<table>
<thead>
<tr>
<th>Title</th>
<th>On the continuity of positive definite functions on conelike semigroups (Communication in commutative Banach algebras and several field of mathematics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Bisgaard, Torben Maack; Sakakibara, Nobuhisa</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2006), 1478: 127-132</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2006-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/58001</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京大圏の学術情報リポジトリ | Kyoto University Research Information Repository
On the continuity of positive definite functions on conelike semigroups

Torben Maack Bisgaard (デンマーク)
Nandrupsej 7 st. th., DK-2000 Frederiksberg C, Denmark
E-mail: torben.bisgaard@get2net.dk

Nobuhisa Sakakibara (榊原暢久 (茨城大学・工学部))
Faculty of Engineering, Ibaraki University, Hitachi 316-8511, Japan
E-mail: sakaki@mx.ibaraki.ac.jp

Dedicated to the memory of Knud Maack Bisgaard

2000 Mathematics Subject Classification. Primary: 43A35; Secondary: 44A60
Keywards and phrases. continuity, positive definite, moment, conelike semigroup

Abstract

Let S be a conelike semigroup in \mathbb{Q}^k. In [5], P. Ressel showed an integral representation of bounded positive definite functions on S which is continuous at 0. In this paper, we will analyze some integral representations of unbounded positive definite functions on S which is continuous at 0.

1 Introduction

Let S be an abelian semigroup with the identity 0. A function $\varphi : S \to \mathbb{R}$ is called positive definite if

$$\sum_{j,k=1}^{n} c_j \overline{c_k} \varphi(s_j + s_k) \geq 0$$

for all $n \in \mathbb{N}, s_1, \ldots, s_n \in S, c_1, \ldots, c_n \in \mathbb{R}$.

A function $\sigma : S \to \mathbb{R}$ is called a character if it is multiplicative and not identically zero. In particular, if $0 \notin \sigma(S)$, σ is called zero free. The set of characters on S is denoted by S^*. Denote by $A(S^*)$ the least σ-ring of subsets of S^* rendering the mapping $S^* \ni \sigma \mapsto \sigma(s) \in \mathbb{R}$ measurable for each $s \in S$. A function $\varphi : S \to \mathbb{R}$ is called a moment function if there is a measure μ defined on $A(S^*)$ such that

$$\varphi(s) = \int_{S^*} \sigma(s) d\mu(\sigma)$$

for all $s \in S$. Note that every moment function is positive definite and every bounded positive definite function on S is a moment function whose representing
measure is unique (see [1], Theorem 4.2.8). But a positive definite function is not necessarily a moment function (see [1], Theorem 6.3.5), and a representing measure is not necessarily unique if any (see [1], Example 6.4.3).

An abelian *-semigroup S is called determinate if whenever μ and ν are measures on $A(S^r)$ such that

$$\int_{S^r} \sigma(s)d\mu(\sigma) = \int_{S^r} \sigma(s)d\nu(\sigma), \ s \in S$$

then $\mu = \nu$. The semigroup S is called semiperfect if every positive definite function $\varphi : S \to \mathbb{R}$ is a moment function, and perfect if S is semiperfect and determinate.

A subset M of a vector space over the scalar field K ($K = \mathbb{Q}$ or \mathbb{R}) is called conelike if for each $s \in M$ there is some $a \in \mathbb{K}$ such that $\alpha s \in M$ for all $\alpha \in \mathbb{K}$ satisfying $\alpha \geq a$.

P. Ressel has proved the following theorem (see [5], Theorem 2):

Ressel's Theorem Let S be a conelike semigroup in the real vector space \mathbb{R}^k, $k \geq 1$, with $\bar{S} \neq \emptyset$ and $0 \in \bar{S}$, where $\bar{S} := \{s \in S \mid (\mathbb{R}_+ s) \cap \bar{s} \neq \emptyset\}$. For a bounded positive definite function $\varphi : S \to \mathbb{R}$ the following properties are equivalent:

(i) φ is uniformly continuous.

(ii) φ is continuous at 0.

(iii) $\exists \{s_n\} \subset \bar{S}$ with $s_n \to 0$ and $\varphi(s_n) \to \varphi(0)$.

