or the strength of the electric

field. This tendency agrees with the observation on the conservation of the magnetic

moment in Sec.3.3. The relative error with the presentD is roughly estimated from
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Figure 3.4:Time evolution of the particle energy. The solid and dashed lines correspond

to the solution of our gyrokinetic equations and those of Qin, respectively.

Fig.3.3as∆ ' (vE×B/vt)2/2(r/ρt)2 = (E/rBΩ)2/2 ' (∇2φ/BΩ)2/2. From the comparisons

between the Qin’s previous solutions (triangle marks in Fig.3.3) and ours (circle marks),

the reduction of the error is achieved when theE×B drift velocity exceeds approximately

1/10 of the thermal velocity. The maximum reduction around 1/10 is achieved when

vE×B > vt.

Finally, we examine the energy oscillation for a more general potential profile. We

used an equilibrium potential with elliptic contours as an example;φ0 = −E
√

4x2 + y2.

The solution of Eq. (3.20) is numerically calculated. The time evolution of the particle

energy calculated from the gyrokinetic equations forD andDQin are shown in Fig.3.4.

The period,T = 92, equals to a one cycle of the rotation along the contour. At the

beginning of the calculation, the particle is located on thex axis, (x, y) = (l,0), and drifts

clockwise to (0,−2l) at t = T/4 = 23. The slow variation of the envelope is caused by the

spatial difference of the curvature of the potential contour. The amplitude of the energy

oscillation is reduced by a factor of three also in the potential with elliptic contours.

The time evolution of the gyrocenter positions are also compared for the potential

with elliptic contours. We solve the full-kinetic equations, the gyrokinetic equations for-

mulated by Qin and ours from the same initial position and velocity. The deviation of

the gyrocenter position from that of the full-kinetic results is presented in Fig.3.5. The

dashed and solid curves correspond to the solution of Qin’s equations and ours. Our

equations gives less deviation by a factor of three. The smallness of the deviation of the

position represents the accuracy of the velocity given by the equations of motion.
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Figure 3.5:Time evolution of the deviation of gyrocenter position calculated by the gy-

rokinetic equations from that by the full-kinetic equations. The solid and dashed lines

correspond to the results of Qin’s gyrokinetic equations and those of ours, respectively.

3.7 Conclusions

Refinement of the equilibrium drift velocity in the gyrokinetic theory has been proposed

for edge plasmas with largeE × B flow shears. An equilibrium velocity fieldD is intro-

duced in the coordinate transformations, Eqs. (3.1) and (3.2), to decouple the drift motion

and gyration of a charged particle in the zeroth order dynamics in Eq. (3.7). We inves-

tigated the effects of the velocityD on the zeroth order equation of motion, especially

on the magnetic momentµ, and obtained the practically most accurate expression ofD,

Eq. (3.20).

Using the standard procedures of Lie perturbation analysis, we obtained the general

expressions of Lie generator. Eq. (3.48), and the gyrokinetic 1-form, Eq. (3.51), up to the

first order. As a limiting case, the electrostatic gyrokinetic equations of motion, (3.64)

– (3.67), and the particle density, Eq. (3.71), were derived. It was confirmed that a term

proportional toD·∇D in the gauge function, Eq. (3.59), used by Qin was canceled through

the refinement ofD in our gauge function, Eq. (3.57). This fact indicates that our modifi-

cation inD reduces the error involved in the zeroth order dynamics.

The advantages of our formulation were also confirmed in the numerical verifica-

tions in Sec.3.6. The accuracy of the equations of motion was estimated through the

conservation of the particle energy calculated from the gyrocenter coordinate variables

Z̄ = (X̄, Θ̄, µ̄, V̄‖). When theE×B drift velocity is comparable to the thermal velocity, the

oscillatory behavior of the energy due to the truncations at the second order was reduced

up to 1/10 in its standard deviation compared with the previous formulation by Qin.

From the analytic investigation and the numerical verifications, it has been confirmed

52



that the refinement of the equilibrium velocityD succeeds in obtaining more accurate

equations of motion and gyrocenter coordinate. The general expressions of the charge

and current densities were formulated and the approximated density equation (3.71) for

the electrostatic potential was also obtained. Our formulation is, however, based on the

single particle 1-form and thus the self-consistency for collective dynamics, or a plasma,

is not fully ensured by itself. The self-consistency, e.g. conservation of the plasma energy,

for the gyrokinetics without large equilibrium flow has been confirmed by the field theory

[25]. The self-consistency is essential not only for the theoretical completeness but for the

numerical simulation as a guarantee of the conservation of energy and momentum. The

application of the field theory to the gyrokinetic theory with the strongE×B flow will be

an important topic of further studies.
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Chapter 4

Kinetic modeling of a sheath layer in a

magnetized collisionless plasma

4.1 Introduction

Plasmas in the laboratory are usually contacting with walls. If the walls are electrically

floating, negative charges accumulate on the walls and repel electrons until the electron

flux balances with the ion flux. The repulsion of electrons causes a decrease of electron

density and generates a nonneutral layer, namely sheath, in front of the wall. The strong

electric field in the sheath layer with a width of a few Debye lengths causes acceleration of

ions toward the wall. In fusion plasmas, the plasma is continuously produced in the core

region and transported across the magnetic field over the separatrix. Since the magnetic

field is open outside the separatrix, the plasma is transported mainly along the magnetic

field toward the divertor plate. The core plasma, the peripheral plasma and the sheath

layer are strongly linked with each other. A proper modeling of the sheath layer in a

magnetic field is one of the important issues in transport analysis of the fusion plasmas.

In addition to the global transport study, local physical quantities near the wall surface

are also important to understand the physics in the plasma-wall interaction. For examples,

the electric field profile is essential information for the prediction of the behavior of dust

particles [45]. The incident angle distribution of ions to the surface is also essential for

obtaining the production rate of secondary electrons and the sputtering at the surface

[46–48]. An analytic model of the sheath layer can provide physical insights about the

dependences of these quantities on various plasma parameters and physical processes

such as the polarization drift and the finite Larmor radius effect. The condition for a

stable sheath formation is also a quite important issue in the analytic modeling of the

sheath layer. The analytic treatment is superior to the particle-in-cell (PIC) simulation in

order to extract these fundamental informations.
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Recent theoretical investigations of unmagnetized plasmas [49–52] have been made

to reveal the property of the self-consistent potential profile for the plasmas generated by

ionization. The geometry used in these studies is one dimensional with length 2L and

bounded by two facing walls atx = ±L, which is called a fully bounded model. Plasma

equations are solved in the half region 0≤ x ≤ L by virtue of the symmetry. This model

is usually used for studies of a presheath, in which the ions are accelerated till the sheath

edge defined by the equality of the generalized Bohm criterion, [53] i.e.
〈
v−2

i

〉
= mi/Te.

Since the electron Debye lengthλDe is much shorter than the system length, the ratio

λDe/L is usually assumed to be zero.

A geometry such that a sheath layer connected with an infinite plasma is called a

half-bounded model. The half-bounded model is usually used to study a sheath layer

rather than a presheath layer and the the ratio of the Debye length to the system length is

finite. [54–56] This model has an arbitrariness in the choice of the plasma at the source

boundary and velocity distribution of the plasma source has to be specified. We adopt this

geometry and use a shifted Maxwellian for the velocity distribution function of the plasma

source. The velocity distribution of small velocity ions are truncated for the fulfillment of

the generalized Bohm criterion.

The sheath formation in a magnetized plasma has drawn a lot of attention since

Chodura and Daybelge revealed the properties of the magnetic presheath in the fluid and

particle-in-cell (PIC) simulation study [56] and the kinetic study [57]. The most dis-

tinctive property is the existence of a characteristic length related to the magnetic field.

The length of the magnetic presheath is roughly proportional to the ion Larmor radius,

which was predicted by Chodura and confirmed by simulation studies [55, 58]. When

the plasma is moderately magnetized, i.e. the ion Larmor radius is comparable or larger

than the characteristic length, the full-kinetic equations including the cyclotron motion

are usually solved in simulations [55,58–60]. The dynamics of the magnetized plasma is

sometimes described by the gyrokinetic theory on the assumption that the characteristic

time is much longer than the gyration period. The extension of the theory to the plasmas

with strong electric field has been developed by Littlejohn [17], Hahm [39] and Qin [28].

Recently Qinet al. published a review on the derivation of gyrokinetic equation which

can be applied to the edge plasma with a strong electric field [40]. We adopt this theory

to describe the potential profile in a magnetized plasma.

This chapter is organized as follows. First, we derive a equation which describes a

potential profile in the sheath layer for an unmagnetized plasma from the stationary colli-

sionless Vlasov equation in Sec.4.2.1. In Sec.4.3, a potential equation for a magnetized

plasma is derived from the gyrokinetic Vlasov equation on the assumption that the ion

gyroradius is smaller than the characteristic length of the potential profile. The gener-
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alized Bohm criterion for a magnetized plasma is formulated. In Sec.4.4, the numerical

solutions of the potential equations for the magnetized sheath layer are obtained. Compar-

isons of the potential profiles between the analytical solutions and the full-kinetic particle

simulation results for the same parameters are made and the validity of our modeling is

discussed. Finally, conclusions are presented in Sec.4.5.

4.2 Basic equations for a unmagnetized plasma

4.2.1 Model equations based on the Vlasov equation

We consider a plasma without magnetic field in this section prior to a magnetized plasma.

Plasma profiles near a wall are essentially one-dimensional if the wall is large enough to

be treated as an infinite flat plane. We assume a one-dimensional plasma and a plasma

source which compensates the loss of particles at the wall. Fig.4.1shows the geometry of

the plasma. The system length along thex axis is denoted byL and a perfectly absorbing

wall is placed atx = L. The source plasma consists of electrons and ions of one species

filling the region x < 0 and flows into the region in consideration, 0< x < L. The

electrostatic potentialφ is measured from the value at the source end,x = 0.

In the present analysis, we neglect the effect of collisions and particle generations in

the sheath layer. The one dimensional system we consider here is similar to that in the

simulation study [58, 61] except that there is no particle source in the sheath layer. For

simplicity, we assume that the source region is sufficiently large and is not affected by the

wall. The source plasma in the regionx < 0 plays a role of source and also sink. All

particles passing through the boundaryx = 0 from positivex are just removed. The rate

and the velocity distribution of newly injected particles fromx = 0 have no correlation

with the removed particles.

The equilibrium of the plasma can be determined from the energy conservation,mv2/2+

qφ(x) = const., and the collisionless stationary Vlasov equation for a particle distribution

function f (x, v) , d f/dt = 0 or f = const. along the particle trajectory. Here, the con-

stantsm andq represent the mass and the charge, respectively. The velocity distribution

f at arbitraryx and v can be expressed asf (x, v) = f0
( √

v2 + 2qφ/m
)
, where f0(v) is

an initial distribution function atx = 0. By solving the Poisson equation∂2φ/∂x2 =

−(1/ε0)
∫ ∞
−∞(qi fi + qe fe) dv, we can obtain the potential profile as a function ofx.

The plasma source and the sheath layer are strongly linked with each other and the

distribution function at the source boundaryx = 0 can not be determined by itself. We,

however, have some clues on the distribution function in the presheath region. The ve-

locity distribution of the plasma source can be assumed to be close to a Maxwellian be-
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Figure 4.1:The schematic diagram of the sheath layer.

cause of the collisionality. The velocity distributions in the presheath region have been

investigated in many studies [51, 58, 60–62]. These studies suggest the existence of a

weak electric field in the presheath region which accelerates the ions until the generalized

Bohm criterion,
〈
v−2

i

〉
≤ mi/Te, is satisfied. The notation〈 〉 represents the average over

the velocity space with a weightf ;

〈A(x, v)〉 ≡
∫ ∞
−∞ A(x, v) f (x, v) dx∫ ∞

−∞ f (x, v) dx
(4.1)

In this work, the distribution functions of electrons and ions at the source boundary,

x = 0, are assumed to be shifted Maxwellians,

f0e(v) ≡ νen0√
2πvte

exp

(
− (v − v̄e)2

2v2
te

)
for vce < v < ∞, (4.2)

f0i(v) ≡ νin0

Z
√

2πvti

exp

(
− (v − v̄i)2

2v2
ti

)
for vci < v < ∞, (4.3)

where the electron and ion drifting velocities ¯ve andv̄i represent the amount of the velocity

shift of the electron and ion velocity distributions, respectively. We note that the temper-

aturesTe andTi and the corresponding thermal velocitiesvte =
√

Te/me andvti =
√

Ti/mi

in Eqs. (4.2) and (4.3) can deviate from the actual second-order velocity moment be-

cause of the existence of the cut-off in the velocity distributions by the minimum ve-

locities vce < 0 andvci > 0. We write the effective temperature with a superscript ‘*’,

T∗i ≡
〈
miv

2
i

〉
. The electron cut-off velocityvce is determined by the wall potentialΦ = φ(L)

asvce = −√2eΦ/me. This cut-off velocity yields the electron normalization coefficient

νe = 2/
[
1 + erf

(
v̄e/
√

2vte +
√

eΦ/Te

)]
, wheren0 represents the density atx = 0. The

ion normalization coefficientνi are also calculated asνi = 2/
[
1 + erf

(
(v̄i − vci)/

√
2vti

)]
.

