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BOUNDS FOR THE RATIO AND DIFFERENCE BETWEEN
PARALLEL SUM AND SERIES AND NONCOMMUTATIVE
KANTOROVICH INEQUALITIES
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Tennoj_i Branch, Senior Highschool, Osaka Kyoiku University

ABSTRACT. In this report, upper bounds for the ratio and the difference between par-
allel sum and series of operator connections in the sense of Anderson-Duffin-Trapp are
obtained, in which the Mond-Peéarié method for convex functions is applied: Let A; be
positive operators on a Hilbert space such that 0 < mI < A; < MI for some scalars
m< M and i=1,2,:-- ,n. Then we show an upper bound of the difference of parallel
sum and series :

(Ay+Ag+-+An) ~ (AT + 451+ + ATH 1 < (n(M+m)—2\/_—Mm) L.

As an application, we show a noncommutative Kantorovich inequality: For positive
operators A; such that 0 < ml < A; < MI for some scalars m < M and i=1,2,.-- ,n,

-1
%(A1+A,+...+Aﬂ)<(M+m)2(A1 + - +Aﬂ1)

and

n

-1 LN —1 '—1
}-(Al'+Ag+-'--+A,.)— 14_1__'*_’___".:_’11&_. 5(\/M_ m)3I.
n

1. INTRODUCTION
This report is based on [4].

Motivated by a study of electrical network connection, Anderson and Duffin [1] intro-

duced the concept of parallel sum of two positive semldeﬁmte matrices and sequently
Anderson and Trapp [2] have extended this notion to positive operators on a Hilbert
space H. If A and B are impedance matrices of two resistive n-port networks, then their
parallel sum A : B defined by

A:B=(A"1+ B
is the impedance matrix of paralle]l connection and their series
A+B

is the impedance matrix of series connection. Some properties of parallel sum of two
positive semidefinite matrices are discussed. For example, Anderson and Duffin [1] showed
the following estimate of two impedance above If Ay,---, A, are positive semidefinite,
then

(1) | | f:A,-Zn’ﬁ:m,
i=1 i=1
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where
n

H:A,“‘——“AliAzZ'-f!Aﬂ.
i=1
In fact, the inequality (1) is a generalization of the classical inequality between the arith-
metic mean and the harmonic mean.
Thus we consider upper bounds for the ratio and the difference between two impedance
matrices above. We attempt to determine an upper estimate o such that

n
and an upper estimate 3 such that
n
Z;A»i - m=1:Ai < BIL
‘ =
The following estimation gives us a unified view to the above two inequalities: For a given
real number o, there exists the most suitable estimate 8 such that

n
Ci=l
We regard these constants as two types of energy loss of two impedance matrices.

Throughout this report, we discuss parallel sum and series in the framework of operator .

theory on a Hilbert space.

Our purpose in this report is to give upper bounds for two types of energy loss of two
impedances in terms of the spectra for given positive operators on a Hilbert space, in
which the Mond-Peéarié method for convex functions [5] is applied. As an application,

we show a noncommuatative Kantorovich inequality.

2. MOND-PEGARIC METHOD

A capital letter means a bounded linear operator on a Hilbert space H. An operator
A is said to be positive (4 > 0) if (Az,z) > 0 for all z € H. We denote by B(H) the
‘algebra of all bounded linear operators on H.

In this section, we prove a few lemmas on positive linear maps to obtain upper bounds
for the ratio and the difference between parallel sum and series of operator connections
in the sense of Anderson-Duffin-Trapp [1, 2].
~ Let ® be a normalized positive linear map on B(H). Then it follows from [3, Corollary
4.2] that Jensen's operator inequality implies Kadison’s Schwarz inequality as follows:

(2) B(A7) < 8(4)

for every positive invertible operator A. -

By using the Mond-Pegari¢ method [5], we have the following reverse inequality of (2)
without the assumption of the normalization of .
Lemma 1. Let ® be a positive linear map on B(H) such that ®(I) = kI for some positive
scalar k. If A is a positive operator on a Hilbert space H such that 0 < mlI < A < MI
for some scalars m < M, then for each a > 0