(iv) There is a bounded nonnegative measure μ on S^\square such that $\varphi(s) = \int_{S^\square} e^{-\langle v,s \rangle}d\mu(v), \ s \in S$, where $S^\square := \{v \in \mathbb{R}^k \mid \langle v, s \rangle \geq 0 \text{ for all } s \in S\}$.

It is natural to consider this theorem for unbounded positive definite functions. In general, every unbounded positive definite function is not a moment function. But every conelike semigroup in the rational vector space \mathbb{Q}^k, $k \geq 1$, is perfect (see [4], Theorem 3.3, [2], Theorem 6). In section 3, we will prove a Ressel-type theorem for unbounded positive definite functions on conelike semigroups in \mathbb{Q}. In section 4, we will show that such a Ressel-type theorem in $((\mathbb{Q}_+ \setminus \{0\})^2 \cup \{(0, 0)\})$ does not hold. In section 5, for some conelike semigroups in \mathbb{Q}^k, we will prove that the implication (ii) \Rightarrow (iv) holds.

Throughout this paper, an abelian semigroup S in \mathbb{Q}^k (or \mathbb{R}^k) is conelike, and the composition on S is the ordinary addition. See [1] for other details on positive definite and moment functions, and see [3] on positive definite functions on conelike semigroups.

2 Pleliminaries

In this section, we will determine explicitly the zerofree characters on S with $\bar{S}_Q \neq \emptyset$, where \bar{S}_Q is the interior of S in the rational vector space \mathbb{Q}^k with the relative topology. This argument is similar to P. Ressel's (cf. [5]).
Proposition 1 Let S be a conelike subsemigroup of \mathbb{Q}^k with $\tilde{S}_\mathbb{Q} \neq \emptyset$. Then every zero-free character $\sigma \in S^*$ is of the form
\[
\sigma(s) = \exp(v, s)
\]
for some $v \in \mathbb{R}^k$.

Put $\overline{S}_\mathbb{Q} := \{s \in S \mid (\mathbb{Q}_+ s) \cap S^o_\mathbb{Q} \neq \emptyset\}$. The set $\overline{S}_\mathbb{Q}$ contains $S^o_\mathbb{Q}$. By the similar proof of [5], Lemma 3, we have the following.

Lemma 2 Let S be a conelike subsemigroup of \mathbb{Q}^k with $\tilde{S}_\mathbb{Q} \neq \emptyset$, and $\sigma \in S^*$ is not zero-free. Then $\sigma \equiv 0$ on $\overline{S}_\mathbb{Q}$, in particular on $S^o_\mathbb{Q}$.

Define the sets
\[
W := \{\sigma \in S^* \mid \sigma \text{ : zero-free}\}, \\
N := \{\sigma \in S^* \mid \sigma \text{ : not zero-free}\}.
\]

If $S^o_\mathbb{Q} \neq \emptyset$, by Proposition 1, W is topological semigroup isomorphic to \mathbb{R}^k by the correspondence
\[
f : (s \mapsto \exp(v, s)) \mapsto v.
\]
Since S is perfect, every positive definite function φ on S has the following integral representation with the unique measure μ on S^*:
\[
\varphi(s) = \int_{S^*} \sigma(s) d\mu(\sigma), \quad s \in S.
\]
Since every character $\sigma \in N$ is identically zero on $\tilde{S}_\mathbb{Q}$ by Lemma 2, then
\[
\varphi(s) = \int_{\mathbb{R}^k} \exp(v, s) d\nu(v), \quad s \in S^o_\mathbb{Q},
\]
where ν is the image measure defined by $\nu := \mu'$.

3 In the Case of S in \mathbb{Q}

In the case of $S \subset \mathbb{Q}$ with $\tilde{S}_\mathbb{Q} \neq \emptyset$, it is easily obtained that $S^* = W \cup N = W \cup \{1_{\{0\}}\}$, where $1_{\{0\}}$ is the indicator function of $\{0\}$. We have the following:

Theorem 3 Let S be a conelike semigroup in the rational vector space \mathbb{Q} with $\tilde{S}_\mathbb{Q} \neq \emptyset$ and $0 \in \overline{S}_\mathbb{Q}$. For a positive definite function $\varphi : S \to \mathbb{R}$ the following properties are equivalent:

(i) φ is continuous.

(ii) φ is continuous at 0.

