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Triviality of Hierarchical P(¢) Model

Kenshi Hosaka!

Abstract

We consider the Kadanoff-Wilson renormalization group (RG) [8]
for a class of hierarchical P(¢) model above four dimensions by us-
ing Gawedzki and Kupiainen’s analysis. We prove triviality for the
class, namely, prove existence of critical trajectory that leads to the
Gaussian fixed point.

KEY WORDS: Hierarchical model; triviality; renormalization group; P(¢)
model.

1 Introduction

Hierarchical spin model is an equilibrium statistical mechanical system intro-
duced by Dyson, Bleher and Sinai [3] [1] [2]. This model is known as a model
suitable for tracing block spin renormalization group (RG) trajectories, i.e.,
the RG transformation is reduced to the following nonlinear transformation
R of a function (single spin potential) v = v(¢):

expl-Ro(4)]
_ Jexp[=3L8u(L~4 22 4 ) + v(L~@212¢ — 2)]|dv(z) 0
= oL (dn(s) (

where dv/(z) = Gz exp(—32%)dz, and L is an even integer valued constant.
It is easy to see that the trivial function v(¢) = 0 is a fixed point of R, which
we call the Gaussian fixed point. If, for a class of single spin potentials,
RG trajectories with initial potentials in the class, converge to the Gaussian
fixed point, then we say that the class of functions is trivial. Gawedzki
and Kupiainen studied this recursion in detail, and proved (among other
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things) the triviality for #* models with some small ¢* coupling constant in
4 dimensions [4] [5] [6]. See [6] for a review of their results together with the
relation of (1) and the hierarchical spin model. The purpose of our work is
to extend the results of Gawedzki and Kupiainen and prove triviality for a
wider class of potentials. To be specific, We consider the following class of
single spin potentials:

w(g) = pg®+IP(4), (2)
N
P6) = Sam:¢* 8
k=2
where : ¢?* : is given by
/oo LAY (L7912 4 2)% - du(z) = [H-(k-Dd . g% . (4)

-00 +

(For example : ¢® := ¢®— L2t — 45424 i L_z‘c)’((’l_ L-4)¢2+ “const”.) Let
us define a class of initial single spin potentials V4(N, L, D, Cy,ny) satisfying
the following conditions for constants L, D, C;, and ny,

(Pa) for Im¢| < cimd/™, exp[—uo(¢)] is analytic, positive for real @, even,
and satisfies
' N N
le=C240)| < exp[D — 3~ ayolgf2 + 3 Assazeo(Ime)*],  (5)
k=2 k=2
where {Ag} are universal constants, and ago = A - agk
(Pb) for |¢] < Cing/™, (vo)»4($) is analytic,

N

(v0)24(®) = Xo 3 1 6% : +(vp)2n+2(d) (6)
k=2
with
C__L™ Cyop Lt ' 1 1 ,
< — _ —_
COL—A"nal < agko < C’(',L'4n5'1, Co>0 (8)
|(vo)s2v+2(8)] < ng*/*. (9)

We will prove the following for our class.
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Theorem 1.1 In d > 4, there exist positive constants:
D(N)1 CI(N’L’D) > La ﬁO(N’L)D;Cl) 2 L481

such that the following holds. Let C; > Ci(N, L, D), ny > #ig(N, L, D, C}).
Define the RG as (1). Then there exists g € R such that the iterates v,
of the recursion converge to zero uniformly on compacts in C!, if we start
from vo € Vo(N, L, D, Ch, no) With pto = peris.

To prove of the triviality for (1) with potentials of the form (Pa)-(Pb), we
will show that the parameters will enter the region where the Theorem of
Gawedzki and Kupiainen [6] can be applied (i.e. G-K region), after some it-
erations (finite time iterations) of the RG. The point of our proof is to change
the induction hypothesis after some iterations to reflect the dominant terms
in the potential. The proof goes along the following line. In the beginning,
we are in the region where (v,)>2n () is dominant. For properly chosen ini-
tial data, (vn)>2n(#) decreases rapidly, and we then go into the region where
¢*N =2 term of vp(¢) is comparable to (v,)>2n(¢). As the recursion proceeds,
the ¢?Y=2? term becomes positive and dominant, and then ¢*Y=* becomes
positive and dominant etc. After all, v,(¢) enters the G-K region. To trace
the trajectory, we will divide up the induction into N + 1 parts along the
trajectory and impose different induction hypothesis for the ag,, dominant
~regime for k= N,N —1,---,2,1. (Compare the induction hypotheses L1.2a
and L1.2b with L1.3a and L1.3b, respectively.) We will prove this by means
of two lemmas. First, for N > m > 2,n > 0, let V*(N, L, D, Cy,nq) be the
class of potentials v,, satisfying:

