Title
First order phase transitions in nonlinear vector and lattice gauge models. (Applications of Renormalization Group Methods in Mathematical Sciences)

Author(s)
vvan.Enter, A.C.D.

Citation
数理解析研究所講究録 2006, 1482: 163-163

Issue Date
2006-04

URL
http://hdl.handle.net/2433/58069

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
First order phase transitions in nonlinear vector and lattice gauge models.

A.C.D. van. Enter (work with S.B. Shlosman)
Center for Theoretical Physics
Rijksuniversiteit Groningen
Groningen, Netherlands

Abstract

In this contribution we discuss a number of results which seem to violate the notion of universality, at least as formulated in the naive version where the dimension, the spontaneously broken symmetry and the short-range nature of the interaction should imply the nature of the transition. We show in particular that various d-dimensional SO(n)-invariant ferromagnetic n-vector models with n and d at least 2 have first-order transitions in the temperature variable.

These models are nonlinear in the sense that the interaction is some function of the inner product between neighboring spin vectors which has the form of a deep and narrow well.

Similar results hold for liquid crystal models of Lebwohl-Lasher type and in lattice gauge models in d=3 or more. Both the proof and the intuition behind it are based on a similarity with high-state Potts models.