These normalization coefficients satisfy the charge neutrality,ne(0) = Zni(0) = n0.

Since zero-velocity ions violate the generalized Bohm criterion, the ions distribution

function used here is truncated at a positive velocityvci. We solve the equality of the
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Figure 4.2: Minimum cut-off velocity vci as a function of ¯vi. The generalized Bohm

criterion is satisfied in the region above the curve.

generalized Bohm criterion,B(v̄i , vci) ≡ Z(mi/me)
(〈
v2

e

〉
− 〈ve〉2

) 〈
v−2

i

〉
= 1, and plot the

numerical solution ofvci as a function of ¯vi in Fig. 4.2. Here, we assume a hot hydrogen

plasma;Ti = Te, mi/me = 1836, qi/qe = −1 and v̄e = 0. We note that the effective

temperature ratio can varies according to the cut-off velocity vci. We should choose a

set of parameters ¯vi andvci in the region above the curve to assure the generalized Bohm

criterion B ≤ 1. The minimum cut-off velocity has a valuevci ' 0.58vti for v̄i = 0, and

monotonically decreases as ¯vi increases. In the following discussions, we use ¯ve = 0, v̄i =

2vti andvci = 0.1vti. The Bohm parameter has a slightly smaller value than unity,B ' 0.96,

the wall potential isΦ ' −2.13Te/e and the actual temperature ratio isT∗i /T
∗
e ' 0.97 in

this case.

The electric potentialφ is assumed to be a monotonically decreasing function of the

position x. The density and the particle flux can be calculated by the integral over the

velocity spacev;

ns(x) =

∫ ∞

vmin s

f0s


√
v2 +

2qs

ms
φ(x)

 dv, (4.4)

Γs(x) =

∫ ∞

vmin s

v f0s


√
v2 +

2qs

ms
φ(x)

 dv =

∫ ∞

vcs

v f0s(v) dv. (4.5)

The lower limit of the integral,vmin s, represents the minimum velocity of the particles at

the positionx, and has a different form for each particle species according to the charge

of the particles,qe = −eandqi = Ze;

vmin e = −
√
−2e

me
(Φ − φ(x)), (4.6)

vmin i =

√
v2

ci −
2Ze
mi

φ(x), (4.7)
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whereΦ is a wall potential andΦ ≤ φ ≤ 0. The electron which has the velocityvmin e < 0

at the positionx corresponds to the particle which was reflected just at the wall. The

ion which has the velocityvmin i at the positionx corresponds to the particle which was

injected at the velocityvci from x = 0. The wall potentialΦ is determined from the particle

flux balance between electrons and ions;

Γe = ZΓi . (4.8)

This condition means the wall is perfectly absorbing and electrically floating.

For simplicity, we introduce the electron Debye lengthλDe ≡
√

n0e2/ε0Te and dimen-

sionless parametersµ ≡ mi/me, τ ≡ Ti/Te, ψ ≡ −eφ/Te, Me ≡ v̄e
√

mi/Te =
√
µv̄e/vte,

Mi ≡ v̄i
√

mi/Te =
√
τv̄i/vti andC ≡ vci

√
mi/Te =

√
τvci/vti, whereMe andMi represent

the ratios of the drifting velocities ¯vs to the cold-ion sound velocity
√

Te/mi andC repre-

sents the ion cut-off velocity. We note that the normalized potentialψ has opposite sign

to φ, thus 0≤ ψ ≤ Ψ ≡ −eΦ/Te. By using these parameters and the source velocity

distribution function (4.2) and (4.3), the densities and the fluxes are calculated as

ne

n0
=

∫ ∞

−
√

2(Ψ−ψ)

νe√
2π

exp

−1
2

(√
v̂2 + 2ψ − Me√

µ

)2 dv̂, (4.9)

ni

n0
=

∫ ∞
√

C2+2Zψ

νi√
2πτZ

exp

[
− 1

2τ

( √
v̂2 − 2Zψ − Mi

)2
]
dv̂, (4.10)

Γe

n0vte
=

νe√
2π

exp

−

√
ψ − Me√

2µ


2 +

νeMe

2
√
µ

1− erf


√
ψ − Me√

2µ


 , (4.11)

Γi

n0vti
=

νi√
2πZ

exp

(
− (Mi −C)2

2τ

)
+

νi Mi

2
√
τZ

[
1 + erf

(
Mi −C√

2τ

)]
. (4.12)

The wall potentialΨ is determined by the flux balance equation (4.8);

√
2µ
π

exp

−

√

Ψ − Me√
2µ


2 + Me

1− erf


√

Ψ − Me√
2µ




=
νi

νe

√
2τ
π

exp

(
− (Mi −C)2

2τ

)
+
νi

νe
Mi

[
1 + erf

(
Mi −C√

2τ

)]
. (4.13)

The density profile is obtained from these equations as a function of potentialψ. By

solving the Poisson equation

λ2
De

d2ψ

dx2
= Z

ni

n0
− ne

n0
(4.14)

with the boundary conditionsψ(0) = 0 andψ(L) = Ψ, a unique self-consistent potential

is obtained as a function of the positionx.
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4.2.2 Generalized Bohm criterion for an unmagnetized plasma

The generalized Bohm criterion has been formulated by Harrison and Thompson [53] as

a generalization of the original Bohm criterion for a plasma with a finite ion temperature.

The physical meaning of the criterion is that the charge density increases as the potential

decreases toward the wall, i.e.d(Zeni−ene)/dφ ≤ 0. A stable sheath layer is automatically

formed only if this condition is satisfied. In this section we recover the generalized Bohm

criterion from the equations obtained in Sec.4.2.1.

Before discussing the physical interpretation of the Bohm criterion, we calculate the

derivative of the electron and ion density with respect of the potential. The electron and

ion densities are given by

ne(x) =

∫ ∞

vmin e

fe0


√
v2 − 2e

me
φ

 dv, (4.15)

ni(x) =

∫ ∞

vmin i

fi0


√
v2 +

2Ze
mi

φ

 dv, (4.16)

where the lower limits of the integrals are given in Eqs. (4.6) and (4.7). We assume the

electron velocity distribution to be a Maxwellian atx = 0;

fe0(v) =
n0√
2πvte

exp

(
− v2

2v2
te

) 1
2

+
1
2

erf


√
−eΦ

Te



−1

. (4.17)

The value of the distribution function for the velocity belowvmin e is defined as zero.

Here we calculate the derivative of the electron density with respect to the potentialφ as

follows;

dne

dφ
= −dvmin e

dφ
fe0


√
v2

min e−
2e
me
φ

 −
∫ ∞

vmin e

e

me

√
v2 − 2e

me
φ

d fe0

dv


√
v2 − 2e

me
φ

 dv

=

√
− e

2me(Φ − φ)
fe0

−
√
−2e

me
Φ

 +

∫ ∞

vmin e

e

mev
2
te

fe0


√
v2 − 2e

me
φ

 dv, (4.18)

where the relationd fe0/dv = −v fe0/v
2
te is used. In the limit ofx→ 0, we obtain

dne

dφ
=

√
− e

2meΦ
fe0

−
√
−2e

me
Φ

 +
n0e

mev
2
te

' n0e
Te
. (4.19)

We employ the approximation exp(eΦ/mev
2
te) � 1 in the second equality. The derivative

of the ion density is obtained similarly as

dni

dφ
= −dvmin i

dφ

 fi0


√
v2

min i +
2Ze
mi

φ

 + fi0

−
√
v2

min i +
2Ze
mi

φ



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+

∫ ∞

vmin i

Ze

mi

√
v2 + 2Ze

mi
φ

d fi0
dv


√
v2 +

2Ze
mi

φ

 dv

+

∫ −vmin i

−∞

Ze

mi

√
v2 + 2Ze

mi
φ

d fi0
dv

−
√
v2 +

2Ze
mi

φ

 dv

=

√
− Ze

2miφ
fi0(0) +

∫ ∞

vmin i

Ze

mi

√
v2 + 2Ze

mi
φ

d fi0
dv


√
v2 +

2Ze
mi

φ

 dv

+

∫ −vmin i

−∞

Ze

mi

√
v2 + 2Ze

mi
φ

d fi0
dv

−
√
v2 +

2Ze
mi

φ

 dv. (4.20)

We require the conditionfi0(0) = 0 to take the limit ofx→ 0 and then we obtain

dni

dφ

∣∣∣∣∣
x=0

=

∫ ∞

+0

Ze
miv

d fi0
dv

(v)dv +

∫ −0

−∞

Ze
miv

d fi0
dv

(−v)dv

= P
∫ ∞

−∞

Ze
miv

d fi0
dv

(v)dv, (4.21)

where the notation P
∫

represents the principal integration. We require also the condition

(d fi0/dv)(0) = 0 for the integral to be finite. The integration by parts yields

dni

dφ

∣∣∣∣∣
x=0

= P
∫ ∞

−∞

Ze
miv2

fi0(v)dv (4.22)

From the above calculations we obtain the derivative of the charge density as

dρ
dφ

=
Z2e2

mi
P
∫ ∞

−∞

fi0(v)
v2

dv − n0e2

Te
. (4.23)

The spatial potential profile is determined by the Poisson equation,∇2φ = −ρ/ε0, for

a given charge densityρ. Using the relation,d/dx = (dφ/dx)d/dφ, we can rewrite the

Poisson equation as
ε0

2
d
dφ

(
dφ
dx

)2

= −ρ. (4.24)

Since the squire of the electric field, (dφ/dx)2, should be positive and the charge density

is practically zero at the sheath edge, the monotonically decreasing potential requires

dρ/dφ ≤ 0, i.e.dφ/dx ≤ 0 anddρ/dx ≥ 0. This requirement is the generalized Bohm

criterion;
Z2e2

mi
P
∫ ∞

−∞

fi0(v)
v2

dv ≤ ne0e2

Te
or Z

〈
v−2

i

〉
≤ mi

Te
, (4.25)

where the charge neutrality,Zni0 = ne0, is use. We note that the expression derived here

relies on the following assumptions;fi0|v=0 = 0, d fi0/dv|v=0 = 0 and exp(eΦ/mev
2
te) � 1.
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Figure 4.3:The influence of the correction term in Eq. (4.26). The right hand side of the

equation is plotted as a function of the normalized potentialeΦ/Te.

The last one can be excluded by using the more general expression;

ZTe

mi

〈
v−2

i

〉
≤ 1 +

1

2
√
π

√
− Te

eΦ
exp

(
eΦ

Te

) 1
2

+
1
2

erf


√
−eΦ

Te



−1

(4.26)

'
1−

1

2
√
π

√
− Te

eΦ
exp

(
eΦ

Te

)
−1

.

The approximation in the second equality is valid for−eΦ/Te & 0.5. The second term in

the right hand side is a correction due to the electron cut-off velocity caused by the absorp-

tion at the wall. The right hand side is plotted as a function of the normalized potential

eΦ/Te in Fig. 4.3. The influence of the correction term is restrictive. If the normalized

wall potential is larger than unity as is often the case, the deviation of Eq. (4.26) from

unity is relatively small.

4.3 Basic equations for a magnetized plasma

4.3.1 Model equations based on the gyrokinetic theory

In this section, we derive a set of equations describing a potential profile in a magnetized

sheath layer. The motion of a magnetized particle is essentially four dimensional at least;

one dimension for a space coordinate normal to the wall and three dimensions for the

parallel velocity along the magnetic field and the perpendicular velocities. It means that

the system has additional degrees of freedom compared with the unmagnetic case in the

last section, therefore obtaining a rigorous solution is a rather difficult task. In some cases
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where the Larmor radius is sufficiently smaller than the characteristic length of the sheath

potential profile, however, we can separate the dynamics of the parallel and perpendicular

motions, eliminate the perpendicular velocities and treat the plasma as one dimensional

system.

Magnetized plasmas have three kinds of characteristic lengths, Debye lengthλDe, ther-

mal Larmor radiusρ and mean free pathlmfp. Ions and electrons have their Larmor radii

and mean free paths, respectively. We discuss a one component plasma first. The mean

free path is usually much longer than the Debye length, but the ratios ofρ to λDe andlmfp

differ according to the plasma parameters. Thus, we classify the relative magnitudes of

the Larmor radius to the other lengths into three cases; (i) 0< ρ < λDe, (ii) λDe < ρ < lmfp

and (iii) lmfp < ρ. The first case corresponds to a strong magnetic field case or a low

pressure plasma. The particle motion is dominated by the cyclotron motion and thus, the

velocity spaces can be separated to the parallel and perpendicular velocities. The velocity

coordinatesv‖ and v⊥ can be described by two different equation of motion. Since the

perpendicular velocity coordinate can be ignored because of the conservation law of the

magnetic momentum in a uniform magnetic field, the dynamics of the plasma can be re-

duced to one dimensional. The third case,ρ > lmfp, corresponds to weak magnetic field.

