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Abstract

We Fourier transform the 2D O(N) spin model N > 2, and start with a representa-
tion of the correlation functions in terms of integrals by complex random fields. Since
this integral is complicated, we use the idea of the Anderson localization to discard
non-local terms which make the integrals difficult. Through this approximation, we
obtain the correlation functions which decay exponentially fast for all 3 > 0 if N >> 3.

1 Introduction: Result and Motivation

It is a longstanding problem to prove or disprove non-existence of phase transitions in 4
dimensional non-Abelian lattice gauge theories. In many points, this is similar to the same
problem in the two-dimensional O(N) symmetric spin models (Heisenberg or o model) with
N >3.

In models such as O(N) spin modes and SU(N) lattice gauge models [13, 17], the field
variables form compact manifolds and the block spin transformations break the original
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structures. In some cases, this can be avoided by introducing an auxiliary field ¢ [3] which
can be regarded as complex random field. The v dimensional O(N) spin (Heisenberg) model
at the inverse temperature N3 is defined by the Gibbs expectation values

1 2
< >= 7oz [ 16 exl-Ha@) [T 662 - N8 (1)

i€A

Here A is an arbitrarily large square with the center at the origin, ¢(z) = (¢(z)V, - -+ , $(z)™)
is the vector valued spin at z € A and Z, is the partition function defined so that < 1 >= 1.
The Hamiltonian H, is given by

Hi=-> Y ¢@éw), (1.2)

where |al; = 30, |zl
We substitute the identity 6(¢* — N3) = [exp[—ia(¢* — NB)]da/2r into eq.(1.1) with
the condition that Ima; < —v [3], and set

Ima'——(u+-r—n—2) Rea--—}-—w- (1.3)
1 2 ] 1 ‘\/N 1 .

where m > 0 will be determined soon. Thus we have

Zy = CW/---/exp[—%<¢,(m2"A+—_ ¢>+Zz\/_ﬁ¢, Hd¢;;ir¢j

7N
= M det(m )2 / / F ]I dwf - (1.4)
where c’s are constants being different on lines, A;; = —21;6§j +4yi—j1,1 is the lattice Laplacian,
F() = det(l+ikGp) 2 explivVNB)_ 9], (1.5)

J

and kK = 2/v/N. Moreover G = (m? — A)~! is the covariant matrix discussed later. In the
same way, the two-pomt function is given by

<tnd> = 3 [ /(m2 T )o )Fw)H.d’fj (16)

namely by an average of the Green’s function which includes complex fields ¥(z), x € Z2,
where the constant Z is chosen so that < @ >= NB3. We choose the mass parameter m > 0
so that G(0) = 3, where

eie  dp
/m2+22(1——cospz) o] or

(1.7)



This is possible for any 7 if v < 2, and we easily find that

m? ~ 32e7*F for v =2 (1.8)

as # — oo. Thus for ¥ = 2, we can rewrite
F(¥) = det3™™?(1+ikGy)exp[— < ¥, G°%Y >, (1.9)
det3(1+A) = det[(1+ A)e~At4°2) (1.10)

where G°%(z,y) = G(z,y)? so that Tr(Gy)? =< 1, G°? >. For any two matrices A and
B of equal size, the Hadamard product [18] A o B is defined by (A o B);; = A;;B;; and we
denote G o G by G°2.

Decompose A C Z? into small blocks A;, and define Ga = xaAGxa:

A = Uzl:lAi,

Then we use the Feshbach-Krein formula (blockwise diagonlizations of matrices), to decom-
pose det(1 + ikGts) into a product of det(1 + ikGa,¥a,) as follows:

det ~N/2(1 4 ikGryy)
n—1 n
= {[Tdet 21 +w(A,A))| [T det V2 (1 + ikGatba,) - (1.11)

i=1 C 1=l
where £ = 2/v/N, A = U414,

1 1
AN =G 000,
1 + iK'GA,'Q/}A'_ GA,,A,II)A, 1 + inGA¢¢Ai Az.AnwA:

1 . 1 o
[GAi]_l + imsbA,- [GA-'] GAs,As"v/)Ai [GA,']—I + ik, [GAi] Gaoa¥a, (1'13)
and [Ga]™! is the Laplacian with free boundary condition and almost equal to the Laplacian
restricted to the square A with no boundary. Thus inf spec [Ga]™' ~ 0 and we can prove
that ([Ga,]™! + ikya,)~* behaves like a massive Green’s function which decreases fast since
1) behaves like a Gaussian random variable of zero mean and covariance [G°%]~1.