L1.2a for [Im¢| < C;(L@™~4mng)l/2m  exp[—v,(¢)] is analytic, positive for

real ¢, even, and

‘ N N
le=@249) < explD — 3 azhi|6l? + Y Azkane,n(Tme)™), (10)
=2 k=2

L1.2b for |¢| < Ci(LE™mng)/2™  (v,)54(s) is analytic, and
N
(a)24(8) = D amnd®™ + (va)san+2(9), (11)
k=2
with
|aan — L Pmgy | < nLEPmp =N fork=1,--- N  (12)
|(vn)s2wsal < (ng*>N)L=N, (13)
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Lemma 1.2 Let 3 < m < N There exist constants
D(N),Cy(N,L,D) > L,ny(N,L,D,Cy) > L*8 - (14)

such that the following holds. Let 1/2N > § > 0, C; < Cy(N,L,D), ny >
no(N, L, D, C;) and n > 0 satisfy the inequality

) (d-2m+2)n,,—111/(2m~-2) if 3
(d-2m)n_—1y1/2m (L T ) um > 3,
(L ng) > { (no + n)—1/4 if m = 3. (15)

Suppose also that vy € Vy(N, L, D, Cy,ng), and v, € V*(N, L, D, Cy,ny).
Then, there exists a closed interval J, C I, = [—=(no + n)™'7%, (no + n)~1-9]
such that for u, running through J,, vny1 € V4 (N, L, D, Cy, ng). Further,
the map pin > piny1 sweeps I, ;1 continuously.

Since Vo(N, L, D,C1,m) = VY (N, L, D, Cy,ng), we can iterate Lemma 1.2
for m = N, and for n > 0 as long as (15) is satisfied. For 3<m < N — 1,
put

N, = min{n € NI(L(d—2m)nn61)1/2m < (L(d—2m+2)nn61)1/(2m—2)}. (16)
Obviously, 3log, no < ny, < log, ny. By Lemma 1.2 for m = N,

Uny_1 € vfﬁv_l(Nv L)D701an0) = VN—I (NaL»DyClyn0)~ (17)

nN-1

Therefore we can restart applying Lemma 1.2 for m = N — 1. Since

m
Vnm-—l

(N7L1D7017n0)=vm—1 (NyL,D,Cl’nO) (18)

Nm-—1
for each m, this can be continued until n = ns. Let

ny = min{n : (no + n)/* < (L*ne)"/%}, (19)
and let us define a class of single spin potentials Vﬁz +n(N, L, D, Cy, 1) sat-
isfying:

L1.3a for [Img| < Ci(ng + n2 + n)/4, exp[~vn,+n| is analytic and positive
for real ¢, even, and

le"(")n2+n)24(¢)|

N N
< exp[D - Z a,lc/,ff |¢l2 + Z A2k“2k,n2+n(lm¢)2k]a (20)
k=2 k=2

167



L1.3b for |¢| < Ci(no + n2 + n)4, (Unyan)>a(d) is analytic,

N
(Vng+n)2a(9) = Y Goin : 6% 1 +(Ungin)s2n+2(9), (21)
k=2
with
|@angin — a0] < (g +n)ng =2V, (22)
|f12k,nz+n _ L(d—2k)(nz+n)n0| < (n2 + n)L(d—Zk)(nz+n-1)n6-1—2/N’ (23)
|(Unyn)22n+2(@)| < L3n—ma/NpS3/2N, (24)

Lemma 1.3 There exist constants
N,D(N),C’l(N, L,D) > L,n(N,L,D,C;) > L8

such that the following holds. Let N=! > § > 0, C;, > Cy(N, L, D), ny >
ﬁO(NyLa Dy Ol)’ logLnO Z n 2 0. 'UO(¢) € VO(N) LyD) ClynO)y and Una+n €
V2 (N, L,D,Cy,n0). Then, there exists a closed interval Jy, n C Inj4n =
[—(no + n2 +n)™17%, (no + ng +n) 1] such that for pn,+n running through
Jnatns Ungdns1 € V22+n+1- Further, the map fin,4n > finy4nt1 SWeeDs Instnta
continuously.