Since a particle suffers collisions during a gyration period, the velocity spaces tend to be

isotropic except the average flow toward the wall. Therefore, the plasma in this case can

be also treated as one dimensional system on the assumption of the high collisionality. In

the second case, however, the dynamics of a particle is quite complicated because of the

shorter characteristic length of the potential profile and the existence of collisions. The

dynamics in velocity spaces must be treated as three dimensional and described directly

by the full-kinetic equations of motion. Therefore, PIC or Vlasov simulations are required

to obtain the potential profile in the sheath layer.

When the plasma consists of ions and electrons, the ratioρ/λDe is classified into five

regions as shown in Fig.4.4. We assume that the ion mean free pathlmfp i is much shorter

than
√

mi/meλDe. The horizontal axis represents the squared ratioρ2
i /λ

2
De. The actual

range near the divertor plates of fusion devices [55] is around 1. ρ2
i /λ

2
De . 1000. The

regions where the plasma can be treated as one dimension is the first from the left end,

ρi < λDe, the third,lmfp i < ρi <
√

mi/meλDe and the fifth,ρi >
√

mi/me fmfp e or ρe > fmfp e.

The other regions,λDe < ρi < fmfp i andλDe < ρe < fmfp e require three dimensional

full-kinetic description for ions or electrons, respectively.

In this work, we concentrate on the first case,ρi < λDe. The magnetic field is as-

sumed to be sufficiently strong so that a gyrating orbit of ion can be regarded as a small

but finite circle around a guiding center. The motion of guiding center is described by

the gyrokinetics on the assumption that the gyroradius is much smaller than the charac-
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Figure 4.5:Geometry of the magnetic sheath model.

teristic scale length of the spatial inhomogeneity. The gyrokinetic theories generalized

for a strong electric field [17, 28, 39, 40] have been developed to describe a edge plasma

accompanied with a large equilibrium radial electric field. The difference from the ordinal

gyrokinetic theory is that the particle velocity is measured on a frame moving with the

E×B drift velocity. This gyrokinetic theory enables one to obtain the potential equations

in a magnetized sheath layer.

We assume a one dimensional system shown in Fig.4.5. The potential and density

profiles alongy andzdirections are uniform and the uniform magnetic fieldB is on they-z

plain. The formulation is similar to that of the unmagnetized case except that the equations

are expressed in the gyrocenter coordinates (X, θ, µ̄, v‖). The magnetic momentum ¯µ is

measured on the moving frame with theE × B drift velocity D = b̂ × ∇φ(X)/B;

µ̄ =
m

∣∣∣v − v‖b̂ − D
∣∣∣2

2B
=

mv2
⊥

2B
+

qv⊥
BΩ

r̂ · ∇φ +
q2

2mBΩ2
|∇⊥φ|2, (4.27)

where the vector̂b = B/B is an unit vector parallel to the magnetic field. The gyrocenter

positionX is defined also in the moving frame;

X = x − |v − v‖b̂ − D|
Ω

r̂ = x −
√

2Bµ̄/m

Ω
r̂ . (4.28)

The unit vector̂r represents the gyro-radius vector and is a function of the gyrophaseθ;

r̂ (θ) = ŷ × b̂ cosθ − ŷ sinθ. The particle velocity on the stationary frame is expressed as
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v = v‖b̂ +
√

2Bµ̄/mr̂ × b̂ + D. The gyrocenterX and the ordinary guiding-centerX′ are

related by the equation

X − X′ =

x −
√

2Bµ̄/m

Ω
r̂ (θ)

 −
[
x − v⊥

Ω
r̂ (θ′)

]

= − 1
BΩ
∇⊥φ(X), (4.29)

where the relation of the perpendicular velocityv⊥r̂ (θ′) × b̂ =
√

2Bµ̄/mr̂ (θ) × b̂ + D is

used. The gyrophaseθ′ is measured in the stationary frame. From Eq. (4.29), we can

confirm that the gyrocenterX includes the polarization shiftE⊥/BΩ. The two kinds of

gyrophasesθ andθ′ are also related by the equation

v⊥ cosθ′ −
√

2Bµ̄/mcosθ = −ŷ · D = − 1
B

ŷ × b̂ · ∇φ. (4.30)

The energy conservation equation is rewritten in the gyrocenter coordinates (X, θ, µ̄, v‖) as

H =
m
2
v2
‖ + Bµ̄ + qφ +

µ̄

2Ω
∇2
⊥φ +

q2

2mΩ2
|∇⊥φ|2 = const. (4.31)

The particle density is expressed by an integral of a gyrocenter distribution functionF

with respect to the stationary velocity space (θ, v⊥, v‖);

n(x) =

∫
F(X, θ, µ̄, v‖)v⊥dθdv⊥dv‖. (4.32)

The arguments of the functionF(X, θ, µ̄, v‖) are treated as functions of the stationary ve-

locity space. This transformation is called pullback [20] and provides expressions of

physical quantities on both the stationary and the gyrocenter coordinate systems.

The formulation itself is quite similar to that in Sec.4.2.1. The magnetic momentum

µ̄ in Eq. (4.31) can be ignored because of the conservation property, ¯µ = const, and the

energy conservation equation becomes one dimensional;

m
2
v2
‖ + qφgyro = const. (4.33)

This equation is almost the same as the unmagnetized expression except that the potential

is modified to the effective potential

φgyro = φ +
µ̄

2qΩ
∇2
⊥φ +

q
2mΩ2

|∇⊥φ|2. (4.34)

When the perpendicular velocity distributions are simple Maxwellian and the parallel

velocity distributions are given by the shifted Maxwellian (4.2) and (4.3), the densities
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and the fluxes are expressed as

ne

n0
=

∫ ∞

−
√

2(Ψ−ψ)

νe√
2π

exp

−1
2

(√
v2
‖ + 2ψ − Me√

µ

)2 dv‖, (4.35)

ni

n0
=

∫ 2π

0

∫ ∞

0

∫ ∞
√

2ψgyro

νi√
2πτZ

exp

[
− 1

2τ

(√
v2
‖ − 2ψgyro− Mi

)2
]

× exp

(
−V̂2

⊥
2

)
(1− floss)v⊥ dv‖dv⊥dθ, (4.36)

Γe

n0vte
= N · b̂νe


1√
2π

exp

−

√

Ψ − Me√
2µ


2 +

Me

2
√
µ

1− erf


√

Ψ − Me√
2µ



 ,(4.37)

Γi

n0vti
= N · b̂νi

{
1√
2πZ

exp

(
−M2

i

2τ

)
+

Mi

2
√
τ

[
1 + erf

(
Mi√
2τ

)]}
. (4.38)

The newly introduced functionfloss represents the particle loss due to the absorption of

particles in gyration at the wall. The detail offloss is discussed in the next section. We

defined, here, a normalized gyration velocityV̂⊥ =
√

2Bµ̄/mi/vti, a unit vectorN normal

to the wall and a normalized effective potential for ions

ψgyro = ψ +
τω2

pe

2µΩ2
i

(
V̂2
⊥

2
∇2
⊥ψ −

Z
τ
|∇⊥ψ|2

)
. (4.39)

The Poisson equation is the same as Eq. (4.14). These equations are similar to those of

the unmagnetized plasma (4.9) – (4.14) except three points, the effective potential for ion,

the ion density equation and the parallel flux coefficientN · b̂.

4.3.2 Particle loss at a wall

In the gyrokinetic theory, a particle is usually treated as a charged ‘ring’ driven by a force

due to the effective potentialψgyro representing the averaged potential over the ring. This

concept makes the rigorous treatment of finite size plasmas, especially bounded by walls,

difficult, because a wall may cut the ring and cause some inconsistency. If the ring is

assumed to keep its shape when it overlaps with the wall, the density will be overestimated

and the temperature will be also overestimated because faster particles tend to be lost

more rapidly even if the gyrocenters are at the same distance from the wall. If the ring is

assumed to be lost when some part of it touches the wall, the density and the temperature

will be underestimated.

The concept of ‘ring’ is based on the assumption that the gyrocenter distribution has

no gyrophase dependence, i.e.∂F/∂θ = 0. That is true in many cases without wall or

some other spatial discrete effect. In the sheath analyses, however, we need to consider
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an inhomogeneous gyrophase distribution near the wall. Therefore, we have introduced

the particle loss factorfloss into the ion distribution function.

F(X, θ, µ̄, v‖) = [1 − floss(X, θ, µ̄, v‖)]F̄(X, µ̄, v‖) (4.40)

The factorfloss represents simply whether a particle is lost or not. If the point (X, θ, µ̄, v‖)

is on the trajectory which has cross points with the wall in the past,floss takes the value

one. If the particle on the point experiences no collision with the wall in the past,floss is

zero.

In order to evaluatefloss, we examined three kinds of coordinate system, the stationary

frame, the guiding-center frame and the gyrocenter frame. We calculated a particle tra-

jectory numerically for the fieldsB = 1/4 x̂ +
√

15/16ẑ andE(x) = x/8 from the initial

point x0 = 0 andv0 = x̂. The results are shown in Fig.4.6. The three curves corre-

spond to the stationary frame (dashed curve), the guiding-center frame (dotted curve) and

the gyrocenter frame (solid curve). The original trajectory on the stationary frame is too

complex to determine whether the particle hits the wall. The second one is rather simple

because theE × B motion and the parallel motion is canceled. However, it still includes

the polarization drift which is caused by the change of the electric field due to the parallel

motion. The third one is almost completely circular motion because the gyrocenter used

in this work includes the polarization shift.

The calculation of the loss factorfloss is carried out on the frame of the gyrocenter.

Since the gyrocenter motion includes the parallel,E × B drift and polarization drift ve-

locities, the particle motion on this frame is just a simple gyration with a perpendicular

velocity v⊥ =
√

2Bµ̄/m. The wall approaches from the right hand side with a velocity

v‖ cosφ, whereϕ represents a angle between the magnetic field and the normal direction

to the wall. These motions are illustrated in Fig.4.7. The two figures show the projec-

tions of the particle orbits to thez-x andy-x planes. The wall is assumed to locate at

the distancel from the gyrocenter. Since we assume that a particle is absorbed once it

touches the wall, the loss factor can be obtained to see whether the distance∆(t) between

the particle and the wall has been negative in the pastt < 0;

∆(t) = l − v‖t cosϕ +
v⊥
Ω

sinϕ cos(θ + Ωt). (4.41)

We neglect the acceleration due to the electric field because the change of the parallel

velocity during the one cyclotron period 2π/Ω is small. Since the parallel velocity is

always positive, it is sufficient to examine only a gyro-period. The algorithm used in our

code is as follows. (i) if the distance∆(0) is negative,floss = 1. (ii) if ∆(t) is monotonically

decreasing function, i.e. the time derivative of∆(t) is non-positive,v‖ cosϕ ≥ v⊥ sinϕ, the

function∆(t) is always positive fort < 0, thereforefloss = 0. The time derivative of∆(t)
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is given byd∆/dt = −v‖ cosϕ − v⊥ sinϕ sin(θ + Ωt). (iii) if a negative extremal value

exists in−2π ≤ Ωt < 0, floss = 1. The extremal values are given by solving the equation

d∆/dt = 0. Two solutions always exist;



Ωt1 = −θ − sin−1

(
− v‖ cosϕ

v⊥ sinϕ

)
(mod−2π),

Ωt2 = −θ + sin−1

(
− v‖ cosϕ

v⊥ sinϕ

)
+ π (mod−2π),

(4.42)

where the notation (mod−2π) represents the selection of the solutions in−2π ≤ Ωt < 0.

(iv) if the condition (iii) does not hold true,floss = 0.
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4.3.3 Generalized Bohm criterion for a magnetized plasma

As the analytic model equation of a magnetized plasma has been obtained, now we can

formulate the corresponding criterion for the magnetized plasma. In the formulation of the

magnetized Bohm criterion here, we assume that the ion Larmor radius is much smaller

than the system length and also much smaller than the scale length of the density and the

potential in the presheath, i.e.v⊥/Ω � L andv⊥/Ω � Lφ. We note that the scale length

of the density and the potential is comparable in the presheath,Zni = ne ' n0(1 + eφ/Te).