Let us consider the measure localized on each block A:

W(Ay, A) = = (ix)? (1.12)

= —(ik)?

dpa = ZiA det ;™*(1 + ikGatha) expl—(wa, G22va)] [ deo(z) (1.14)

€A

where Z, is chosen so that [ dua = 1. Since the norm of G4 is of order O(|A|8) >> 1, one
may think that it is still impossible to expand the determinant. However, this comes with
the factor exp[—(¥a, G%a)], which makes the norm of %GA'QL’A small. To see if this is

the case, we introduce new variables ¥a(z) by

vale) = 2= 363l 0)d), Ca =[G (1.15)

yeA
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so that dpua is rewritten

D IS /. 2 d0(z)
dua = Z det37"°(1 +ikKa) zeIlexp[ 1) —=* Nk (1.16)
Ky = IG‘“(GW)GZ? | (1.17)
Put
- .
Y = Hexp[——z/;z(z)]dwéi (1.18)
dy(z)
- —-1/2[1,v02 02
= det- /[G ] exp[— < ¥a, G2 >]MI'[A T (1.19)
and define
_ 1/p
11 = ( [ 1K pan ) (1.20)
Lemma 1 It holds that
/ TeK3dva = A (1.21)
IKalle < (p—DlIKallz, forallp>2 (1.22)
Proof. The first equation is immediate. See [16] for the second inequality. Q.E.D.

Thus we see that kK, are a.e. bounded with respect to dva, and converges to 0 as
N — o0o. To see to what extent K, is diagonal, we estimate

/TrKZdVA = Z HGA (i) Tig1)

a',eA
[2[G°2] 1, 22)[G) 7 (23, 24) + [G?) 7 (21, 23)[G] 7 (w02, 24))

where x5 = x;. As is proved in [8]

[GR]H(zy) = ~ Ba, Bal(z,y)=0(67%) (1.23)

2/3
The main contribution comes from the term containing 2[G°%]~}(z;, z3) - - -. To bound this,
set Ga(Ti, Tiy1) = B — 6G(%i, Tiy1). Then 6G(z,z) = 0, §G(z,z + e,) = 0.25 — O(Bm?),
(—A)zy = 0 unless |z — y| < 1, and we have

/’I&‘Kgdu > const. Z 7 {ﬂ?Zému-i-ZG xl,m)}

T1EA

> const.(|A] + |A]?)
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which means that K is approximately diagonal but off-diagonal parts are still considerably
large. However, there is a reason to believe that W functions are of short range and small.
In fact we know that

1

[EOVNRERTN @y)| < [Ga]™! > c(NB) T (z,9)

for almost all ¥. Then (GX',1 + m? +iky,) " (z, y) is negligible if |z — y| > +/NB. Moreover
it is shown in two dimension that

1 1
. yy)dp < = T,y),
/ [GA,-]—I _+_ an{\{ (m y) /l’ [GA‘] 1 + msz( 'U)

log(Ng
mgff = cog]s/ﬂ)

if du(v) is Gaussian of mean zero and covariance [G°?]~. This logarithmic correction comes
from the two-dimensionality. This implies that

. 1 1
Nlégoo.ﬂ/-ﬁ;/—A+m2+m1/)(0’$)du_0

Furthermore 4 in the numerators of W acts as a differential operators since

IR Ee ey 1 -1/2,7
v = GE ~ alGa
Thus W (A, A;) seems to be small as NG — oo.
We choose N larger than |A| = L2 i,
NY3-¢ > |A| = L? (1.24)

This assumption is artificial and its role is to simplify the large field problem to bound
the integrals in the region where |¢;| are large. So more elaborate idea may remove this
condition (it is natural to think that N 2 3 is enough).