(iii) $\exists \{s_n\} \subset \overline{S}_\mathbb{Q}$ with $s_n \to 0$ and $\varphi(s_n) \to \varphi(0)$.
(iv) There is a nonnegative measure \(\nu \) on \(\mathbb{R} \) such that \(\varphi(s) = \int_{\mathbb{R}} e^{vs} d\nu(v) \), \(s \in S \).

Corollary 4 Let \(S \) be a conelike semigroup in the real vector space \(\mathbb{R} \) and define \(S_\mathbb{Q} := S \cap \mathbb{Q} \). Suppose that \(\bar{S} \neq \emptyset \), \(0 \in \bar{S} \) and \(S = \bar{S}_\mathbb{Q} \). Then a function \(\varphi : S \to \mathbb{R} \) is continuous and positive definite if and only if there exists a nonnegative measure \(\nu \) on \(\mathbb{R} \) such that

\[
\varphi(s) = \int_{\mathbb{R}} e^{vs} d\nu(v), \quad s \in S.
\]

4 In the Case of \(S \) in \(\mathbb{Q}^2 \)

In the case of \(S \) in \(\mathbb{Q} \), we proved a Ressel-type theorem for unbounded positive definite functions. But, in the case of \(S \) in \(\mathbb{Q}^2 \), a Ressel-type theorem such as Theorem 3 does not hold. In this section, we will show some counterexamples. Throughout this section, let \(S \) be the abelian semigroup \((\mathbb{Q}_+ \setminus \{0\})^2 \cup \{(0,0)\} \).

Example 1 (Counterexample of (iv) \(\Rightarrow \) (ii)) For each \(k \in \mathbb{N} \), define \(v_k \in \mathbb{R}^2 \) by \(v_k = (k,-k^2) \). Let \(m \) be the measure \(\sum_{k=1}^{\infty} \frac{1}{k^2} \varepsilon_{v_k} \) on \(\mathbb{R}^2 \), where \(\varepsilon_{v_k} \) is the Dirac measure supported by \(\{v_k\} \). Define

\[
\varphi(x,y) := \int_{\mathbb{R}^2} e^{v \cdot (x,y)} dm(v) = \sum_{k=1}^{\infty} k^{-2} e^{kx-k^2y} < \infty, \quad (x,y) \in S.
\]

Now \(\varphi \) is not continuous at \((0,0)\). In fact, let \(\{x_n\} \) be any sequence of positive numbers tending to 0. For each \(n \), since \(\varphi(x_n,y) \to \infty \) as \(y \to 0 \), we can choose \(y_n \) such that \(0 < y_n < \frac{1}{n} \) and \(\varphi(x_n,y_n) > n \). Then \((x_n,y_n) \to (0,0) \) but \(\varphi(x_n,y_n) \to \infty \).

Example 2 (Counterexample of (iii) + (iv) \(\Rightarrow \) (ii)) Let \(\varphi \) be the function as above. We only have to show that there is a sequence \(\{s_n\} \) in \(\bar{S}_\mathbb{Q} \) such that \(s_n \to 0 \) and \(\varphi(s_n) \to \varphi(0) \) as \(n \to \infty \). For each \(n \in \mathbb{N} \), define a continuous mapping \(\gamma_n \) on \((-1,1)\) by \(\gamma_n(t) = \left(\frac{1-t}{n}, \frac{1}{n}\right) \) and \(\gamma_n(t) = \left(\frac{1}{n}, \frac{1-t}{n}\right) \) for \(0 \leq t < 1 \). We can easily prove that \(\varphi(\gamma_n(t)) \downarrow \sum_{k=1}^{\infty} \frac{1}{k^2} e^{-\frac{k^2}{n}} < \varphi(0) \) and \(\varphi(\gamma_n(t)) \to \infty \) as \(0 \leq t \uparrow 1 \). By continuity, we can choose \(t_n \in (-1,1) \cap \mathbb{Q} \) such that \(\varphi(\gamma_n(t_n)) = \varphi(0) \). Putting \(s_n = \gamma_n(t_n) \in S_\mathbb{Q} \), we have that \(s_n = \gamma_n(t_n) \to 0 \) and \(\varphi(s_n) = \varphi(\gamma_n(t_n)) = \varphi(0) \). Then we can obtain the result.