Since the sheath edge, which is defined by the equality of the Bohm criterion, is far

from the wall, the ion loss factor is ignored, i.efloss = 0. For simplicity, we use the

so called long wave length approximation,ε ∼ (vt/Ω)/Lφ � 1, and expand terms up

to the second order, e.g.φ(x) ' φ(X) + (v⊥/Ω)â · ∇φ + (v⊥/Ω)2ââ : ∇∇φ/2 and〈φ〉 '
φ(X) + (v⊥/Ω)2∇2

⊥φ/4. After straightforward calculations, the ion density equation (4.36)

yields the familiar equation used in many gyrokinetic theories;

ni = n̄i +
Ti

2miΩ
2
i

∇2
⊥n̄i +

Ze

miΩ
2
i

∇⊥ · (n̄i∇⊥φ)

= n̄i +
b2

zTi

2miΩ
2
i

d2n̄i

dx2
+

b2
zZe

miΩ
2
i

d
dx

(
n̄i

dφ
dx

)

= n̄i +
b2

zZTi

2miΩ
2
i

d2n̄i

dφ2

(
dφ
dx

)2

− ρ

ε0

∂n̄i

∂φ

 +
b2

zZe

miΩ
2
i

dn̄i

dφ

(
dφ
dx

)2

− ρ

ε0
n̄i

 , (4.43)

where the charge density is denoted byρ and a gyro-particle density is introduced as

n̄i(X) ≡
∫

f̄i ‖(X, v‖) dv‖ and f̄i ‖ is a gyro-particle distribution function. The second and

third terms in Eq. (4.43) represent the finite Larmor radius and polarization effects, re-

spectively. The potential derivative of the ion density (4.43) can be calculated by using

the following relations.

d
dφ

d2n̄i

dx2
=

(
dφ
dx

)2 d3n̄i

dφ3
− 3

ρ

ε0

d2n̄i

dφ2
− 1
ε0

dρ
dφ

dn̄i

dφ
, (4.44)

d
dφ

d
dx

(
n̄i

dφ
dx

)
=

(
dφ
dx

)2 d2n̄i

dφ2
− 3

ρ

ε0

dn̄i

dφ
− n̄i

ε0

dρ
dφ
. (4.45)

Since we can assume thatρ ' 0 at the sheath edge, the ion density is estimated by taking

leading order terms as

dni

dφ
' dn̄e

dφ
− b2

zZen̄i

ε0miΩ
2
i

dρ
dφ

=
dn̄i

dφ
− b2

zZn̄iTe

λ2
Deen0miΩ

2
i

dρ
dφ
, (4.46)

where the definition of the Debye lengthλ2
De = ε0Te/nee2 is used. The derivative of the

gyrocenter ion density is calculated as

dn̄i

dφ
=

d
dφ

∫ ∞

0

∫ ∞

vmin i

f0i


√
v2
‖ +

2Ze
mi

φ +
µ̄

miΩi
∇2
⊥φ +

Z2e2

m2
i Ω

2
i

|∇⊥φ|2
 exp

(
−Bµ̄

Ti

)
dv‖dv⊥
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' Zen̄i

mi

〈
v−2
‖i

〉 (
1− b2

zTeTi

4λ2
Dee

2miΩ
2
i n0

dρ
dφ

)
, (4.47)

where the condition,ρ = 0 atx = 0, is used. The derivative of the electron density,

dne

dφ
=

n0e
Te
, (4.48)

is also obtained similarly. From Eqs. (4.46), (4.47), (4.48) and the definition of the charge

density,ρ = Zeni − ene, the potential derivative of the charge density is obtained as

dρ
dφ
'

(
Z2n̄iTe

n0mi

〈
v−2
‖i

〉
− 1

)
n0e2

Te
−

(
ZTi

4mi

〈
v−2
‖i

〉
+ 1

)
b2

zZTe

λ2
DemiΩ

2
i

dρ
dφ
. (4.49)

The relation between the ion particle densityni and the ion gyrocenter density ¯ni is calcu-

lated from the charge neutrality condition atx = 0, Zeni = ene = en0;

Zn̄i ' n0 −
b2

zZ
2e

miΩ
2
i

dn̄i

dφ

(
dφ
dx

)2

' n0

1 +
b2

zZ
2e2

miΩ
2
i

(
dφ
dx

)2 〈
v−2
‖i

〉 (
1− b2

zTeTi

4λ2
Dee

2miΩ
2
i n0

dρ
dφ

)
−1

, (4.50)

where Eq. (4.47) is substituted. Finally, we obtain the generalized Bohm criterion for a

magnetized plasma fromdρ/dφ ≤ 0 and Eqs. (4.49) and (4.50);

ZTe

mi

〈
v−2
‖i

〉
≤

1−
b2

zZe2

miΩ
2
i Te

(
dφ
dx

)2
−1

. (4.51)

This expression coincides with the generalized Bohm criterion for unmagnetized sheath

if the magnetic field is normal to the wall, i.e.bz = 0. When the electric field is negligible,

the present expression is reduced to (ZTe/mi)
〈
v−2
‖i

〉
≤ 1, which is the same form as that of

zero magnetic field except that the average is taken for the gyrocenter distribution function

and the velocity in the average integral is replaced with the parallel velocity. The presence

of the electric field makes the right hand side large and then the potential derivative of the

charge density becomes small. It means a earlier increase of the charge density and a

formation of the magnetic presheath in front of the Debye sheath.

4.4 Numerical solutions and PIC simulation results

In this section, we show the solutions of the model equation obtained in the preceding

sections. We have developed a numerical code to solve the model equations and also a

full-kinetic PIC simulation code to confirm the validity of our modeling. The results of
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Figure 4.8:Numerical solutions of the model equations (solid curves) and PIC simulation

results (dotted curves) for (a)Bx/B = 1/2 and (b)Bx/B = 1/32. The other plasma

parameters areµ = 1836,Z = 1, Me = 0, Mi = 2 andC = 0.1. Three curves in each figure

represent the potential, electric field and charge density. These quantities are normalized

and plotted as absolute values.

the magnetized case are presented and the dependence of the wall electric field on the

magnitude and the direction of the magnetic field are studied.

We use the parametersτ = Ti/Te = 1, µ = mi/me = 1836 andZ = 1 for an unmag-

netized plasma and solve Eqs. (4.9) – (4.13) to obtain the density profiles for the parallel

drifting velocitiesMe = v̄e/
√

Te/mi = 0 andMi = v̄i/
√

Te/mi = 2 and the ion cut-off ve-

locity C = vci
√

mi/Te = 0.1. The generalized Bohm criterion for a magnetized plasma is

satisfied, (ZTe/mi)
〈
v−2
‖i

〉
' 0.96, and the wall potential iseΦ/Te ' −2.13 and the effective

temperature ratio isT∗i /T
∗
e ' 0.97. The magnetic field is assumed to be strong enough

to satisfy the gyrokinetic ordering,v⊥/Ω . Lφ. Fig. 4.8 (a) and (b) represent the profiles

of the potential, electric field and charge density in the magnetic field characterized by

ρi =
√

Ti/mi/Ωi = λDe and Bx/B = 1/2 (a) andBx/B = 1/32 (b). The angles of the

magnetic field areϕ = 60◦ andϕ = 1.8◦, respectively. Three quantities shown in the

figures are normalized and plotted as absolute values. The sold and dotted curves corre-

spond to the solution of the model equations (4.35) – (4.38) and (4.14) and full-kinetic

PIC simulation results and they agree quite well each other.

Distinctive differences related to the magnetic field angle are observed on the electric

field and charge density profiles near the wall. They decrease when the magnetic field

becomes parallel to the wall. The electric field profiles obtained from the model equations

with Mi = 2 andρi = λDe are compared in Fig.4.9. The solid, dotted and dashed curves

correspond toBx/B = 1, 1/2 and 1/32, respectively. The decrease of the electric field
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Figure 4.9:Electric field profiles obtained from the model equations forBx/B = 1, 1/2

and 1/32. Plasma parameters areµ = 1836,Z = 1, ν = 1, Me = 0, Mi = 2 andρi = λDe.

occurs within about 2λDe from the wall. The length of the sheath layer increases a little

for small Bx/B. In order to see the dependence of the reduction of the electric field on

the magnetic field angle, we plot the electric field on the wall as a function ofBx/B in

Fig. 4.10for three cases,ρi/λDe = 0.5, 1, and 2. The solid and dotted curves correspond

to the results of the model equation and PIC simulation, respectively.

The relative standard deviations of the PIC simulation results are about 1%. Although

the numerical solutions of the model equations are slightly larger than those of the PIC

simulation in the case ofρi = 0.5λDe andλDe, the both results show good agreement and

give the same dependences onBx/B. In the case ofρi/λDe = 2, however, the solution of

the model equations gives smaller value than the PIC simulation result at 0.2 < Bx/B < 1.

From these results we conclude that our magnetized sheath model equation is valid for

the strong magnetic field,ρi/λDe . 1. The reason of the existence of the lower limit in the

magnetic field strength is the gyrokinetic ordering,v⊥/Ω . Lφ. Away from the wall, the

scale length of the potential profile increases proportional to the thermal Larmor radius

and is much larger than the Debye length, however in the vicinity of the wall, the potential

scale length is still dominated by the Debye length and violates the ordering.

In Fig. 4.10, we can observe that the wall electric field decreases almost linearly with

respect to 1− Bx/B for Bx/B > 0.5 and parabolically forBx/B < 0.5. This different

characteristics can be understood as follows. The steep decrease nearBx/B = 0 is cause

by the particle loss due to the absorption of particles in gyration which is introduced in this

work as the factorfloss. When the magnetic field is nearly parallel to the wall,Bx/B ' 0,

the normal velocity of a gyrocenter is considerably small and thus particles strikes the wall

mainly because of the perpendicular gyrating motion. The loss of ion due to the gyration
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Figure 4.10:Wall electric field as a function ofBx/B. The PIC simulation is performed

for ρi/λDe = 0.5, 1 and 2 and forBx/B = 1/4, 1/16 and 1/64.

causes the reduction of the charge density and consequently the wall electric field.

On the other hand, when the magnetic field crosses the wall at nearly right angle,

Bx/B ' 1, almost all the particle loss is caused by the parallel motion. The fact that the

process of the particle loss is same as the unmagnetized sheath implies the existence of

other cause of the reduction. A possible candidate for the reduction is the polarization

density due to the perpendicular electric field. An approximate form of the polarization

density is usually expressed as a divergence of the guiding-center density multiplied by

the polarization shift lengthZe∇⊥φ/miΩ
2
i ;

np = ∇⊥ ·
(
n

Ze∇⊥φ
miΩ

2
i

)
. (4.52)

We note that this polarization density term does not appears in the ion density equation

(4.36) because our definition of the gyrocenter includes the polarization shift and thus the

gyrocenter density includes the polarization density.

We solved three types of equation to identify the effects of the particle loss factor

and the polarization density on the wall electric field. The first equations are the original

ones, the second are modified to involve no polarization effect and the last are without the

loss factor, i.e.floss = 0. The three curves in Fig.4.11, solid, dotted and dashed curves,

correspond to the solutions of the three types of equations, respectively. The wall electric

field without the polarization does not change so much forBx/B > 0.5 and have the same

dependence forBx/B < 0.5 as the original solutions. On the other hand, the solutions

without the particle loss factor has same dependence forBx/B > 0.5 as the original ones
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Figure 4.11:Comparison of the wall electric field between the original solution (solid

curve), without the polarization effect (dotted curve) and without the particle loss factor

(dashed curve).

and becomes nearly constant forBx/B < 0.5. From these considerations, we can conclude

that the wall loss of the particle reduces the charge density and the electric field near the

wall for Bx/B < 0.5, and the polarization effect reduces them in all parameter region

0 < Bx/B < 1 but the amount of the reduction becomes constant asBx/B approaches

zero.

4.5 Conclusions

The kinetic equations for an electrostatic potential in a sheath layer were derived from the

collisionless Vlasov equation. We obtained two set of equations for the unmagnetized and

strongly magnetized plasma sheaths. In the derivation for the unmagnetized plasma, we

assumed that the plasma source which had the fixed velocity distribution at on end,x = 0,

and the absorbing wall at the other end,x = L. In the sheath layer, 0< x < L, no source

and no particle collision exist. Ions and electrons are generated at the source boundary

and also removed when they move across the boundary towardx < 0. We adopted the

shifted Maxwellian with a truncation for the ion source velocity distribution. The cut-off

velocity was determined to satisfy the generalized Bohm criterion at the source boundary.

In the presence of an uniform magnetic field, the gyrokinetic treatment of magnetized

electrons and ions was applied to the plasma sheath problem for the first time. In order to
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deal with a strong electric field, we adopted the gyrokinetic theory on a moving frame with

theE×B drift velocity [40]. We obtained a potential equations in the sheath layer from the

gyrokinetic collisionless Vlasov equation. They have similar forms to the unmagnetized

equations, but there are three different points. The first is theBx/B factors in the flux

equations (4.37) and (4.38), which represent the normal velocity component to the wall.

The second is the polarization effect in the energy conservation equation (4.33) and the

ion density equation (4.36). The last is the particle loss factorfloss, which determines the

loss rate of the particles due to the gyration near the wall.

The condition for the stable sheath formation in a magnetic field was derived from our

sheath model under the assumption ofv⊥/Ω � L. If the electric field at the sheath edge

is ignorable, the result (4.51) is quite similar to the generalized Bohm criterion without a

magnetic field [53] except that the gyrocenter distribution function is used instead of that

for actual particles and the parallel velocity should be used instead to the normal velocity

to the wall. When an electric field is presence, a term related to the polarization becomes

considerable in the criterion and implies the existence of the magnetic presheath.

From the comparison between the numerical solution of our model equation and the

results of the full-kinetic particle simulation for various values ofBx/B andρi/λDe, we

confirmed that the model provides accurate solutions for the strongly magnetized plasma,

i.e. ρi/λDe . 1. In a weaker magnetic field, the solution of the model equation gives

smaller electric field for 0.2 < Bx/B < 1, because the ion Larmor radius becomes larger

beyond the gyrokinetic ordering,v⊥/Ω . Lφ.