To imagine that the non-diagonal terms W are small, we perhaps choose L larger than
some power of 3, say L > (8)'*%, § > 0, but we do not know how to determine it yet though
it is now under investigation, see [9].

Assumption: We take N larger than |A| = L? as above, and for sufficiently large A,
non-local terms W are negligible in this case.

Once W is neglected and N is chosen larger than |A|, we can prove the following result
uniformly in 3 : .

Main Theorem: Assume N is sufficiently large: NY/3-¢ > |A|. Neglect non-local
terms W (A, A). Then the two point correlation function

1 |
/-A+m2+lﬁ,'¢(m’y)Iz;‘[duA (1‘25)

decays exponentially fast for all § > 0.
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2 Averaged Green’s Function by the measure du,

Let us come back to the present case where A; are boxes of equal size L x L (L 2 2)such
that U;A; = Z2 and A; NA; =0, i # j. Let us estimate

6 (a9) = [ 69, v)duv) (2.1)
where
1
G¥(z,y) = (m) (z,v), (2.2a)
du(y) = H——det—N/z (1 + ikGatha)dva, (2.2b)
1
dl/A = Wexp[ '(pA,G ’lpA ml;IA (220)

and & = 2/V/N. Expanding G by random walk, we have

G,y = > ] (2.3)
o 4+ m2 + iKapc )™ _
where n; € N is the visiting number of w at ( € Z2. We set
dv=[] dva (2.4)
Acz? '

We first prove our assertion for the Gaussian case:

Theorem 2 The following bound holds:

. 1
(¥) D
/ Gz, y)dv < —¢ T, (z,9) (2.5)
where c

with a constant ¢ > 1.

Proof. Let A be the square of size L x L centered at the origin, and let n, € {0,1,2,---},z €

A. We estimate
st = [ T s @)

For large ) . A 1z such that

) ne > B(#{z € Ain, # 0})? (2.8)

zEA
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the bound follows by the complex translation estimate by putting ¥, — ¥, — ih,, where

_ CJ) — C > 0 if 'nz 2 1
ha*“g\/]v’ cz-—{o =0 (2.9)
In fact we have :
e<hGR2h> e (Laea he)’
D < <
sUn)) < T ey S G miT BN IS

1 rne
< 2.10
= (4+m2+d(ﬂN)“‘) (' )

with a constant 0 < ¢’ < c.
For small {n,;z € A}, we start with the new expression of Da({n}):

H '(;—1__1'— /WHS:““I exp[—(4 + mz) Zsm - "‘;‘2‘ < 8a, [G°A2]_18A >]Hdsz

reA

= HT n(z) /exp[-w < sa,[GR] 7 1sp > Han, (8z) (2.11)

zEA

where T = 4 + m? and
sn—le—s

————————( — 1)‘ds

Since [dv,(s) = 1 and nlogs — s takes its maximum at s = n, we set s, = ng + N
(z € A) and note that

dun(s) = (2.12)

1, €0 d;

= expl-—3 _ , 2.1
dva(s) exp| 23 ]< @ > Jan (2.13)
§ 1
6a(3) = —vni+(n—1)log(l+ %) + 558 (2.14)
-'3 :
= —log(l+-—=)+0 ( ) ,
g( \/—) Tn
- o0 ds
<ehr® > = / e (e=/2 2 2.15)
e Vo (
= 1+0(1/n)>1
Put )
o= — (2.16)

NB

Then if o?n(x) < 1 and N1 < n,[G%2]"n > is small, the integral (2.11) is carried out by
perturbative calculations.
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For large a’n(z) 2 1 or for non-smooth n such that N=! < n,[G%] n >> 1 we use a
. priori bound. See [8]. Q.E.D.

In the case where du is Gaussian, we can obtain G®® in a closed form. See [8] where
mggs ~ log(NB)/N is obtained.

Remark 1 We note that this is similar to the pinch singularity encountered in the study of
the Anderson localization [5], where

/G(E + ie,v)(z, y)dP(v)

has a convergent random walk expansion, and

/ IG(E + e, v)(z, y)|dP(v)

does not have.