(3) &(A) < a®(A™)! + B(m, M, a, k)],
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where
k(m+ M) —2v/amM if m<Y¥eMm <M,
(4) B(m, M,a,k) ={ (k—$)M if YeMm <,

(k — 2)m if M < YeMm

By Lemma 1, we have the following upper bounds for the ratio and the difference in
the inequality (2):
Lemma 2. Let ® be a positive linear map on B(H) such that ®(I) = kI for some positive
scalar k. If A is a positive operator on a Hilbert space H such that 0 < mI < A < MI
Jor some scalars m < M, then

®) a(4) < ELETY g4ty
and
(6) ®(A) - ®(A™Y)! < (k(m + M) — 2VMm)I.

Remark 3. If & is normalized, that is, ®(I) = I, then by Lemma 2 we have the following
results due to Mond-Peé&arié [9 ] cf. [5, Theorem 1.32}:

@ a(a) < MM g 41y
and ‘ _
® 2(4) - B(47) < (VI — VAL

3. MAIN RESULT

We state our main theorem, in which upper bounds for the ratio and the difference
between parallel sum and series of operator connections are given.

Theorem 4. If A and B are positive operators on H such that 0<mlI <A B<MI
for some scalars m < M, then for each o > 0

(9) A+B Sa(A.B).—l—,@(m,M,a,k=2)I,
where ‘

2(m + M) —2v/amM if m< YelMm < M,

(100 B(mM,0,k=2)={ (2-2)M if YeMm <
(2-%)m if M < Yelm
In particular,
2
(11) "A+B <Q_’I]J_m)(A B)
and

(12) A+B-(A:B)<2(M+m—vMm)L
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Proof. Let a map ¥ : B(H) ® B(H) — B(H) ® B(H) be defined by

g4 O)_(A+B 0O
0 BJ\ 0 A+B)

Then ¥ is a positive linear map such that ¥(I) = 2I. Since

()< (8 ) sm(l ),

it follows from Lemma 1 that for each a > 0

-1 -1 | l
w(g g)—a\ll( A Bo_l) Sﬁ(m,M,a,k=2)(5 ?)

We have the desired inequality (9) by rearranging the expression above.
If we choose a such that 2((M+m)—+aMm) = 0in (9), then it follows that a = %ﬁ

and o satisfies the condition m < @ < M. Thus we have (11). Also, if we put a =1
in (9), then it follows that

Bm,M,a=1,k=2)< 2(M+m—-\/Mm)
and hence we have (12). : ' o

Similarly, we have the following n-variable version of Theorem 4.

Theorem 5. If A; are positive operators on H such that 0 < mI < A; < MI for some
scalarsm < M fori=1,2,..- ,n, then for eacha >0

n n *
(13) Y Ai<a]]:Ai+B(m, M, 0,k =n)I,
_ i=1 i=1
where B(m, M, c,k = n) is defined as (4) in Lemma 1.
In particular,

2(M+m)2 =

(14) -2:‘4‘ oA
and ‘
(15) | EA1 II A < (n(M +m) - 2VMm) I.

Proof. Let a map ¥ : B(H) ®---®B(H)— B(H)® -+ ® B(H) be defined by

A] 0 A1+"'+An 0
\II t., = ' e, ‘
0 A 0 Ar+-oe+ An

Then we can prove (13) by the same way as Theorem 4. : m]
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4. NONCOMMUTATIVE KANTOROVICH INEQUALITY

Motivated by a study of parallel sum due to Anderson and Duffin [1], and Anderson
and Trapp [2], Kubo and Ando [8] introduced the notion of operator mean. A map
(A,B) = A o B in the cone of positive invertible operators is called an operator mean if
the following conditions are satisfied:

monotonicity: A< Cand B< Dimply Ac B<C o D,

upper continuity: A, | A and B, | B imply A, 0 B, | A ¢ B,

transformer inequality: T*(A ¢ B)T < (T*AT) o (T*BT) for every operator
T,

normalized condition: A 0 A = A.