We also investigated the dependence of the wall electric field on the angle of the

magnetic field,Bx/B. It was found that the particle loss due to the gyration and the

polarization effect reduce the charge density and the electric field near the wall. The effect

of the particle loss is observed forBx/B < 0.5 and becomes larger asBx/B approaches to

0. On the other hand, the polarization effect always exists exceptBx/B ∼ 1. It increases

with the decrease ofBx/B, and is saturated forBx/B < 0.5. The magnitude of these effects

on the wall electric field are the same order in the case ofρi = λDe.

Our work is based on the assumption of strong magnetization,ρi . λDe. This assump-

tion is not always applicable to the edge plasma in fusion devices. Further investigation

for weakly magnetized plasmas,ρi & λDe or ρe ∼ λDe, is required. In order to overcome

the lower limit of the magnetic field strength in this model, we are preparing a more ex-

act gyrokinetic formulation without Taylor expansions ofφ which relies on the ordering

v⊥/Ω . Lφ. Also the effects of the particle collision and atomic processes need to be taken

into account, because they play a role of additional source and sink and alter the potential

profile.
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Chapter 5

Analysis of incident angle distribution

of ions in a magnetized sheath

5.1 Introduction

When a plasma is facing an electrically floating wall, negative charges accumulate on the

surface and a large positive electric field is created in a thin layer, namely a sheath. The

electrons are repelled by the electric field and the ions are accelerated toward the wall. If

a magnetic field is not present, the width of sheath layer is typically a few Debye length

and the wall potential is around twice of the electron temperature.

When a magnetic field is applied to the plasma, the property of the sheath layer

changes according to the magnitude and the direction of the field. When the magnetic

field is oblique to the wall, an additional ion flux due to the polarization drift creates a

quasineutral region in front of the sheath, namely magnetic presheath [56]. The width

of the magnetic presheath region is difficult to define exactly, but it was predicted by

the fluid study [56] and confirmed by the kinetic simulation [55] that the scale length

is proportional to the ion thermal Larmor radius. The influences of the magnetic field

are observed also on physical quantities near the wall. The electric field and the charge

density in the vicinity of the wall become smaller as the magnetic field decreases. These

reductions are significant when the ion thermal Larmor radius becomes longer than the

Debye length [55, 63]. Since the wall electric field is a key parameter for the release of

dust particles [45], understanding the physics in the sheath layer is an important issue

for fusion devices. The incident angle distribution of the particles to the wall is also es-

sential for obtaining the production rate of secondary electrons and the sputtering at the

surface [46,47,65].

In this work, We analyze the incident angle distribution to the wall in a magne-

tized plasma by using a gyrokinetic model equation based on Ref. [63] and a full-kinetic
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particle-in-cell (PIC) simulation [64]. The model equation is valid for strongly magne-

tized plasmas, i.e. the ion thermal Larmor radius is comparable or less than the Debye

length. We make a comparison between the numerical solution of the model equation

and the simulation results. The dependence of the incident angle distributions on the

magnitude and the direction of the magnetic field is studied.

This chapter is organized as follows. First, we briefly review the model equations to

describe the potential profile in the sheath layer and introduce the incident angle distribu-

tions to the wall in Sec.5.2. In Sec.5.3, the numerical solutions of the model equation

and the results of PIC simulations are compared with each other for a strongly magnetized

plasma. The dependence of the incident angle on the magnetic fields is studied by using

the PIC simulation. Finally, conclusions are given in Sec.5.4.

5.2 Kinetic modeling of a sheath layer

We assume an one-dimensional plasma which has a source boundary at one end and an

electrically floating wall at the other end. The source boundary provides new particles

to compensate the loss of particles at the wall. The effects of collisions and particle

generations in the sheath layer are neglected. The system length along thex direction

is denoted byL and a perfectly absorbing wall is placed atx = L. The potential and

density profiles are uniform alongy andz directions and monotonically decrease alongx

direction. The magnetic fieldB ≡ B(cosϕx̂ + sinϕẑ) is uniform and has noy component.

The angle of the magnetic field with the surface normal is denoted byϕ. A plasma source

consists of electrons and ions of one species filling the regionx < 0 and flows into the

region 0< x < L. The electrostatic potentialφ is measured from the value at the source

end,x = 0.

Since a sheath layer has a strong electric field, the usual magnetic moment,mv2
⊥/2B,

is not an invariant, but a generalized magnetic moment introduced by Littlejohn [17]

has been proved to be a new adiabatic invariant when the ion Larmor radius is com-

parable or smaller than the scale length of the potential. By using this invariance, the

dimension of the velocity space is virtually reduced to one (v‖) from three (v‖, v⊥ and

the gyrophaseθ). When the Larmor radius is much larger than the characteristic length,

however, the particle motion becomes quite complicated and the velocity space must be

treated as three dimensional. The analysis for the parameterρti/λDe � 1 requires the

complete integrals along the particle trajectory [57] or full-kinetic particle-in-cell (PIC)

simulation technics [55,56,58,60]. Here, the Debye length, the thermal ion Larmor radius

and the ion cyclotron frequency are denoted byλDe ≡
√

n0e2/ε0Te, ρti ≡
√

Ti/mi/Ωi and

Ωi = qiB/mi, respectively.

78



The model equations describing the potential profile in the sheath layer are derived

with three steps. The first is to define the gyrocenter coordinates and introduce the ‘gyro-

particle’ distribution. The motion of a charged particle is described as the superposition

of a simple gyration, drift motions and a parallel motion in the gyrocenter coordinate

system. The gyration is decomposed from the other components and represented by the

time evolution of the gyrophase. The second is to rewrite the energy conservation in terms

of the gyrocenter coordinate variables. The third is to express the particle density in terms

of the ‘gyro-particle’ distribution function and integrate the Poisson equation to obtain

the potential profile. The details of these procedures and the validity of the model are

discussed in [63].

The definitions of the gyrocenter coordinates (X,Θ, µ̄, v‖), gyrocenter position, gy-

rophase, modified magnetic moment and parallel velocity, are given as follows;

v ≡ D + v‖b̂(X) + V⊥ĉ(X), (5.1)

D ≡ b̂(X) × ∇φ(X)
B(X)

, (5.2)

x ≡ X +
mV⊥

ZeB(X)
â(X), (5.3)

µ̄ ≡ mV2
⊥

2B(X)
, (5.4)

where the ion charge is denoted byZe. The vectorD represents the velocity of the ref-

erence frame. The modified magnetic moment ¯µ is defined on the moving frame. The

three orthonormal vectorŝa, b̂ and ĉ are defined in terms of the base direction vectorû

as b̂ = B/B, ĉ(Θ) = û cosΘ − (b̂ × û) sinΘ and â = b̂ × ĉ. Since they direction can

be used for the base direction in the magnetic geometry used here, we useû ≡ ŷ in the

following discussions. A particle velocity is measured on the moving frame to cancel

the potential perturbation caused by the gyration of the particle. In the case of an uni-

form magnetic field, the energy conservation law is rewritten in terms of the gyrocenter

coordinate variables as

m
2
v2
‖ + Bµ̄ +

m
2B2
|∇⊥φ|2 + Zeφ +

µ̄

2Ω
∇2
⊥φ = const. (5.5)

The motion of the charged particle can be determined from this energy equation.

The parallel velocity distribution function at the source boundary,x = 0, is assumed

to be a shifted Maxwellian which is characterized by a thermal velocityvts and a parallel

drifting velocity v̄s; f0s(v‖, v⊥) = (n0/
√

(2π)3v3
ts) exp(−(v‖ − v̄s)2/2v2

ts − v2
⊥/2v

2
ts). Since the

plasma can be described by the one dimensional collisionless Vlasov equationd fs/dt = 0,
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the distribution functionfs is written in terms of the source distribution functionf0s as

fs = f0s



√
v2
‖ +

2Ze
m

(
φ +

1
2BΩ

|∇⊥φ|2 +
µ̄

2Ω
∇2
⊥φ

)
, v⊥(µ̄)

 , (5.6)

where the gyrokinetic energy conservation law (5.5) is used. The distribution functionf

is a function ofX, µ̄ andv‖. In order to simplify the formula, we introduce dimensionless

parametersµ ≡ mi/me, τ ≡ Ti/Te, ψ ≡ −eφ/Te, Me ≡ v̄e
√

mi/Te =
√
µv̄e/vte andMi ≡

v̄i
√

mi/Te =
√
τv̄i/vti, whereMe and Mi represent the ratios of the drifting velocities

v̄s to the cold-ion sound velocity
√

Te/mi. We note that the normalized potentialψ has

opposite sign toφ, thus 0≤ ψ ≤ Ψ ≡ −eΦ/Te. By using these parameters and the source

distribution functionf0s, the densities are obtained as

ne

n0
=

∫ ∞

−
√

2(Ψ−ψ)
dv̂‖

νe√
2π

exp

−1
2

(√
v̂2
‖ + 2ψ − Me√

µ

)2 , (5.7)

ni

n0
=

∫ ∞

0
dV̂⊥ V̂⊥

∫ 2π

0
dθ

∫ ∞
√

2Ziψg

dv̄‖
νi fΘ

(2πτ)3/2
exp

[
− 1

2τ

(√
v̂2
‖ − 2Ziψg − Mi

)2

− V̂2
⊥

2τ

]
,

(5.8)

where the normalized coefficients are denoted byνe and νi. The gyrophase measured

on the stationary frameθ and that on the moving frameΘ are related with the equation

v⊥ĉ(θ) = D+V⊥ĉ(Θ). This relation can be rewritten asv⊥ cosθ = −(dφ/dx) sinϕ+V⊥ cosΘ

by usingD = −(dφ/dx) sinϕŷ andû = ŷ.

The wall potentialΨ is determined from the flux balance between electrons and ions.

The gyrokinetic modified potentialψg is given by

ψg = ψ +
ρ2

ti

2λ2
De

(
V̂2
⊥

2
∇2
⊥ψ −

Z
τ
|∇⊥ψ|2

)
. (5.9)

The particle loss factorfΘ representsΘ-dependent component of the distribution function

and takes the value either zero or one. The physical meaning if the factor is intuitively

represented in Fig.5.1. This factor is determined by whether the particle has crossed the

boundaryx = L in the past or not. If the particle crossed the boundary at some time in the

past, the particle has been lost and thusfΘ = 0. The trajectory denoted by the dashed curve

in the figure might be possible without the wall, but here it cannot be realized because the

particle is absorbed before reaching there. We use the same algorithm for this calculation

as in Ref. [63]. TheΘ-dependent component of the electron and small terms such as

ρte/λDe� 1 are neglected.

In order to obtain the incident angle distribution of ions, we calculate the angle from

the velocity space coordinates (θ, v⊥, v‖) and the distribution function obtained above. The
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factor fΘ. The particle can not have the

orbit denoted by the dashed curve.
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Figure 5.2:Definition of the incident an-

gle θi. It is measured from the normal di-

rection to the wall.

incident angle denoted byθi is defined by the angle between the velocity and the normal

direction of the wall as in Fig.5.2. Since the velocity can be rewritten into three compo-

nents asv = v‖b̂+v⊥ĉ(θ) =
(
v‖ cosϕ + v⊥ sinθ sinϕ

)
x̂+v⊥ cosθŷ+

(
v‖ sinϕ − v⊥ sinθ cosϕ

)
ẑ,

the incident angle is obtained as cosθi = v · x̂/|v| = (v‖ cosϕ + v⊥ sinθ sinϕ) /
√
v2
‖ + v2

⊥.

A flux for a certainθi and energy can be calculated by integrating the velocity distribution

function for the fixedθi and energy.

5.3 Results and discussion

We employ two numerical codes to obtain the potential profiles in the sheath layer and the

incident angle distributions for the same plasma parameters. One is a numerical solver of

the model equation given in Sec.5.2, and the other is a PIC simulation code. The former

integrates the Poisson equation,∇2ψ/λ2
De = Zni/n0 − ne/n0, with Eqs. (5.7) and (5.8) from

x = 0 towardx = L by Runge-Kutta method of the second order. The spatial step size used

here isλDe/16. This integral requires the boundary valuedφ/dx|x=0 = −E0 < 0 and the

system lengthL. Although the parameterL is given beforehand, the source electric field

E0 must be calculated so that the solution of the potential satisfies other constraints such

as the system length and the flux balance at the wall. We employ the shooting method to

figure out the boundary valueE0.