3 Averaged Green’s Function by the measure du(y)

It remains to discuss the effects of the determinants det 5 N (1 +---). Set

Sa = {7 €A, TrK: < NI-%}, (3.1)
Ka = GY’yaGY? (3.2)
Since
—N/4
exp[-TrK3] < ‘det ‘N/2(1+mKA)t (1+-ﬁTrKA) (3.3)

and TrK3 = 3 9/2/2, we have

~

/exp[ 'I&‘KA]H dw” = [ exp[— Z~¢ H\;i_ 1 (3.4)

and [(1+ 2 3" ¢*(x))~N/*[],ca d¥: is convergent for 2|A| < N. Even so, it is obvious that
| det —/ 2(1 + mGAw)l is integrable if and only if N > 2 since

det "N?(1 +ikGat) = det ~N2(Ga)det “N2(GR! + iny) (3.5)
w2 1 N/2
~ det (GA)g( ypr S 2M)) (3.6)

holds for 9 such that |//v/N| > O(1)
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3.1 Small Fields, Large Fields and Complex Displacements

Let us estimate

Daln) 1 VB pcn ¥s H e (31
alm) = Za / [H:ceA(4 +m?2 + zm/)m)"z] det M/2(1 + ikGatha) o |
“/—ﬁZzEA LU
- . 3.8
Za det N/2(1 +1Gatha) H v ( )
by putting ¥, — ¥, — ih,, ¥, € R. Then
Da(n)
_ _1_ / e\/ﬁﬂzxeA(W’z‘*-hz) I_I dw
28 J [[Leea(d+m? + k(iths + h))ne] det N2(1 + kGY(ivba + ha)GY?) s
_ 1 exp[— < Y — th, GRE(Y — ih) >] H d
Za [H:I:EA(4 + m? + k(i + hw))"z] det N/2(1 + ikKa(¥a) + kKa(ha)) zen ‘
where
Ka(9s) = GY*paGll?,  Ka(ha) = GY?haGY? (3.9)
and Ka(ha) > 0 since h, > 0. We again put h, = c;/(v/NB) and then
kKa(ha) < —LVA', ¢=0(1) > 0. (3.10)
We repeat the previous arguments by using (n — 1)! fo s""le~%%ds, Define I,(,k) =

{s;kyn<|s—n| < (k+ 1)\/5 s>0} k=0,1,2,---, and let xz )(sz) be the characteristic
function of the interval Inz Then

DA(TL)
(Ic) - dS:B
A / g (Z X! ) CEED / g dif,
9 —<(Ya—iha).G°%(Ya—iha)>
X exp[— Y (44 m? + k(it(z) + h(z))s(z )]det (1 KT &KA(hA)gs 11)

zt")II T"z/ 1] din. (52 / 11

€A 0 reA

X €xp [~<(1/)—ih+i(),G°A2( —zh+z()>——1—< s, [G3] ™ s>+n<h—>]

(Z X (s ) di)z

k

NT® T
x det ;V%(1 + ikKa(¥a) + £Ka(ha)) (3.12)
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where T, = 4+ m? + khy, (s/T)z = /T

dn(s) = e s, G = S(GEI o) (3.13)
and |
29 = [ewl- <= i),GR i) >
x det 32 (1 + inKa(¥a) + kKa(ha)) ] dvs (3.14)
oh

We then change the contour of ¥, by replacing v, +i(; by ¥ (namely we put v, — ¥—i(,).
The contours depend on {s;;z € A}. This yields

Da(n)

1
= 0 ", an: Sg :(ck) ) | d.
) 1l I I (3re)

TEA
1

X exp [- < (¢ —ih), GR (¥ —ih) > ——;—f < Ts,[G‘,’f)’l%s > +k < h,% >]

x det 32 (1 + ikKa(a) + 6Ka(ha) + 6Ka(Ca))

1 1 1 021-1 1 s
=0 T;zf Hdun, Sz exp[-—-ﬁ<fs [Gx —fs>+n<h,f>]

=y
x50 / Il\ (Z X sx)> di: det 3 V*(1 + ikKa(va)) exp [ < 9, G2 >]
x det 372 (1 + £Ja(Ca)) X exp[Rs) (3.15)
where
Ka(a)(@y) = ZG""’ 7€) (621" 7) OGL*€ v),
R s T
and