The proof of Lemma 1.3 is close to the proof of Lemma 1.2. A different point
from Lemma 1.2 is the difference in the condition of the region where vy, 1.n(¢)
satisfies analyticity. In fact we require that exp[—vn,4n(¢)] is analytic for
IIm¢| < Ci(no+ny+n)'/4 in Lemma 1.3. Because ¢* term becomes dominant
compared with (vp,4n)>6(¢) this time. With Lemma 1.3 we can continue

iterations, and we can make sure that after a finite number of iterations, this

potential is in the region where Gawedzki and Kupiainen studied [6]:

G-Ka e~@)24(®) ig analytic in [Im¢| < Cy(no + n)!/4, positive for real ®,
even and

| exp[~(vn)24(D)]] < exp[D — A28 + Auha (Im)f], (25)

G-Kb for |¢| < Ci(ng + n)'4, (v,)>4(¢) is analytic,

(vn)24(8) = And* + (vn)26(9) (26)
with ) )
C_L- CyL- 1 1
o + 1 S )\nsno+nac——zs'7c+_24, (27)
|(vn)26(8) < (no +n)~3/4 | (28)
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In this class VS-K(L, D, Cy,ny), Gawedzki and Kupiainen proved the
following,

Theorem 1.4 (Gawedzki and Kupiainen) There exist constants D,
C’l(L,D),ﬁo(L,D,C&) such that the following holds. Let C] > él(L, D),
ng > fig(L,D,C;) and n > 0.

Put

6An
1-L-2

where (vn)>4(¢) € VE~¥(L, D,Ci1,n0). Then, there exists a closed interval
Jp C I, such that for u, running through Jn, (Vn+1)34(@) = Vpp1(d) —
Png19?+ 1 6’\"“ 2ty 42 € YO K (L, D, Cy,no). Further, the map puy, — fin4; SWeeps
Ina contmuously

Un(®) = in — & + (vn)24(6) (29)

2 Proof of Lemma 1.2

Now we start to prove Lemma 1.2. Let 2 < m < N, we will only prove that
Vp(¢) = Vpy1(@) is in VI, (N, L, D, Ch, mg), if iy is in I,. As before, we sepa-
rate the cases into two ; small field case or large field case corresponding to the
cases either |¢| < C; (L("’”“4)(”+1)n0)1/ 2m_or |Img¢| < Cy(LEm—4n+l)p,)1/2m
respectively. In the small field case, we prove that v/ (¢) satisfies L1.2b/,
the condition L1.2b with n being replaced by n + 1, by using the Taylor
expansion, and some estimation of the Gaussian integrals as in [6]. As for
the large field region, we only investigate global behavior of v/, (9), i.e., we
confirm that v}, (@) satisfies (13) of L1.2a’, the condition L1.2a with n being
replaced by n+ 1. We use K for calculable absolute constants, whose values
will vary in each occurrence.

2.1 Small field region analysis

Let v, € V™. We must also prepare some notations. Write x1(z) = x(|z| <
(L@m=4)nn4)1/2m) and throughout this subsection, we assume that ¢ is in the
region |¢| < ¥ LC;(L@m4nny)1/2m  Note that we have to put C; to satisfy
the mequahty |IL7l¢ % 2| < C’l(L(z’"‘4 "no)/?™ for |z| < (L@m=nrp,)l/2m
and |¢| < 12 LC; (LEm-4nng)l/2m  Next, decompose vn41 (@) as follows,

vns1(9) = V() =0, (9)+ 71, (9), (30)
~ 4
e = [ expl- 2 en(L7 £ 2)|dn(2)/ (6 = O)omat (31)
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where
(¢ =0)sman = /exp[—L4vn(z)]dV1(z), | (32)
dn(e) = xS (3)