A key for the theory is that there is a one-to-one correspondence between an operator
mean o and a nonnegative operator monotone function f(z) on [0, 0o) through the formula

f@)=1oz forallz>0,

or
Ao B=A¥10 A"1BA~})At = A3 f(A"3BA-%)A% forall A,B > 0.

We say that f is the representing function for o. In this case, notice that f(t) is operator

monotone if and only if it is operator concave. The operator mean with representing

function tf(t~1) is called the transpose of o and denoted by o°:

Ac°B=Boc A forevery positive A and B.
An operator mean is called symmetric if & = 0°. The operator mean with representing

- function f(¢=*)~! is called the adjoint of o and denoted by o*:

Ac* B=(A"10 B})"! for every positive invertible A and B.

Simple examples of operator means are the arithmetic mean, in symbol V,
avp=21t%
The normalized parallel sum is called the harmonic mean, in symbol !,
' A!'B=2(A : B).
For invertible A, B, the geometric mean A § B is
Af B=A¥(A"3BA1)1AL
Also, the representing function of the logarithmic mean A is (¢ — 1)/logt. Then the
following harmonic-geometric-logarithmic-arithmetic mean inequality holds
A!B<A{B<AMNB<LAVB.

Furthermore, the arithmetic mean is the maximum of all symmetric operator means
while the harmonic mean is the minimum.

Next, for positive numbers a; > 0 (i = 1,2,+-- ,n), the following harmonic-geometric-
arithmetic mean inequality holds

1 4 -1 i 1
(;Za,- ) < e < > a

i=1
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On the other hand, Kantorovich [7] proved the following inequality which is considered
as a ratio type reverse inequality of harmonic - arithmetic mean inequality. If the sequence
{a;} (i=1,2,--- ,n) of positive numbers has the property

O0<m<a <M,
then the inequality
' 1 & 1 & (M +m)?
, : <|- - -l < 2 2
(16) | 1< <"_‘¢§a‘) (nga,, ) < O
holds. Also, Shisha and Mond [11] proved the following difference type reverse inequality:
1& 1y -1 2
05 (33a) - (fxa’) < (VH-va)
n =1 ) n i=1
The following theorem is the harmonic-arithmetic operator mean inequality.

_Theorem (A-H inequality) If A; are positive operators on H for ¢+ = 1,2, ;n,
then

1& L\
bl - < N
Proof. Let a map ¥: B(H)®:+-® B(H) — B(H) &+ ® B(H) be defined by
A1 0 Artetdn - | 0
\Il ‘., . = e
0 A, 0 AltetAn

n

Then it follows that ¥ is a normalized positive linear map. By Kadison’s Schwarz in- -
equality we have W(A~1)"! < U(A) for A = A; @ --- ® A, and hence we have A-H
inequality. - O

Prof. S. Izumino suggested that Theorem 4 implies the following noncommutative Kan-
torovich inequality: »
Theorem 6. If A and B are positive operators on H such that 0 < mI < A,B < MI
for some scalars m < M, then for alla >0 '

(17) AVB< %A ! B+-21;',3(m,M,a,2)1
where B(m, M, a,2) is defined as (4) in Lemma 1.
In particular,
: (M +m)?
<2 A)
(18) AV BXZ e A!B
and

(19) " AVB-A!B< (VM- ym)L



As an application of Theorem 5, we have the following n-variable version of a noncom-
. mutative Kantorovich inequality. We use the notation

n -1 -1\ -1
T[! A=A 4y --.!A,.=‘(A1 ki "+A“1)
n

i=1

Theorem 7. If A; are positive operators on H such that 0 < mI < A; < MI for some

scalars m < M fori=1,2,.-. ,n, then

M—i—m)’"
(20) —;A,_ T ‘_I=II!A,-
and
(1) %im—ﬁ!Aig(\/M——\/ﬁ)zI.
i=1 i=1

Proof. The inequality (20) follows from (14) in Theorem 5. If we put a = n? in (13) of
Theorem 5, then the condition m < 1%_"‘- < M satisfies and f(m, M,a = n’k=n)=
n(m + M — 2¢/mM). Therefore we have the desired inequality (21). a

Remark 8. Prof. T. Furuta kindly pointed out that Theorem 7 is the special case where
r = —1 and s = 1 in [10, Theorem 1] due to Pefari¢ and Miéié, also where p = —1 in
[6, Theorem E] due to Furuta and Pegarié, which is one of typical examples applying the
Mond-Pegari¢ method.