Ry = %TI‘ [(m -1+ iKKA('l/)A)) RKA((A) + "72(‘]2 - KA(CA)2)}316)
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3.2 KA(Z/)A), KA(CA) and R3

Let
iA]-1 |A]-1

Ga= ) eP, GZ=) &b (3.17)
i=0 i=0

be the spectral resolutions of the positive matrices Ga and G92 respectively, where ey > €; >
et 2 €A1, €0 = €1 2> - -+ > éa|-1, P,P; = §; ;P; and so on. Then

lal-1 a1y
G{" =Y var, GH =3 oA (3.18)
i=0 i=0 *

It is convenient to introduce the abbreviation for the Green's function with the largest
eigenvalue part extracted:

G(U) = zekPk = GA - CEIPO
k#£0

We let {ui}iﬂfl and {ﬁi}iﬂfl be the normalized eigenvectors such that

(3.24)

GA'U,,' = €;U;, Gcgﬂi = é,”ﬁi (319)
Then )
Pi=|u><wl, P=|#>< (3.20)
and for small A, we have ' '
e = |AIB—0(1), e=0(1)>0 (3.21)
é = |A|B2-0(0), é =2Be;+0(1) (3.22)
(¢ # 0) and
11 - 1
.1 P11 -1
Po~Po~—lUS<Ul==} . . . |, (3.23)
o PV ><Ul=gl sy
11 - 1
where U =*(1,1,---,1) ~ y/|Alug. Moreover we can symbolically write
1 -1 0 0
-1 1 0 0
P~B N% 0 0 0 -0
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namely P; (i # 0) is a matrix which represents a lattice differentiation since < u;,up >= 0.
. Note that e; £ O(log|Al), eo = B|A| — O(]Allog|A|) and

(R = 3 TG = lilEC‘)P"’ RBOR=0(67)  (3.29)

We insert ¢ = G~'9/v/2 into Ka and use & = 20e; + O(1) (i # 0), B, = P, + 0(8™1)
and Z#o P, =1 - P, to find that

Ky = 222 )Po+*/_(ZP P)+ 3 (P) Po) +0(87Y)
2|A i#0 i#0
(> ¥(x))

= _\/_IfA_I—(l —V2)Py + @ (Pozz + z/JPo) +0(87Y)

K2 = EX+ (1- \/§)Y2] Py + \/54‘ 1\/@’ (P0¢+‘;P0)

+23p + 087

j

where 1 '
X=) 9 Y=—"ouN 4 (3.26)
X% Y- TE

Note that TrK3 = 3 12/2 as expected. Just in the same way, we have
Ka(¢)=G{*G{* = 6" ( N > ohg ) Gy’

- (Zen+; (1) (160 2m + RG2I )] + @O GE

and

Ka(¢)? A
- P gy <5 Gan + (v )m(Zc)(Z[G“”]-Wi) P
48N T N|A| A T

Al 72 o 1sa 8
[(ﬂl ) o+ gres

* 2\/\/1% (Po(F o OIGRT + 1G22 0 ) 1)
Al

tang!

(RUIGDI22) + (G172 Ry)

(G RGN 2) + [GRP2IGLK G2
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Here ¢ = N"Y2(GR)"(s/T)(z), (z o y)k = Yk for two vectors z and y, g = B|A| —
O(|Allog|Al) and we have used PoP; = 0 (i # 0) and

PG ( -1/2 8 )[G(O)]l/2C[G ]1/2 - PO("TST, o C)[G(AO)]I/Z

We can obtain similar expressions for K (1))" etc., and Rs is represented by these functions
of ¥ and (. We decompose our set {s;;s, = 0,z € A} into 2 regions:
(1) small s region
(2) large s region
and each region is also decomposed into large v region and small 1 region, where the small
1) field Sa () means the set of 1 such that

Sa(®) = {t, = T(G;w )(z), D U2 < N7}

TEA
and small s field Sa(s) means the set of s, such that

2
Sa(s) = { n(zx) + v/n(z)s(z) > 0, Nﬂz(i—%> < 0(1)

1 s2
Yol == = 0(1)} (3.27)
N°F o T

3.3 Small field Region of s,

For small smooth {s.}, we see that det;"/*(1 — kJa (¥)) yields a convergent small factor
uniformly in %,. Put

det 3V2(1 + kJa (1)) = exp|€s]
Then

|&s| =

3\/_
= 0(1)~ <= [G°2] 15

Contrary to the above, we must be careful about R; whlch depend on 1 sensitively.