2.1.1 Estimation of v, (¢)

Let us take a logarithm of (31).
N

v (0) = Y L (agem — conn) 9™
k=1
—log / #@ duy (2) + log(d = 0)smaits (34)

where cgx n, wg(2) are given by

E A2k,n ¢2 Z(a%,n - CZk,n)¢2kv (35)

-
( ) = wo(2) + wa(2)¢? + ws(2)e* + we(2)4® + w>s(d, 2), (36)

wo(2) = Liv,(2)

wap(2)
X (2% J2(N-p) _
= 3 1) (ke = oa)® + (e, (@

forp=0,---,N—1and

L-4gaN+2 ey PV »
WoN+2($, 2) = (2—N+—1)‘{/; dt(1 —t) m(vn)zmn@ ¢+ z)
1 N+2
+ /0 dt(1 - t)2N+1:27§;5(vn)22N+2(L“1t¢ -2)} (38)

From the conditions L1.2a - L1.2b, v,(4) is even and analytic. We can

estimate %(Un)zmw((ﬁ) on the support of dv;(z) as follows by using the
Cauchy formula and (13),

|(vn)2n42(2)]
1 N1 aneg G2V
< (2N+2)'/ dt(1 — )2V 1|22 +2d s7s (Vn) 22n+2(t2)]
¢ o W1m=z) ),
. (2N +2)! (51 — 1)2N+3n0ﬁvno L+ n|g PN+ (39)
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di:;(vn)zm+2(z) to a";gv(vn)zm.,.g(z) can be estimated as (39). From the
perturbation expansion:

—log / e~ @ dy,(2)

1
= - log/dvl (2) + (wg(2)), ——/o dt(1 — t)(we(2); we(2)),,  (40)
where

(), 5/---e‘t“"ﬁ(‘)dul(z)//e“”""(‘)dul(z). (41)

Now, we shall estimate each part of (40). Using the estimation of the Gaus-
sian integrations, we get

(we(@))o = L(va(2))o

N-1 N ok

+3 3 L4_2k( )(azk,,. — Cakn)? N P (2p - I
Y, ~00 2%

+ 3 Ry, (L,no,n)¢%* + (wyant2(d,2))s (42)
k=2

~00
where, the terms R,;, (L,nq,n),i =1,---, N satisfy

| }"'3(2);0 (L,no,n)| < (n6—3/2N )na(N+i)/m [~ (U/N+(N+1)(m=2)/m)n. (43)

From (39) and the similar estimates for gy(vn)zgjv.*.z, ey ggy(uﬂ)zmﬂ, we

obtain,
(wean+2(8, 2))o| < LAV (1 4 (ng)~H/mLU-2mIn/my(nz3/2Ny  (44)

Next we estimate
;a1 = Dwale o = [ 0 -0 5 (G ),
= /0 ' dt(1 — t) (wo(2); wo(2)), + /0 1 dt(1—t) D (Wi; W)y, (45)
1,j7#0

where .
Wos = w?i(z)(ﬁm = 0’ MR 2N
“ wyan+2(4,2) i=N+1

The cumulants are

(’lflz,'; ’lI)gj)t = (e"t‘% (z));l (ﬂ)2iw2je—tw¢(z) )0
- (e—hm»(z))(-)-z (o3 e—tw(z))o (s e-tw¢(z)>o. (46)
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Note that the support of duy(2) is |2] < (L™ 9"ng)/?™, From (15), we get
the uniform estimate |wy(2)| < K - L*NC2N for |2| < (L@m=4nny)l/2m and
|¢| < m%:‘l(L@m—‘i)nno)lﬂm_ Hence,

D (¥

(3.9)#(0,0)

2N 2N ~ ~ ) n
<RI (il + (@alo(Fasle).  (47)
(1,1)#(0,0)

From (37)-(38), we can estimate | fj dt(1 — t) Yo(i,5)#(0,0) (Wai; Wa;),| similarly
as in (39), and we obtain

|2nd term of RHS of (45)|
< KK Ln=2(|g? + f: L~ (4-2kn=2) 12k
k=-}2-|higher order terms|. (48)
The higher order terms are estimated as follows,
|higher order terms| < Ke® LV O [AN=1)-n/NCAN-1)(,~4/2N) = (4q)
Next, we estimate [y dt(1—1t)(wo(z); wo(z)),. Since (wo(2);wo(2)), is analytic
function in |¢| < 1 LC;(LEm~4ng)Y/?™ by Cauchy formula we get

| [ dt(1 = t) wn(e)s e, — [ de(1 ~ oz} ozl
< KexplK - [V GI) - Lng"| 6. (50)