The latter is a full-kinetic particle code which calculates the trajectories of electrons
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and ions from the Newton’s equation of motion;

ms
d2x
dt2

= qs
dx
dt
× B − qs∇φ. (5.10)

The time integral is implemented with the Runge-Kutta method of the fourth order and

the time step is determined as 2π/|Ωe|∆t = 20 to 40 so that the energy of the plasma is

conserved. The magnetic field is assumed to beB = B(cosϕx̂+sinϕẑ) and the electrostatic

potentialφ is determined by the Poisson equation,∇2φ = −(Zeni − ene)/ε0. The Poisson

equation is solved by using the finite difference method with the boundary conditions

φ(0) = 0,
dφ
dx

∣∣∣∣∣
x=L

= −EL. (5.11)

The wall electric fieldEL is determined by the Gauss’ theorem. The spatial step size is

λDe/8. The number of particles is about a thousand per Debye length, or a hundred per

grid. We use the parametersτ = Ti/Te = 1, µ = mi/me = 1836,Z = 1, Me = 0 and

Mi = 2. In order to realize the generalized Bohm criterion [53, 63], a velocity cut-off is

introduced in the ion velocity distribution function. The distribution function forMi = 0,

1 and 2 are shown in Fig.5.3. The velocity at the cut-off is determined asv/vti = 0.61,

0.41 and 0.11 for Mi = 0, 1 and 2, respectively. The corresponding potential profiles are

also shown in Fig.5.4. Since the ion flux depend on the distribution function, a largerMi

causes a smaller wall potential because of the increase of the ion flux.

We made comparisons of the potential, electric field and charge density profiles be-

tween the two codes forvti/ΩiλDe = 1 and confirmed that they quantitatively agreed with

each other within the relative error of 1%. The differences between the solution of the
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Figure 5.5:Energy flux distribution forMi = 0, 1 and 2 as a function of the incident angle.

The distribution functions given in Fig.5.3are employed.

model equation and the PIC simulation results tend to grow for large thermal Larmor

radii. Whenvti/ΩiλDe ≥ 2, the relative error exceeds 10%. Therefore, we have to employ

the PIC simulation for the case of a weak magnetic field or a dense plasma. The model

equation, however, still has benefits compared to the PIC simulation. First, analytic model

is suitable to extract fundamental informations such as a stability of the sheath layer and

effects of the polarization drift [63]. Second, there is practically no numerical noise in the

solution of the model equation, while the statistical process in the PIC simulation causes

the noise. The plasma oscillation with a long wave length is also difficult to eliminate

in the PIC simulation because of the small dumping rate. The PIC simulation results

presented here are time-averaged to reduce the noise and the plasma oscillation.

Before discussing the results for the magnetized plasma, we presents the those of the

unmagnetized plasma. The normalized energy flux distribution is shown in Fig.5.5. The

solid, dashed and dotted curves correspond to the parameterMi = 0, 1 and 2. The each

velocity distribution function and potential profile used here are same as in Fig.5.3 and

Fig. 5.4. A shift of the incident angle which yields the maximum energy flux is observed.

This tendency is caused by the difference of the normal velocity component for each

cases. A large parallel drifting velocity, i.e.Mi = 2, causes a large normal velocity and

then the incident angle becomes small.

We make a comparison of the incident angle distribution forBx/B = 0 andMi = 2

with the approximate form of the angular distribution function obtained by Gottscho [47];

f (θi) ' 2βθi exp
(
−βθ2

i

)
, (5.12)

where the parameterβ is given byβ = mv2
‖/2T⊥ for θi and the angleθi is measured

in radian. The quantityv2
‖ is the average of the square parallel velocity at the wall and
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Figure 5.6:Comparisons of the energy flux distributions. The solid, dashed and dotted

curves correspond to our model, best fitting function and Gottscho’s model.

T⊥ is the perpendicular temperature at the wall. The actualv2
‖ andT⊥ obtained from the

numerical solution yieldsβ = 5.2. The energy flux distributions at the wall surface,x = L,

calculated from our model equations and from Gottscho’s model are shown in Fig.5.6.

The flux is normalized by the total flux and defined as

Q(θi) =

∫
mv2

2
δ
(
vx

v
− cosθi

)
d3v

/ ∫
mv2

2
d3v. (5.13)

The flux is normalized so that the total energy flux is unity. We found the parameterβ

providing the best fitting curve asβ = 5.7, which is also shown in Fig.5.6 as a dotted

curve. The mean square root of the residual is about 1%. Thus, we have confirmed that

the Gottscho model practically gives an accurate distribution function for the plasma with

a normal magnetic field to the wall.

We show the energy flux distribution for a magnetized plasma in Fig.5.7as a function

of the incident angleθi for vti/Ωi = λDe andBx/B = 1, 3/4, 1/4 and 1/16. Each magnetic

field direction corresponds to theθi = 0◦, 41.4◦, 75.5◦ and 86.4◦. The solid and dashed

curves represent the solutions of the model equation and the results of the PIC simulation,

respectively. The solid and dashed curves agree well in the whole range ofBx/B and

especially good forBx/B = 1 which is equivalent to that of an unmagnetized case. The

contour plots of the particle flux are also presented in Fig.5.8for four cases; (a)Bx/B = 1,

(b) Bx/B = 4/3, (c) Bx/B = 1/4 and (d)Bx/B = 1/16. The incident angle for the

intermediate magnetic angles,Bx/B ∼ 0.75, has a broad profile, and the tails reaches the

both ends,θi = 0◦ and 90◦. The profile forBx/B ∼ 0 are sharply peaked at large incident

angle, which means that most particles hit the surface with strongly slanted angles. This

tendency is understood as follows. If the magnetic field is nearly parallel to the surface,
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the average normal velocity, or normal velocity of the gyrocenter, is much lower than

the perpendicular velocity of the gyration. Since a particle is absorbed instantly after a

collision with the surface, the circular orbit is scraped off from the edge by the wall. The

velocity of the particles in the vicinity of the wall, therefore, have large incident angles.

In order to see the dependence of the incident angles on parameters associated with

the magnetic field, we plot the average incident angle as a function of the magnetic field

angleϕ in Fig. 5.9. The average angles are calculated from the PIC simulation results

and weighted by the energy flux. The five curves correspond to the thermal Larmor radii

vti/ΩiλDe = 1, 2, 4, 8 and 16, respectively. We use the system lengthL/λDe = 32, 64

and 128 forvti/ΩiλDe = 1 and 2,vti/ΩiλDe = 4 and 8, andvti/ΩiλDe = 16, respectively.

When the magnetic field is perpendicular to the wall,Bx/B = 1, the perpendicular motion

of particles are completely decoupled from the parallel motion and the average incident

angles for differentvti/ΩiλDe coincide to be that of an unmagnetized case. Whenϕ ∼ 90◦,

θi asymptotically approaches to 90◦. This behavior is understood as follows. In this case,

the normal velocity of particles to the wall is much smaller than the perpendicular velocity.

Since particles are immediately absorbed when they hit the wall, almost all the particles

remaining in the vicinity of the wall have large incident angles.

A clear dependence of incident angle on the thermal Larmor radii is observed in the

range of 30◦ . ϕ . 85◦. The reduction of the incident angles is observed for the weaker

magnetic field and especially significant aroundϕ = 70◦. The magnitude of the reduc-

tion is logarithmic to the parametervti/ΩiλDe in 1 ≤ vti/ΩiλDe ≤ 16. One of the rea-

sons is the increase of the normal velocity due to the polarization drift (dE⊥/dt)/BΩ =

−(v‖/2BΩ)∂2φ/∂x2 sin 2ϕ x̂. When the Larmor radius is large compared with the Debye
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length, the polarization drift makes the incident angle small. Similar comparisons have

been made by DeWaldet al. [67]. Although they do not specify the absolute value of the

ratio vti/ΩiλDe, the dependence of the average angle on the magnetic angleϕ and the ratio

vti/ΩiλDe in their paper agree with our results qualitatively.

When the magnetic field becomes normal to the wall, the average incident angle ap-

proaches a common valueθi ' 21◦. This behavior of the incident angle is consistent with

the fact that the parallel and perpendicular motion of particles are completely decoupled

if the magnetic field becomes parallel to the normal direction to the wall. Since the per-

pendicular velocity space is uniform in such case, the plasma becomes equivalent to the

unmagnetized one. On the other hand, when the magnetic field becomes perpendicular to

the wall, the average incident angle approaches another common valueθi ' 90◦. If the

magnetic field is nearly parallel to the wall, the averaged normal velocity of a particle, i.e.

v‖bx, becomes extremely slow and thus the velocity becomes parallel for all the particles

hitting the surface.

5.4 Conclusions

The distribution of incident angle when an ion hits the wall in the magnetized plasma was

studied by using the model equation and the particle-in-cell (PIC) simulation. The model

equation was derived from the gyrokinetic energy conservation law on the moving frame

with theE × B drift velocity. The potential profiles and the angular distribution obtained

from the model equation and the PIC simulation agreed well with each other in the case

of a relatively strong magnetic field,vti/ΩiλDe . 1. The energy flux distribution for the

incident angles becomes broad for intermediate range ofBx/B. On the other hand in the

case of magnetic field parallel to the wall, the distribution becomes narrow and has a

peak near the region where the perpendicular component of the particle velocity becomes

larger than the parallel one.

The average incident angle for variousvti/ΩiλDe was studied by using the PIC sim-

ulation. When the magnetic field becomes normal or parallel to the wall, the incident

angle approaches the common valueθi = 21◦ or 90◦, respectively. The former value

corresponds to the unmagnetized one. The dependence on the magnetic field strength is

mainly observed when the angle of the magnetic field is in the range 30◦ . ϕ . 85◦. The

incident angle decreases as the magnetic field becomes weak.

The range of the parametervti/ΩiλDe used in this work does not cover the whole range

at the divertor plate in fusion devices. When the magnetic field is weaker so that the

thermal electron Larmor radius is comparable or larger than the Debye length, it works as

a characteristic length in the potential profile. The incident angle distribution for electron
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is also expected to change according to the ratiovte/|Ωe|λDe. The analysis of the incident

angle distribution for a wider range of magnetic field strength is a remaining issue. The

influence of particle collisions and sources must be evaluated in further studies for more

realistic plasmas.
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Chapter 6

Conclusions

In the first half of this thesis, the gyrokinetic equations for electromagnetic perturbations

were derived by using the modern analytical dynamics and the refined gyrokinetic equa-

tions applicable for the plasma with large equilibrium electric fields were also formulated.

It was confirmed that the particle dynamics can be more correctly treated for large electric

fields. In the latter half, the application of the gyrokinetic equation for the modeling of the

sheath plasma in magnetic fields was studied and the dependences of the electric field and

incident angle of ions were investigated. The validity of the present model was confirmed

by the comparisons with the full-kinetic PIC simulation.

Gyrokinetic equations with the strong electric field

A new comprehensive derivation of the nonlinear gyrokinetic equations is presented in

Chap. 2 and its refinement for the strong electric field is presented in Chap. 3.

The objective of Chap. 2 is to obtain the general expressions of the gyrokinetic equa-

tions as a preliminary for the succeeding chapters. Employing the 1-form representation

of a single particle dynamics and Lie transformation technique, we carried out the stan-

dard procedure developed by Littlejohn, Brizard, Qinet al. and commonly used in the

gyrokinetic analyses. Although there is no significant difference in the essences of their

calculations and also ours, they use different ways to represent the gyrocenter coordinate

system and the 1-form on it as is described in Sec.2.2.

We chose a simple and explicit way to obtain the guiding-center 1-form. The guiding-

center coordinate is introduced as a usual coordinate transformation used by Littlejohn

and Qin instead of a sophisticated but complicated way with the Lie transformation

adopted by Brizard. Although our, or Qin’s, scheme does not provide the ‘best’ guiding-

center coordinate system, the equations of motion obtained through the Lie transformation

employed later are identical with those of Brizard. In order to exclude the arbitrariness
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in the definition of the gyrophase, we employed the gyrogauge transformation introduced

by Littlejohn. It redefines the base direction by which the gyrophase angle is measured

and makes it possible to suppress the physically meaningless terms caused by the arbi-

trariness.

After the above preliminary transformation, we employed the successive Lie transfor-

mations to isolate and decouple the gyrophase dependences in the guiding-center 1-form

order by order in Sec.2.3. While the new coordinate system, or gyrocenter coordinate sys-

tem, allows a gyrophase dependent perturbation, the equations of motion derived from the

gyrocenter 1-form evolves independently of the gyrophase. We obtained a general form

of the gyrokinetic 1-form determined by the gauge function and the Lie generator given

by ordinary differential equations. Using the Lie generator, we obtained the pullback of

the distribution function, i.e. the gyrocenter distribution function expressed by the original

particle coordinate variables. The general expression of the charge and current densities

to be used in Maxwell’s equations were obtained by the pullback technique developed by

Brizard and Qin and thus a closed set of the gyrokinetic equations was formulated. In

addition to the general expressions of the closed equations, we calculated limiting forms

based on the assumptions usually used in the analysis of the micro-instabilities, i.e. the

time-scale of the plasma is much more longer than the particle gyration and the dominant

motions of the particle are only the parallel and gyrating motions. Finally, we recovered

a closed set of the gyrokinetic equations essentially same as those in the previous works

by Lee, Dubin, Hahm, Brizard, Qinet al..

In Chap. 3, we have refined gyrokinetic equations applicable to edge plasmas with

large flow shears by adopting a modified guiding-center coordinate system as a starting

point of the derivation. An attempt to improve the gyrokinetic equation for a strong

electric field was originally carried out by Littlejohn and generalized to the plasma with

potential perturbations by Brizard, Hahm, Qinet al. We adopted the same technique

as in their works, i.e. a reference frame moving with an equilibrium drift velocityD is

introduced in the guiding-center coordinate system. Their choice of the reference velocity

D is that of a simpleE × B drift for the equilibrium electric field, i.e.E0(X) × B0/B2
0,

measured at the guiding-center positionX. Their choice is simple and perfect for the one

dimensional potential profile, while it gives less accurate solution for general potential

profiles.