—TrJ3 +- ' = o(1)TrK (Ca)?

3.3.1 small ¥ region

We first assume 1 are small. Let us begin our calculation

1 dip,
I = ZO /exp[£3+R3]det3N/ (1+ikKa)exp[— <1/),[G°Az]1/}>]H 2

V2r
= = /exp 53 + Rs] det TN/ (1 + iRI(A)dVA (328)

expl-3 S]] S (3.29)

dl/A
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by decomposing {@z € R;z € A} into small field region

Sa={>_ v <I|AIN}, £€(0,1) (3.30)

and its compliment S¢, where the normalization constants Z and Z,‘f’ are defined in the
obvious way. Thus we evaluate

I=1Is+ Ise (3.31)
where :
Is = = / (1+ & + Ry + O(R3)) det V(1 + ik K )dua (3.32)
Isc = §10~ _-N/Z(l -+ ?KKA('(/) —3h + ig))eimﬁzzwrihﬁi@)
A

Xexp[—%<—[G02]1 >+2n<hT>+2K<¢, }Hf;g_z(333)

We first calculate the small field contribution Is given by

< xsDa > 2
I — {14 < ys& <
S <Dp> { + < xs€3 > + < xsR3 > + < xsO(Rj3) >
< xsDa;xs€s > < xsDa; xsRs > . < xsDa; xsO(R3) >
+ + (3.34)
< xsDa > < xsDa > < xsDa >
where |
Da =det;"?(1 +ikKa), < A>= /AduA
and

< A;B >= /ABdu - (/ Adu)(/ Bdv)

We calculate < D > and < xsD > first. We assumed that

Al-2 .
1Al=2 SNY2%E p<ce<< (3.35)

Then
< xsD >= / det ;V2(1 + ikKa)dua = 1 — O(N~3) (3.36)
Xs

To bound < xs<D >, we use the bounds (3.3), and set r> = 2TrK3 = 3 42. Then for
R? > py = (|A| — 2)/2, we have that

Al =2 1 \M*
('(27lr)|A!/2 /»R (_.._1+ %ﬂ) riA=1dr < O(exp[-N"?))
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This means that
< xsDa > _ < xsDa >
<D> <xsD>+<yxsD>

=1 — O(exp[—cN'3)) (3.37)

Estimates are straightforward and we see that the most significant contribution is from
TrK% (¥)Ka(¢) in Rs and we have:

<xsR3s> = \/_I (Clﬂ ZC“) + ﬁIA (Z[ (0) 1/2T))
\/IZ—(E[G(O)] 128 )

\/NTIG(AO)( + (smaller terms) (3.38)

where ¢; = 1+ O(|A|™!) (i = 1,2) are positive constants. Moreover we have (see [8]) :

1 021-1 5 1
Yoo = WNZA([GA] =) (x)=—ﬁ<zﬁdaA(z) +0(8" )) (3.39)

TEA €A

1
) = of 2o 4
TGY¢ =3 § :gm — Treg Py

log A| sz
( A ) o - (- ZC"HZN_ NiA|

Then the largest contribution comes from < ysR3 > and is negative, and other contributions
can be made less than — E Sz/Tx

and

3.3.2 large v region
For {4} ¢ Sa, we start with

1 . L
Iss = == [ det ™1+ ikKa(y —ih +i())e!VNP Eal¥a—ihs+iG:)
ZA Sc ‘
2 021~ S . 8 d"z«:
xexp[—N<—[G 5;>+2rc<h,T>+m<1p,T>]]_—]:\/5.7_r
= 517 det “M2(1 + ik Ky (1)) VNAE, ¥ (3.41)
A JSe

x det “¥2(1 + kJa(h = ¢))eYVBEa(he=Ca)
dis

(3.42)