So we have,

| [ a0 = 0wl wae)), — [ a1~ ) un(2); w2yl
< Kexp(K - LN O Lng? (| + - - - + L~4-2Mm|gj2N)
+|higher order terms|, (51)
|higher order terms| < KeK L2 Ot [AN-1)-n/NCAN=1)(,~4/2Ny = (59

These coefficients are large, but not terrible, because we can take ng suffi-
ciently large. In the following, we put ny/? > K . CHN =1 [AN-1)gK-L*NOIN
From (34) and (40), we infer that

'U;z (¢) = Z L4~2k(a2k,n - C2k,n)¢2k

k=1
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N N
+3 3 L3 *Coplask,n — Conn) (2N — 2p — 1)1g?

p=1 k=1
2N ~ '

+ Z Ry (N, L,no,n)¢2k+ (Un),22N+2 (¢), (53)
k=1

where, the terms 1}2; (N,L,ng,n),i=1,---, N satisfy

~ N ~0,0
| Rai (Na L,no,Tl)l < L—10~(4~21)nn0 21N + I RZi (N7 L) n07n)|7
i=1,-,N, (54)

and from (44) and (52), (v)'sqy 4 (9) satisty

~

| (vn) 5 (#)] < LA=MN(1 4 L-U=2min/m (ng)=2/m 4 [=4)(ng¥*N),  (55)
for |¢| < ILC;(LE-2™mng)l/2m Notice that

1
(6= O)ama = g [ din(2) = (wo(2))g + [ de(1 - &){wo(2);wn(2) ho—o-
So we can check that the constant term (¢ = 0)smou vanishes. The esti-
mate (55) is a little weaker than what we want (see (13)). So, we need a
stronger estimate. Since v}, (¢) is analytic in |¢| < 2LC,(L~@-2mInpg)1/2m,

¢~ 2 (v::)'>8 (4) is also analytic in [¢| < RLC,(L~¢-2mrng)t/2m  We
obtain from the maximum principle

Y || ~3/2N
| (Un) >2N+2 (¢)| < ((].OL/ll)Cl (L_(4—2m)"n0)1/2m )2N+2(n03 )

X(L4—n/N(1 + L~—(4-2m)n/m(no)——l/m + L_4)), (56)
so that for |¢| < Cy(L-U-2m)n+1)pq)1/2m

~

| (0n) pavga (8) < (35PN 4217 B0+~ =3mam)

X (LA (L 4 L E3mn/m (ng)=Vm 4 L4 (ng*/™Y)).  (57)

2.1.2 Estimation of 121 (¢) for |¢| < ¥ LC,(L~"-2minpy)t/2m
Represent (30) as |

,,Z (¢) _ log (1 + fexp[_l' %L4 z:!: v:l(L—l¢ + Z)](l - Xl(z))du(z))
e~ (¢ = 0) sman
+1log(¢ = 0)sman — log(¢ = 0). (58)
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We want to prove that v/, (¢) is analytic in|@| < 2 LC;(LEm~9nn,)1/?m and

sufficiently smaller than v}, (¢). To prove these propert1es, we have only to
prove that

Jexp[~3 L4 T vn(L 716 £ 2)](1 — x1(2))d(2)
=@ (= 0)oman

is analytic and sufficiently small in |¢] < 2 LC; (L2™~4nng)1/2m, First of all,
we estimate the denominator of (59). We can show that the denominator
is bounded from below by a constant which depends on Cj, but not on n.
From L1.2b, and (54) together with uniform estimate of wo(2) under the
condition of ( 15), we estimate denominator as follows,

(59)

|denominator of (59)] > exp[—K - L2NC?N). (60)
Next, we estimate the numerator part of (59),

[numerator of (59)|
< Ja-xE) I leml-vnL 922" an(z).  (6)