Through the investigation of the effects of the reference velocityD on the zeroth order

equations of motion, we obtained a new definition of the velocity in Sec.3.3as a ordinary

differential equation. The solution of the determining equation ofD was investigated in

Sec.3.4 and a analytical expression of the solution for an special potential profile and a

numerical solution for the general profiles were obtained. Through the standard procedure
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of derivation of the gyrokinetic equations, the general form of the gyrokinetic 1-form,

gauge function and the Lie generators were obtained in Sec.3.5. Limiting forms for the

electrostatic plasma were also obtained.

The validation of the present equations was confirmed numerically in Sec.3.6. The

time-evolution of the particle energy calculated form the solution of the gyrokinetic equa-

tions was compared with that directly calculated from the full-kinetic equations, i.e. the

usual Newton’s equations of motion. From the comparisons of the energy for various val-

ues of the electric field, magnetic field, initial velocity and initial position, we confirmed

that the refined equations derived here yield more accurate solutions than the previous

equations for Qin’s simple reference velocity, especially when the the electric field is

strong and the curvature of the potential contours is large. The effect of the refinement

becomes notable when theE×B drift speed becomes comparable to the thermal velocity.

Kinetic modeling of the sheath layer

The objectives of Chap. 4 and 5 are to understand the physics of the sheath plasma espe-

cially the effects of the magnetic fields on the potential profile and particle’s incident angle

to the wall. To this end, the kinetic equations for an electrostatic potential in a sheath layer

were derived from the collisionless Vlasov equation in Chap. 4. In the derivation, we as-

sumed that the plasma source which has the fixed velocity distribution at one end,x = 0,

and the absorbing wall at the other end,x = L. In the sheath layer, 0< x < L, no source

and no particle collision exist. The fundamental equations were obtained in Sec.4.2.1

and the stability condition of the sheath formation was also obtained in Sec.4.2.2. We

recovered the generalized Bohm criterion derived by Harrison and Thompson. In addition

to that, we obtained a small correction term caused by the presence of the cut-off velocity

of electrons.

In the presence of an uniform magnetic field, the gyrokinetic treatment of magnetized

electrons and ions was applied to the plasma sheath problem for the first time. In order

to describe with the strong electric field in the sheath layer, we adopted the gyrokinetic

theory on a reference frame moving with theE × B drift velocity, which was derived

in Chap. 4. We obtained potential equations in the sheath layer from the gyrokinetic

collisionless Vlasov equation. They are similar to the unmagnetized ones, but they include

correction terms caused by the finite Larmor effects, the differences between the parallel

and perpendicular motions and the particle dynamics near the wall.

The condition for the stable sheath formation in a magnetic field was also derived

under the assumption thatv⊥/Ω � L in Sec.4.3.3. The result is quite similar to the

generalized Bohm criterion without a magnetic field except that the the parallel velocity
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should be used in the condition.

In Sec.4.4, numerical comparisons of the solution obtained from the present model

and the results of the full-kinetic particle-in-cell simulation. Here, we adopted a shifted

Maxwellian with a truncation for the ion source velocity distribution. The cut-off velocity

was determined to satisfy the generalized Bohm criterion at the source boundary. From

the comparison of the profiles for various values ofBx/Bandρi/λDe, we confirmed that the

present model provides accurate solutions for a strongly magnetized plasma, i.e.ρi/λDe .

1. The dependence of the wall electric field on the angle of the magnetic field,Bx/B,

was also investigated. It was found that the particle loss due to the gyration and the

polarization effect reduce the charge density and the electric field near the wall. The effect

of the particle loss is observed forBx/B < 0.5 and becomes larger asBx/B approaches to

0. On the other hand, the polarization effect always exists exceptBx/B ∼ 1.

In Chap. 5, distribution of the incident angle of ions when they hit the wall in a mag-

netized plasma was investigated by using the model equation obtained in Chap. 4 and a

full-kinetic PIC simulation. The potential profiles and the angular distribution obtained

from the model equation and the PIC simulation agreed well with each other in the case of

a relatively strong magnetic field,vti/ΩiλDe . 1. The energy flux distribution with respect

to an incident angle becomes broad for intermediate range ofBx/B. On the other hand

in the case of magnetic field nearly parallel to the wall, the distribution becomes narrow

and has a peak near the region where the perpendicular component of the particle velocity

becomes larger than the parallel one. The average incident angle for variousvti/ΩiλDe

was studied by using the PIC simulation. In the case of the magnetic field normal to the

wall the incident angle approaches the unmagnetized one. On the other hand, in the case

of nearly parallel magnetic field, the incident direction approaches parallel to the wall.

The dependence on the magnetic field strength is mainly observed when the angle of the

magnetic field is in a moderate range. The incident angle decreases as the magnetic field

becomes weak.

Future works

The most important issue with regard to the gyrokinetic studies in Chap. 2 and 3 is the

rigorous derivation of conserved quantities for the plasma. From the analytic investiga-

tion and the numerical verifications in Chap. 3, the improvement of the accuracy for the

plasma with largeE×B flow shears has been confirmed. The present formulation is, how-

ever, based on the single particle 1-form and thus the conserved quantity such as energy

and momentum of the many-body system, or plasma, is not obtained here. The existence

and the knowledge of the explicit invariant is essential not only for the theoretical com-
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pleteness but for the numerical simulation as a tool of validation. The application to the

simulation study has been a strong motivation for the development of the gyrokinetic the-

ories and the demand for the global simulation including the edge plasma will become

higher. In order to realize efficient and reliable simulation codes, the theoretical assur-

ance of the energy conservation and the determination of its explicit expression may be

the most important topic of further study in this field.

Another issue attracting an attention lately is a more rigorous calculation scheme for

higher frequency waves. In this thesis, the time-scale of the perturbation potentials is

assumed to be much longer than that of the gyration. The determining equation of the

gauge function is approximated by using∂S/∂t ∼ 0. Although this reduction yields

efficient and sufficiently accurate equations for the low frequency drift waves, it fails in

the high frequency range such as ion cyclotron wave. The analytical basis is given by

Brizard and Qin and an implementation for a simulation code is also given by Kolesnikov

et al. [23]. A full-kinetic simulation may be suitable for the ion cyclotron wave in heating

processes, but investigation of the such numerical scheme will increase the accuracy even

in the case of low frequency wave.

The remaining issue with regard to the sheath modeling in Chap. 4 and 5 is the treat-

ment of a weakly magnetized plasma characterized by the gyroradius longer than the

Debye length. The present model equation does not yield accurate solutions in such con-

ditions. One reason is in the incomplete implementation of the pullback expression in

the Poisson equation, i.e. the contributions from the Lie generator are ignored here. The

use of more rigorous density equation will reduce the limitation on the magnetic field

strength, or smallness of the Debye length. It is expected that the generalization of the

model for small Debye length reveals the quantitative property of the magnetic presheath.

Another important element in the study of plasma-wall interactions is the collisional-

ity. Although it is ignored here, it should be included when one considers more realistic

plasma. With regard to the collisionality and the small Debye length, the investigation

of the presheath layer including sources and collisions will be challenging but important

application of the sheath modeling.
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Appendix A

Modern analytical mechanics

We present a review of the fundamentals of the differential geometry and modern analyt-

ical mechanics [68] which is necessary for the derivation of the gyrokinetic equations.

A.1 Fundamental bases of the differential geometry

A.1.1 Vector field

A function on a differentiable manifoldM is defined by a map

f :M −→ R : P ∈ M 7−→ f (P) ∈ R. (A.1)

A curve on a manifoldM is similarly defined by a map

c : R −→M : t ∈ R 7−→ Q = c(t) ∈ M. (A.2)

An intuitive representation is given in Fig.A.1. From these maps, the directional deriva-

tive operatorvQ at the pointQ is introduced as

vQ[ f ] ≡ d f(c(t))
dt

. (A.3)

It operates to an arbitrary functionf and is written in a local coordinateqi as

vQ =
dqi

dt
∂

∂qi
. (A.4)

This differential operator satisfies the following relations;

vQ[a f + bg] = avQ[ f ] + bvQ[g], (A.5)

vQ[ fg] = vQ[ f ]g(Q) + f (Q)uaQ[g]. (A.6)
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Figure A.1:Function and curve.

A set of these differential operators, therefore, makes a vector space, which is called a

tangent space at the pointQ on a manifoldM and denoted by (TM)Q. The element of

this space,vQ ∈ (TM)Q, is called a tangent vector at the pointQ ∈ M. The differential

operators,∂i ≡ ∂/∂qi, are the natural bases in the tangent space for the local coordinate

systemqi. The union of the tangent space at each point onM,

TM =
⋃

Q∈M
(TM)Q, (A.7)

is the tangent bundle. A vector field is defined as a map from the manifold to the tangent

bundle,

v :M 7−→ TM : Q ∈ M 7−→ vQ ∈ (TM)Q. (A.8)

A trajectory of a point on the manifold carried by the vector fieldv is called an integral

curve. It is given as the solution curve,c(t) : R →M, of the differential equation

dc
dt

(t) = vc(t). (A.9)

It is also expressed in the local coordinate system as ˙ci = vi(c). A map advancing a point

onM form the initial positionQ0 along the vector field byt is expressed as

ϕt :M −→M : Q0 7−→ Qt = ϕt(Q0). (A.10)

The union of the map for eacht, {ϕt | t ∈ R} is called a flow. Since it satisfies the following

relations

ϕ0 = id (identity map), (A.11)

ϕt+s = ϕt ◦ ϕs, (A.12)

ϕ−t = (ϕt)
−1, (A.13)

the vector fieldv makes 1-parameter transformation group and the mapϕt is an element

in the group.
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A.1.2 One-form

The dual space of the tangential space, (T M)Q, is called a cotangent space and written as

(T∗M)Q. As described above, a tangent vectorvQ operates to a functionf asvQ[ f ] = vi
Q∂i f

in a local coordinate systemqi. This relation can be interpreted as the mapping from a

tangent vector to a real number;

(d f)Q : (TM)Q −→ R : vQ 7−→ (d f)Q[vQ] = vQ[ f ] ∈ R. (A.14)

A set of these maps, makes a vector space, which is called a cotangent space at the point

Q on a manifoldM and denoted by (T∗M)Q. If we use the natural bases for a local

coordinate system,∂i, the dual bases of the cotangent space aredqi;

(dqi)[∂ j] = (∂ j)[q
i] =

∂qi

∂qj
= δi

j (A.15)

An element in the tangent space,vQ = vi
Q∂i, and an element in the cotangent space,

γQ = γQidqi satisfy the relation

γQ[vQ] = γQiv
j
Q(dqi)[∂ j] = γQiv

i
Q. (A.16)

The union of the cotangent space at each point onM,

T∗M =
⋃

Q∈M
(T∗M)Q, (A.17)

is the cotangent bundle. A 1-form is defined as a map from the manifold to the cotangent

bundle,

γ :M 7−→ T∗M : Q ∈ M 7−→ vQ ∈ (T∗M)Q. (A.18)

A map from a manifold to a real number

ivγ :M −→ R : Q ∈ M 7−→ γQ[vQ] = γQiv
i
Q ∈ R

is called an interior product.

The 1-form corresponds to the total differential of a scalar function. In general, the

p+1-form is derived from the p-form by the exterior derivative. The exterior derivative of

the 0-form, i.e. scalar function, gives the 1-form;

d f =
∂ f
∂qi

dqi . (A.19)

The exterior derivative of the 1-form gives the 2-form;

dγ = dγi ∧ dqi =
∂γi

∂qj
dqj ∧ dqi , dqi ∧ dqj = −dqj ∧ dqi (A.20)
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Figure A.2:Function and its pull back.

The interior product of a 2-formω and a vector fieldv is given by

ivω = iv(ωi j dqi ∧ dqj) = viωi j dqj − v jωi j dqi = v j(ω ji − ωi j )dqi . (A.21)

The exterior derivative in the three dimensional real space (x, y, z) gives the familiar

vector equations,

d f = ∇ f · dr , dr = (dx,dy,dz), (A.22)

d(A · dr ) = ∇ × A · dS, dS = (dy ∧ dz,dz∧ dx,dx∧ dy), (A.23)

d(B · dS) = ∇ · B dV, dV = dx∧ dy ∧ dz. (A.24)

The identity equationd(d fn) = 0 gives the vector identities,∇×(∇ f ) = 0 and∇·(∇×A) =

0.