: 2 E 02
XGXP[—N<T,[GA] T>+2n<hT>+m<¢, ]H
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where ) 1
Ja(h—¢) = Ka(h — 3.43
2 -0= e 2 e (343)
and then
2 18
X exp —N<T[G] >+2n<hT>+m<¢, ]
=det ;31 + kJa(h — g))
[ 1 02]— 02
xepr—]—V—<T[G] >+m<hT>+m<¢, >+<h[G ]h>]
2iKA(¢) 2 2
wcoxp [T (et ) Kt = O+ THUR (b~ ©) ~ K3(h =)
and

ReTrJ3(h-¢) £ TrKi(h—()
1 S 02 02
N<':F’[GA] T> n<hT>+<h[G]

Then putting S§ = U2, Sk where
S = {{B} N1 < 92 < (k 4+ 1)NV%)
we estimate the.integral on each shell of 8¢ :

di) |A| — 2! (kN1-26)(1A1-1)/2
ol

-N/2
ldet (1+ikKa(y \/ﬁ (2m)AVZ (1 + 2kN-2%) N/

3.3.3 integration over small-smooth s,

It remains to integrate over {s; = n, + 1/N;3:} such that 0 < s, < NG and |s; — Sp4,| <
v/Np. Sine the contribution from Is. is negligible, we can apply the previous methods of
analysis: we set

dvp(s) = 0 11)‘ e V™ (n 4+ /nd)"y/nds
= o ¢ ;n'"\/ﬁ exp[—v/n3 + (n — 1) log(1 + §/v/n)]ds
= expl—5# + (/v 2
We note that Ka(z,y) m(tb(r) + 9(y)) is not of short range, though Ka(z,y) =

O(|A|~Y/?). This long range nature of the interaction is expected compensated by the An-
derson localization like phenomena.



3.4 Large field Region of s,

For {s;; s, > NB,3z € A} or for {s;;|sy — sw| > VNB, 3z € A, 37 € A, |z - 7| = 1},
we need a priori bound to estimate the two-point function. Continuing the argument in the
previous section (3.1), we start from

Da(n)[c,
L / exp[— < ¢ — ih, GR(¢ — ih) >] II "
Z8J [[oead+m? + k(ithg + hg))n=] det 37%(1 + i Ka(¥a) + kKa(ha)) sen
(3.44)

(Z X (sz ) dij:

1 1 8
— —3 7 02(0)y _ 4 ] —_—— e - 021-1 _ =
xexp[ < (W —ith+i(),Gx(Y —ih +1i¢) > v < Ts, [GX] Ts>+li<h,T >]

x det 37%(1 + ikKa(¥n) + 6Ka(ha)) (3.45)
We choose h, = ¢,/(6vN). Then

= o [, Memt [ 11

z€A ® zeA

2 2
2y o (L) _ |4
< h,Gxh >< N <N

| . P
< (m) (347

Then if )" n(z) is so large that 3" n(z)h(z)/v'N > |AJ]*/N, namely if Y n, > G|AJ?, we
easily see that the following a priori bound holds

(3.46)

and we see

1
IH (4 +m? + ik(h, — thy))"s

1 E:EAn(m)
< | — 3.48
mip=m?+a?, o= —]-Vc_ﬁ (3.49)

Therefore in the following discussion, we assume that Y . n. £ B|A|? and {s; =
Ny + /Mgy, T € A} satisfy

(1) Sz —Nﬂ,aze A, or
(2) |8z—s»|>/NB,IzeA I |jz-12|=1

If (1) occurs, then the factor

dn(s) = re”ds
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restricted on this region yields a small coefficient less than

If (1) does not take place and (2) happens, then we can implement the complex deformation
Y — Yy +i7(s, Where ¢ = (N)™Y2[G32]~'(s/T) and 0 < 7 £ 1, and we see that the following
factor arises from the complex deformation:

1-(1-7)% 8 0118 < 1-(1-7)% s s
exp[—T < T’[GA] T >] = exp[_. 2N,@ < T?(_A)T >]
B 1-(1-7)? 2
expl-— x5 %}(sz ~s)]  (3.50)
On the other hand, since
472§ o1 1S
IkKa(TOllz = 77 < 7 [GR] ' 7 > (3.51)
we have the bound
- 1
’det N1+ 5KA(TC))~ <exp [O (\/_TV—) ||KA(T()||§} (3.52)

which is close to 1 and has no effects on the bound (3.50) if N is large.