Using (10) of L1.2a for |[L7¢ + 2| < Cy(L@™~9mn,)1/2m we have
|numerator of (59)|

< exp[K + L*D + Z AgCLC%* — 4( Lem=tnp \1m) - (62)

k=2

So,

|(59)]

2N
< exp[K - L*NCN + L*D + Y~ ApCyC2* — %(L(z'""“)"no)?ln']. (63)
k=2

For given L, D and Cj, we can take ng large enough to obtain

RHS of (63) < exp[—%(L@m-@"no)l/ﬁ]. (64)

This estimate is also valid for log(¢ = 0) —10g(é = 0)smau- According to (64),

~
we can show that v}, (@) is analytic and

~
l v; (¢)| S 26—1/8(L(2m—4)nm)1/m‘ (65)
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2.1.3 Estimation of coefficients

Now, we assume that |¢| < Cy(LEm-n+tlpy1/2m je ¢ is in the small
field region of v)(¢). Notice that the small field region is in the region
|| < PLCL(LEm=4nna)1/2m 5o we can use the argument above. Thus,

v, (¢) is analytic in the small field region of v, and we can obtain power

series expansion of v], (¢). With the use of Cauchy’s estimate, we see that
coefficients of ¢? to ¢?V satisfy,

1dv =

|FW Up (O)I S 6—1/8(L(2m—4)nn°)1/m, k= 27 47 tee )2N (66)

~ p _
Using the bounded convergence theorem, we see that %%; v}, (0), %a% v

~
0),--- Tlmg,'; v/, (0) are continuous functions of y, on I,. From (57) and
(65), if ng is sufficiently large, then we have

|(vn)sansa(@)] < LOHIN (g2, (67)

for |p| < Cy(LEm~9(n+lpg)1/2m  From (4), (53), (54), and (66), we know
that .

N 1 d% =
lazknsr — L agen| = |Rok(N,L,mo,n) + oKl 35 vy, (0)]
< L@ Znp1-2/N L3 .. 2N. (68)

Thus, if ng is sufficiently large, we have
(02641 = L4 Dage] < (n+ DLEmng =2 (69)
which proves (13) of L1.2b’. From (53), (54), we know
|agne1 = agn] < mg TN, (70)
Thus, we have
|agne1 = agol < (n+ Lng 7, (71)

which completes the proof of L1.2b’. Similarly, we get estimation of coeffi-
cient !, as follows,

|y = L] < K x g N, (72)

We know that map R : u — u' is continuous, and image R(I,) include
I.;1. So that we can take for J,41 a connected component of this inverse
image R~(I41) C I,. -

This ends the analysis of the small field properties.
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2.2 Large field region analysis

Next, we prove that e=(*=)'(%) satisfy the condition L1.2a’. First, we prove
it in the case where |Re¢| > C)(L@m-n+ln1/2m  Next, we prove it in
|| < RLC,(L#m—4mn,)l/2m je. this region includes the small field region
of vy, ().

2.2.1 The case where |[Reg| > C;(LEm-4(n+l)p,)1/2m

Note that the definition of the RG (1) has the following expression
e~n(® = /H exp[—vn(L™1¢ £ 2)]¥/2dv(2) /(¢ = 0). (73)
£

(L6 + 2)] < Cy(LEm=9mng)/om, i [Img| < Cy(LEm-m+pg)i/am,
From the condition L1.2a,

N N
le~®")24®)| < exp[LAD — L? Z Gheml®l® + 3 L* " Agkagh,n (Ime) ]
k—-z k=2
Q0
x [ B S 4y (2 (¢ = ). (74)

—00

Note that, {as,} are positive and sufficiently small, hence, this integral part
and (¢ = 0) estimated as absolute constants, so we get

RHS of (74)

N
<exp[L'D-L*Y a;f,’f o2 + Z LY~ 2kA2ka2k,n(Im¢)2k + K ] (75)
=2 =2

If D and L are given, we take C; sufficiently large and then we take ng
sufficiently large. Thus, we obtain

| exp(—(vn)24(4))]