Furthermore we show a generalization of Theorem 6 by means of symmetnc operator
means.

Theorem 9. Let o be a symmetric operator mean with the representing function f. If
A and B are positive operators on H such that 0 < mI < A,B < MI for some scalars
m < M, then

moM

(22) 2 AVB<AcH
and

(23) Ao*BsmVAA;A!B.
Also, |

(24) AVB- AaB<M( VAA; 1)1
and

(25) Aa*B—A!BsM(mZ]’:\; 1)1.

To prove it, we need the following lemma.
Lemma 10. Let m and M be positive scalars. Then
mo*M mVM
m!M  moM
for every symmetric operator mean o.

7



Proof. Let f be the representing function for o. Then it follows that
mo*M (mleM )t mlVM! MVm mVM
m!M ~ (m1VM-Y)1 mloM?! Mom moM
The last equality holds since o is symmetric. | ]

Proof of Theorem 9.  Since the representing function f is concave on (0, 00), it follows

that
FE)-5(8) ¢, -
| f(t) 2 (%)_%(M)(t—-%)+f(%) for all t € [, ¥,
Since §7 < A¥BA™% < M], we have
o -, i m m
JiBATH > TS I (4 %BAr—M-I)+f(—M)I
and hence |
M m
Ao B=atfa-tpahas» I =G 5 _m, AW
o B = A} f( ) i L (B~ 374)+ £ (57)
My _ r(m Mpemy_meM
=f("_‘3_];M)B+?"f(=’“{\;,)_gff(”‘)A
J(f(%_)_—i(;z"‘)) AV B
m M

The last equality holds since ¢ is symmetric, that is, f(t) = tf(¢t!). This relation also
implies

=L - 2 (-1 (D) = s ()
moM
TmVvM

and hence we have the desired inequality (21).
Replacing A by A™! and B by B~ in (22), it follows from I < A™!, B~ < L[ that

m

oM, -1 -1 -1
mivyiA VB =47 oBT
Taking inverse of both sides, we have
-1 ~1\ -1 :
(Fereim) v szt oy
and it follows from Lemma 10 that
mo* M mV M .
*B< !B = !
A BT A B=now 4B

as desired.
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It follows from the inequality (22) that

AVB-Ao B<( 1)A084

< (oo 1) !

Similarly we have (25). | o

As a special case of Theorem 9, we have the following refinement of Theorem 6.

Theorem 11. If A and B are positive operators on H such that 0 <mlI < A,B < MI
for some scalars m < M, then

2V M M+m

(26) T AVB<AnB<2m_A'B

and

(27)

AV B - (\/—2‘/—)2\/‘I<AﬂB<AlB+(\/_2ﬂ2\/;:

Prqof.' Since the geometric mean § is symmetric and selfadjoint, that is, (§)* = § = (f)°,
it follows from Theorem 9 if we put the representing function f (t) = VL.

Remark 12. The inequality (26) in Theorem 11 is a refinement of Corollary 5.39 in [5]
if @ is the identity map.

The power means A m, B is defined by

1+ (A~tBA-Y)
2

Am,B:Ai( ) At forre[-1,1].
Then we have the following theorem:

Theorem 13. If A and B are positive operators on H such that 0 <mI < A,B < MI
for some scalars m < M, then

(28) Am,.B>mn;"AyAuB for 0>r>-1
and
mi M
> .
(29) | AfB2 TS ANB

Proof. If we put

: 1 /14t\* Vilogt
F(t)=%( 2) and  G(t) = S8

then it follows that F(t) and G(t) are monotone decreasing. a
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