4 Conclusions and Discussions

We have shown that if the non-local factor

[T det =72 (1 + W (A, Ay))

are discarded, then the resultant system exhibits exponential clustering for all 3 if N is large
enough:

1
<sose> ~ [ e 0.0) [T duava) (41)
< exp[—meyy|z]] (4.2)
where mZ;, = m? + ¢(NB)~! and

dua (’l/)A) = det 3—N/2(1 + il%KA)dVA (43)

is the complex measure localized to each block A of size L x L in Z2. The assumption
N >> 1 is to simplify the large field problem and could be removed by additional efforts.
The smallness of W(A, A) is due to the Anderson localization type arguments which remains
to be justified [8, 9].

222



Acknowledgments

K.R.I.’s and F.H.’s works are partially supported by the Grant-in-Aid for Scientific Research,
No0.13640227 and No.1554019 respectively, the Ministry of Education, Science and Culture,
Japanese Government.

References

[1] M.Aizenman, S.Morchanov, Localization at Large Disorder at Extreme Energies: An
Elementary Derivation, Commun. Math. Phys. 157: 245 (1995)

[2] D. Brydges, A Short Course on Cluster Expansions, Critical Phenomena, Random Sys-
tems, gauge theories, Les Housche, Session XLIII, eds. K.Osterwalder and R.Stora (El-
sevier Science Publ., 1986), pp.129-183.

(3] D. Brydges, J. Frohlich and T. Spencer, The Random Walk Représentation of Classical
Spin Systems and Correlation Inequalities, Commun. Math. Phys.83: 123 (1982).

[4] T. Chen, Localization Length and Boltzmann Limit for the Anderson Model at Small
Disorders in D=3, arXiv:math-phy /0305051

(5] J. Frohlich and T. Spencer, Absence of Diffusion in the Anderson Tight Binding Model
for Large Disorder or Low Energy, Commun. Math. Phys.88: 151 (1983) '

[6] J. Fréhlich, R. Israel, E. Lieb and B. Simon, Phase Transitions and Reflection Positivity,
General Theory and Long Range Lattice Model, Commun. Math. Phys.62: 1 (1978)

[7] K.R.Ito, Renormalization Recursion formulas and Flows of 2D O(N) Spin Models, Jour.
Stat. Phys., 107: 821-856 (2002).

[8] K.R.Ito, H.Tamura and F.Hiroshiam, Two Dimensional O(N) Spin Model and Anderson
Localization with Complex Coefficients, in Preparation (2006).

[9] K.R.Ito, Paper in Preparation (2006).

[10] K. R. Ito and H. Tamura, N Dependence of Critical Temperatures of 2D O(N) Spin
Models, Commun. Math. Phys., 202: 127 (1999)

[11] C. Kopper, Mass Generations in the Large N non-linear ¢ Model, Commun. Math.
Phys., 202: 89 (1999)

(12] E. Lieb and M. Loss, Analysis, Graduate Studies in Math. (vol.14, American Math.
Soc., 1994)

[13] A.Polyakov, Interactions of Goldstone Bosons in Two Dimensions, Phys. Lett,59B: 79
(1975).

223



224

[14] V. Rivasseau, Cluster Expansion with Small/ Large Field Condition, in Mathematical
Quantum Field Theory, I., (CRM Proceedings and Lecture notes,vol.7, 1991), ed. by
J.Feldman et al.

[15] C. Shubin, W. Schlag, W. Wolf, Frequency Concentration and Localization Length for
the Anderson Model at Small disorders, Journal d’analysys math., 88, 173 (2003).

[16] B.Simon, The P(¢)s Euclidean (Quantum) Field Theory, (Princeton Univ. Press, 1974)

[17] K. Wilson, Confinement of Quarks, Phys. Rev. D 10: 2455 (1974) and Renormalization
Groups and Critical Phenomena, Rev. Mod.Phys. 55: 583 (1983)

[18] X. Zhan, Matrix Inequalities, Lecture Notes in Mathematics, No.1790 (2005, Springer)