2N 2N
<explD-) a;,/c?,’f+1|¢|2 + Y Askagknia (Img) ¥, (76)
k=2 k=2

for [Im¢| < Cy( L(2m-4)(n+1)n0)i/2m’ |Reg| > C1( L[(@m=4)(n+1),, 0)1/2m_

2.2.2 The case where |¢| < LC1( L@m=4)np)1/2m

Now we prove remainder part of large field region. Let u, € I,, and |¢| <
L0 LCy(L@m=4mn)1/2m, From (55), (69), (71), (72), and K(ng + n)¥/* >
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(L@m=8npe)H2m for m > 3, we have

2N
Ie‘((vn)')24(¢)l S exp[K Z L—ZCIZ.knEI/k]
k=2

N
x exp[~ 3 agens1(Reg®) + Ling 2. (77)

k=2

And, we estimate agg n+1(Red?) as follows,
ki1 (ROF™) 2 a3 (Reg) — K (Img))

2 —%D% + 2(agk,n+1)/*|¢|? — Askasknt1(Img)*. (78)
Notice that Dy does not depend on Cj, ng or n. Put D = Zf:z D,,.. From

(77) to (78),

N

N
|e(r))244)| < exp[D — > (azknt1) ¥II* + 3 Askazknr (Img)]

x exp[—%D + K- L2Cng"?)
x exp[K . L4/3012N(L(4—2m)(n+1)n0)1/m + L4n6-1/2], (79)

which is smaller than

N N
exp[D = 3 agfni1$ + D Ankaznt1 (Img)™], (80)
k=2 =2

if ng is sufficiently large. Proof of Lemma 1.2 is completed.

3 Proof of Theorem 1.1

Finally, we prove Theorem 1.1, using Lemma 1.2, Lemma 1.3 and Theorem
1.4. First of all, we notice that it is possible to take constants L, D(N),
Ci(N, L, D), no(N, L, D, C}) to satisfy Lemma 1.2, Lemma 1.3, and Theorem
1.4. We can check that potential v(¢) can be iterated n, times if initial
parameters satisfy the conditions (Pa) and (Pb) because of Lemma 1.2.
Notice that v,,(¢), the potential after n, iterations, satisfies the conditions
L1.3a and L1.3b with n = 0, and so Lemma 1.3 can be applied to this
potential. We have to iterate R using Lemma 1.3, sufficiently many times so
that the iterated potentials satisfy the G-K conditions. Put

ny = min{n € N : |(Un,45)26(8)| < (mo + ng +n)~%*
for |¢| < Cy(no + ny + n)/4}. (81)
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Then,
Ay +ng—1 < (no +n +ng — 1)—9/4. (82)

By calculation, n; can be estimated as n, < K'log; ng. Since, agkn,4n, = 0,
and by (22)

Q4ny+ny — C4 m1+n2 <a4p+ (nl + 'nl2)n(; 1-2/N
Civ _ —-1- C
< g+ 2loguno)ng N < Zh(ng + i+ mg) T (83)
Similarly, by (82) we have
C- -1
A4my+ng ~ Conatng > T4 —7 (o +n1 +n2)” (84)

So, we checked the condition G-Kb completely. Next, let us check the con-
dition G-Ka. Notice that analyticity, positivity for real ¢, and even function
Of U, 4+n, (@) are checked easily. Now, We check the bound of v, 4n,(4)

k
| €Xp[—Uny4ny (9)]] < exp[D — z:azi L
k=2
2N

X exp[+ Z Azkok,ny+ny (Im¢)2k]' (85)
=2

Notice that — S35 Gy, 1y 812 + T2 Aokokmny (Im@)?* is nonpositive
for (Img¢) < Ci(no + ny + n2)'/* from the definitions of n; and n,. So we
have the following inequality ‘

I exp[_vn1+n2 (¢)]| < exP[D a1/31+ng |¢l2 + A4a4,n1+n2 (Im¢)4] (86)
We have checked all of the G-K conditions. Since aggn,+n,~1,k > 3 is suffi-
ciently small by (82), we know

llu"n1+n.2 = Lz(/‘n1+m—1 — C2ny4np-1 + %?{%1')' <K- —1 N (87)

As in the proof lemma 1.2 and Lemma 1.3, we can take for J,, 1, a suitable
connected component. So, we can adapt Theorem Gawedzki and Kupiainen
[6]. Now, Theorem 1.1 is finished.
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