Example 3 (Counterexample of (iii) \(\Rightarrow \) (iv)) Let \(\varphi \) and \(\{s_n\} \) be as above, and let \(\mu \) be the representing measure of \(\varphi \) on \(S^* \). Choose a number \(\alpha \) such that \(\sum_{k=1}^{\infty} \frac{1}{k^2} e^{-\frac{k^2}{n}} < \alpha < \varphi(0) \). Define the function \(\psi \) as follows:

\[
\psi(x,y) = \begin{cases}
\varphi(x,y) & \text{if } (x,y) \in S \setminus \{(0,0)\} \\
\alpha & \text{if } (x,y) = (0,0)
\end{cases}
\]
Then \(\psi \) is positive definite on \(S \). By the similar argument to take \(\{t_n\} \), we can choose \(\tilde{t}_n \in (-1, 1) \cap \mathbb{Q} \) such that \(\psi(\gamma_n(\tilde{t}_n)) = \alpha. \) Putting \(\tilde{s}_n = \gamma_n(\tilde{t}_n) \in S^*_\mathbb{Q} \), we have that \(\tilde{s}_n = \gamma_n(\tilde{t}_n) \to 0 \) and \(\psi(\tilde{s}_n) = \psi(\gamma_n(\tilde{t}_n)) = \psi(0) \). But the support of the representing measure of \(\psi \) contains \(\{1_{\{0\}}\} \). In fact, Since \(\psi \) is a moment function on \(S \), there exists the measure \(\mu_0 \) on \(S^* \) such that

\[
\psi(s) = \int_{S^*} \sigma(s)d\mu_0(\rho), \quad s \in S.
\]

Put \(H := S \setminus \{(0, 0)\} \). By [6], Lemma 2.2, the mapping \(f : \sigma \mapsto \sigma|_H \) is a one-to-one correspondence between \(S^* \setminus \{1_{\{0\}}\} \) and \(H^* \). Let \(\bar{\mu} \) and \(\bar{\mu}_0 \) be the images of \(\mu \) and \(\mu_0 \), respectively, i.e., \(\bar{\mu} = \mu^f \) and \(\bar{\mu}_0 = \mu_0^f \). For \(s \in H \),

\[
\int_{H^*} \sigma(s)d\tilde{\mu}(\sigma) = \int_{S^*} \sigma(s)d\mu_0(\sigma) = \psi(s)
\]

\[
= \varphi(s) = \int_{S^*} \sigma(s)d\mu(\sigma) = \int_{H^*} \sigma(s)d\bar{\mu}(\sigma).
\]

By [6], Theorem 3.2, \(H \) is perfect (see [6] for the definition of perfectness of \(H \)). By [6], Proposition 3.1, \(\bar{\mu} = \bar{\mu}_0 \) on \(H^* \). Suppose \(\mu_0(\{1_{\{0\}}\}) = 0 \), then \(\mu = \mu_0 \) on \(S^* \), hence \(\varphi = \psi \) on \(S \). This contradicts to \(\varphi \neq \psi \). Therefore \(\mu_0(\{1_{\{0\}}\}) \neq 0 \).

5 In the case of \(S \) in \(\mathbb{Q}^k \)

In the case of \(S \) in \(\mathbb{Q}^2 \), a Ressel-type theorem such as Theorem 3 does not hold. But, under an assumption of \(S \), we will show the implication \((ii) \Rightarrow (iv) \).

Proposition 5 Let \(S \) be a conelike semigroup in the rational vector space \(\mathbb{Q}^k \), \(k \geq 2 \), such that \(S^*_\mathbb{Q} \neq \emptyset \) and there exists a sequence \(\{s_n\} \) of \(S^*_\mathbb{Q} \) satisfying \(\lim_{n \to \infty} s_n = 0 \) and \(\dim(\text{linspan}\{s_n\}) = 1 \). For a continuous and positive definite function \(\varphi \) on \(S \) there exists the nonnegative measure \(\nu \) on \(\mathbb{R}^k \) such that

\[
\varphi(s) = \int_{\mathbb{R}^k} e^{\langle v, s \rangle}d\nu(v), \quad s \in S.
\]

Acknowledgements. The second-mentioned author was partly supported by Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science.

References