A.1.3 Pull back

Suppose there are two manifolds,M andN and a map

ϕ : M −→ N : Q ∈ M 7−→ P ∈ N. (A.25)

The composed functionf ◦ ϕ for an arbitrary functionf : N 7→ R can be regarded as a

function on the manifoldM and written asϕ∗ f ;

(ϕ∗ f ) (Q) = f ◦ ϕ(Q) = f (ϕ(Q)) = f (P) (A.26)

This new function is called a pull back. The pull back for the 1-form is given by

ϕ∗t
(
γi(q)dqi

)
= γi(ϕtq)d

(
ϕi

tq
)

= γi(ϕtq)
∂ϕi

t

∂qj
dqj . (A.27)

An intuitive representation is given in Fig.A.2.
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A.1.4 Lie derivative

The Lie derivative generated by a vector fieldv is formally written as

Lv = lim
t→0

ϕ∗t − id
t

, (A.28)

where the mapsϕ∗ and id are the pull back of the flow generated by the vectorv and the

identity map, respectively. The Lie derivative of a function, or 0-form, is given by

Lv f = lim
t→0

ϕ∗t f (q) − f (q)
t

= lim
t→0

f (ϕtq) − f (q)
t

= lim
t→0

f (q) +
(
vi∂i f (q)

)
t − f (q)

t

= vi ∂ f
∂qi

. (A.29)

The Lie derivative of a 1-form is given by

Lvγ = lim
t→0

γi(ϕtq)∂ jϕ
i
tdqj − γ

t

= γi
∂vi

∂qj
dqj + v j ∂γi

∂qj
dqi

=

(
γ j
∂v j

∂qi
+ v j ∂γi

∂qj

)
dqi . (A.30)

These relations can be rewritten without using the local coordinate system as

iv(d f) = Lv f , (A.31)

iv(dγ) + d(ivγ) = iv
(
dγi ∧ dqi

)
+ d

(
viγi

)

=
∂γi

∂qj

(
v jdqi − vidqj

)
+

(
∂vi

∂qj
γi + vi ∂γi

∂qj

)
dqj

= Lvγ. (A.32)

A.1.5 Lie transformation

A transport of a point along a vector fieldv is given by the differential equation

∂Q
∂t

= ivdQ. (A.33)

The flow generated by the vector field is, therefore, written as

ϕt = exp(tivd). (A.34)
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This map can be used for the coordinate transformation. The bases of the local coordinate

systemqi are transformed to the new basesqi
t;

ϕt : qi 7−→ qi
t = exp(tivd) qi . (A.35)

If the parametert is sufficiently small, the transformation is near-identity transformation

and thus Taylor expanded as

qi
t = qi + tvi +

t2

2
iv(dv

i) + · · · . (A.36)

From the definition, the Lie derivative generated by a vector fieldv is written as

Lv =
d
dt

∣∣∣∣∣
t=0
ϕ∗t , (A.37)

where the mapϕ∗t is the pull back of the flow. This differential equation yields the pull

back of the flowϕt as an exponential map

ϕ∗t = exp(tLv). (A.38)

Therefore, the pull back of 1 1-formγt(Qt) is given by

γt(Qt) = exp(−tLv)γ(Qt) (A.39)

= γi(Qt)dqi
t − tLvγ(Qt) +

t2

2
L2
vγ(Qt) − · · · . (A.40)

A.2 Mathematical description of the mechanics

A.2.1 Modified Hamilton’s principle

Suppose a set of the canonical coordinate variables and the Hamiltonian are given byq, p

andH(t,q,p). According to the modified Hamilton’s principle, the motion generated by

the Hamiltonian is determined by the condition that the action integral,

I ≡
∫ t2

t1

(
p · dq

dt
− H

)
dt, (A.41)

has an extreme value. The integral can be rewritten as

I ≡
∫ t2

t1

(p · dq − Hdt) =

∫ t2

t1

γi
dc
dt

dt =

∫

c
γi dzi , (A.42)

where the local coordinate systemzi ≡ (t,q,p) and the 1-form is introduced by

γ ≡ p · dq − Hdt, (A.43)
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or explicitly

γ0 = −H(q,p), γi=1,2,3 = pi , γi=4,5,6 = 0. (A.44)

The integral is carried out over the curvec.

The condition for having an extreme value is given by the variational principle,

δI = δ

∫

c
γi dzi = 0. (A.45)

Although the variation of the functionγi is usually utilized in this calculation, we proceed

in a more geometrical expression. The variation of the action integral can be understood

as a difference of the integral over a curvec and an infinitesimally deviated curvec′. By

construction, the new curvec′ has to satisfy the following restrictions;

c(t1) = c′(t1), c(t2) = c′(t2). (A.46)

We employ an arbitrary vector fieldv and a infinitesimally small parameterδτ. The curve

c′ is expressed as

c′(t) = c(t) + δτv. (A.47)

The vector field also has the restrictions,v = 0 at t = t1 andt2. The variational principle

is rewritten as

δI =

∫

c+δτv

γi dzi −
∫

c
γi dzi =

∫

c

(
ϕ∗δτγ − γ

)
. (A.48)

If we take the limitδτ → 0 in this equation, the right hand side yields the Lie derivative

and thus we obtain

lim
δτ→0

δI
δτ

=

∫

c
Lvγ = 0. (A.49)

Using the relationLvγ = ivdγ − d(ivγ), the integral is calculated as
∫

c
ivdγ +

∫

c
d(ivγ) =

∫
vi

[
zi , zj

] dc
dt

dt +
[
ivγ

]t2
t1 = 0, (A.50)

where we introduce the Lagrange bracket

[
zi , zj

]
≡ ∂γ j

∂zi
− ∂γi

∂zj
. (A.51)

Since Eq. (A.50) has to be valid for any vector fieldv which vanishes att = t1 andt2, it

yields the equation of motion,

[
zi , zj

] dcj

dt
= 0, or i ċdγ = 0. (A.52)

This equation corresponds to the Euler-Lagrange equation for the Lagrangian.
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A.2.2 Fundamental 1 form

A 1-form describing a dynamical system is called a fundamental 1-form. One of the

advantages of the 1-form representation of the mechanics is its invariant characteristic

in the coordinate transformations. Suppose that a fundamental 1-form is expressed in a

coordinate systemq = (qi) asγ = γi(q)dqi and a new coordinate systemQ = (Qi) is given

by ϕ : q 7→ Q. The fundamental 1-form can be expressed also in the coordinate system

Q asΓ = ΓidQi. If the both 1-form represent the same dynamics, they are equivalent,

Γ(Q) ≡ γ(q) or Γ(Q) =
[
ϕ−1∗γ

]
(Q). The explicit transformation of the 1-form is as

follows;

γ = γidqi = γi(ϕ
−1Q)d(ϕ−1iQ)

= ϕ−1∗γi
∂ϕ−1i

∂Q j
dQj = Γ jdQj . (A.53)

Therefore, the new 1-form is written in terms of the original 1-form as

Γi = ϕ−1∗γ j
∂ϕ−1 j

∂Qi
. (A.54)

We note that the coordinate transformation here is carried out by the arbitrary mapϕ and

thus there is no restriction in the transformation. On the other hand, the Hamiltonian

mechanics requires the recalculation of the Poisson tensor in case of the non-canonical

transformation. In the Lagrangian mechanics, only the transformation in the configura-

tion space is available because the coordinate variables for the velocity are automatically

determined from those of the position.

A.2.3 Fundamental 1 form of a charged particle

The dynamics of a charged particle is described in the coordinate systemz = (z0, z1, . . . , z6) =

(t, x, v) by the fundamental 1-form

γ ≡ [
mv + qA(x)

] · dx −
[m

2
v2 + qφ(x)

]
dt. (A.55)

The equations of motion are given by the Euler-Lagrange equations;

i żdγ = 0, or ωi j
dzj

dt
=

(
∂γi

∂z0
− ∂γ0

∂zi

)
ż0 for ∀i, (A.56)

where the zeroth coordinate variablez0 represents the time, orz0 = t. The tensor
↔
ω

introduced here is the Lagrange tensor,

ωi j ≡
[
zi , zj

]
=

(
∂γ j

∂zi
− ∂γi

∂zj

)
. (A.57)
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The Poisson tensor
↔
σ is introduced as an inverse matrix of the Lagrange tensor;σi jω jk ≡

δi
j. Using this relation, the equations of motion are written as the Hamilton equations;

dzi

dt
= σi j

(
∂γ j

∂t
− ∂γt

∂zj

)
. (A.58)

In the familiar coordinate system (x, v), the Lagrange and Poisson tensors are given by

ωi j =


−qB ×

↔
I −m

↔
I

m
↔
I

↔
0

 , (A.59)

σi j =


↔
0

↔
I /m

−
↔
I /m−qB ×

↔
I /m2

 . (A.60)

where we use the unit tensor
↔
I = δi j and the notationε i jk Bk = −B×

↔
I . Newton’s equations

of motion are recovered from the Hamilton equations (A.58);

dx
dt

= v, (A.61)

dv
dt

=
q
m

v × B − q
m

(
∇φ +

∂A
∂t

)
. (A.62)
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Appendix B

Useful formulae

B.1 Vector operations

Levi-Civita symbol εi jk and vector product:

∑

k

εi jkεmnk = δimδ jn − δinδ jm. (B.1)

(u × v) × w = (w · u)v − (v · w)u. (B.2)

u × (v × w) = (w · u)v − (u · v)w. (B.3)

uiv j − ujvi =
∑

k

εi jk(u × v)k = −(u × v) ×
↔
I . (B.4)

(u × w) · ∇ × v = u · ∇v · w − w · ∇v · u. (B.5)

Orthonormal vectors â, b̂ and ĉ:

b̂× = âĉ− ĉâ. (B.6)

b̂ × b̂× = −
(↔
I − b̂b̂

)
· . (B.7)

â · ∇ × b̂ =
(
b̂ · ∇b̂ · ĉ

)
. (B.8)

b̂ · ∇ × b̂ =
(
ĉ · ∇b̂ · â

)
−

(
â · ∇b̂ · ĉ

)
. (B.9)

ĉ · ∇ × b̂ = −
(
b̂ · ∇b̂ · â

)
. (B.10)

b̂ × (∇ × b̂) = −b̂ · ∇b̂. (B.11)

∇ × b̂ = −ĉ× ∇b̂ · ĉ− â× ∇b̂ · â. (B.12)

b̂ · ∇b̂ × b̂ =
(
b̂ · ∇b̂ · â

)
ĉ−

(
b̂ · ∇b̂ · ĉ

)
â. (B.13)

(
b̂ × ∇

)
· b̂ = −b̂ ·

(
∇ × b̂

)
. (B.14)
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B.2 Taylor expansions

erf (x) ≡ 2√
π

∫ x

0
exp

(
−x2

)
dx (B.15)

x�1' 2√
π

x− 2

3
√
π

x3 +
1

5
√
π

x5 + O(x7) (B.16)

x�1' 1−
exp

(
−x2

)
√
πx

+
exp

(
−x2

)

2
√
πx3

−
3 exp

(
−x2

)

4
√
πx5

+ O(x−7e−x2
). (B.17)

J0(z) = 1− z2

4
+

z4

64
+ O(z6). (B.18)

I0(z) = 1 +
z2

4
+

z4

64
+ O(z6). (B.19)

Λ0(z) ≡ I0(z) exp(−z) = 1− z+
3
4

z2 − 5
12

z3 + O(z4). (B.20)

B.3 Integrals

Error function:
∫ v

0
dv

1√
2πvt

exp

(
−(v − v̄)2

2v2
t

)
=

1
2

erf

(
v − v̄√

2vti

)
+

1
2

erf

(
v̄√
2vt

)
. (B.21)

∫ v

0
dv

v√
2πvt

exp

(
−(v − v̄)2

2v2
t

)
=

vt√
2π

(
exp

(
− v̄

2

2v2
t

)
− exp

(
− (v − v̄)2

2v2
t

))

+
v̄

2

[
erf

(
v̄√
2vt

)
+ erf

(
v − v̄√

2vt

)]
. (B.22)

Bessel function:
∫ 2π

0
cosnθ cos(zsinθ)dθ = [1 + (−1)n]πJn(z). (B.23)

∫ 2π

0
sinnθ sin(zsinθ)dθ = [1 − (−1)n]πJn(z). (B.24)

∫ ∞

0
Jn(αx) exp(−β2x2)x dx=

√
πα

8β3
exp

(
− α

2

8β2

) [
I(n−1)/2

(
α2

8β2

)
− I(n+1)/2

(
α2

8β2

)]
.

(B.25)∫ ∞

0
Jn(αx)Jn(βx) exp(−γ2x2)x dx=

1
2γ2

exp

(
−α

2 + β2

4γ2

)
In

(
αβ

2γ2

)
. (B.26)

1
2π

∮
exp(±iρk · â) = J0(k⊥ρ). (B.27)

1
2π

∮
âexp(±iρk · â) = ±ik⊥J1(k⊥ρ). (B.28)
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∫ ∞

0

1

2πv2
t

exp

(
− v

2
⊥

2v2
t

)
J0(k⊥ρ)2πv⊥dv⊥ = exp

(
−k2
⊥ρ

2
t

2

)
. (B.29)

∫ ∞

0

1

2πv2
t

exp

(
− v

2
⊥

2v2
t

)
J2

0(k⊥ρ)2πv⊥dv⊥ = I0

(
k2
⊥ρ

2
t

)
exp

(
−k2
⊥ρ

2
t

)
. (B.30)
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