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Abstract: Based on the relationship between two sets with respect to a convex cone,
we introduce six different solution concepts on set-valued optimization problems. By
using a nonlinear scalarization method, we obtain optimality conditions for efficient
solutions of set-valued optimization problems. Moreover, we observe several kinds of

concepts for saddle points of set-valued maps including an idea of efficient-like saddle
point.
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1 Introduction

"The notion of saddle point for set-valued maps was introduced by Luc and Vargas [8]
in 1992, and also a loose saddle point theorem for set-valued maps was established. In
1996, Tan et al. [13] presented loose saddle point theorems in topological vector spaces
(not locally convex) which were proved by a way to be different from those of Luc and
Vargas, and were weakened with respect to the continuity of set-valued map. By defining
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a loose semisaddle point and using a lemma related to it, a loose saddle point theorem
which is based on continuity and quasiconvexity—quasiconcavity of its scalarized maps was
established by Kim et al. [4] in 1999. Moreover, generalized loose saddle point theorems
were showed by Lin [6] in 1999. -

On the one hand, in recent study on set-valued optimization problems, some solution
concepts are defined by the efficiency of vectors as elements of set-valued objective func-
tions based on a preorder which is a comparison between vectors with respect to a convex
cone; see, [9] and [14]. Generally, an optimization problem with a set-valued objective
function is very interesting from the point of view practically as well as theoretically, but
there are many possibilities to chose a suitable criterion to optimize feasible sets. Mathe-
matical methodology on the comparison between sets is not so popular, and hence we study
characterizations of set-valued maps via scalarization and we observe optimality conditions
for efficient solutions of set-valued optimization problems and several kinds of concepts for
saddle points of set-valued maps.

When we consider a vector optimization problem, we use some kinds of scalarization
methods to get an equivalent scalar problem, and then we get an optimal solution and its
value for the scalar problem much easier because the target space is one dimensional space
and it is a total ordering space. Georgiev and Tanaka [1, 2] generalized Fan’s inequality
for set-valued maps by using a nonlinear scalarizing function regarded as a generalization
of the Tchebyshev scalarization, which is well known and one of scalarization methods
overcoming some nonconvexity in vector optimization. This kind of scalarizing function
inherits some types of cone-convexity and cone-continuity from the parent set-valued map.
The study on this kind of scalarizing function is also found in some other papers (e.g., [3]),
and it is referred to as the smallest strictly monotonic function. Based on this approach,
Nishizawa et al [10] have researched such inherited properties of the scalarizing function.

The aim of this paper is to investigate how set-valued maps are characterized via scalar-
ization and to give optimality conditions for efficient solutions of set-valued optimization
problems. Moreover, we observe several kinds of concepts for saddle points of set-valued
maps including an idea of efficient-like saddle point.

* Concretely speaking, the organization of the paper is as follows. In Section 2, based on
the comparisons between two sets used in 5], we introduce six different solution concepts on
the same problem but by defining six types of efficiency on images of set-valued objective
functions directly. In Section 3, we introduce a nonlinear scalarization method, which
involves a sublinear function heo(y; k) := inf{t : y € tk — C} where C #Y is a convex cone
with nonempty interior in a real topological vector space Y and k£ € int C. In Section 4,
by using the nonlinear scalarization method, we obtain optimality conditions for efficient
solutions of set-valued optimization problems.
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2 Relationships between Two Sets

In this section, we introduce relationships between two sets in a vector space. Through-
out the paper, let Z be a real ordered topological vector space with the vector ordering <¢
induced by a convex cone C: for z,y € Z,

z<oyify—-zeC.

First, we consider comparison methodology between two vectors with respect to C. There
are two types of comparable cases and one in-comparable case. Comparable cases are as
follows: for a,b € Z,

(1)acb-C (ie,a<ch), (2)aeb+C (ie, b<c a).

When we replace a vector a € Z with a set A C Z, that is, we consider a comparison
between a set and a vector, there are four types of completely comparable and partially
comparable cases and one in-comparable case. Such comparable cases are as follows: for
AcZandbe Z, ‘
(1) Ac(®-0), (2) An(b—-C) # ¢,
(3) An(b+C) # ¢, 4) Ac(b+0).
By the same way, when we replace a vector a € Z with a set A C Z, that is, we consider
comparison between two sets with respect to C, there are twelve types of some what
comparable cases and in-comparable case. For two sets A, B C Z, A would be inferior to
B if we have one of the following situations:
(1) Ac (MeeB(b — C)), (2) AN(MpeB(d—C) # ¢,
(3) (Usea(a+C)) D B, (4) (Ugeala +C)) U B,
(5) (Maca(a+C)) D B,  (6) ((Naca(a+C)) N B) # ¢,
(7) AC (Ues(0—-C)),  (8) (AN (User(d— C)) # 9).
Also, there are eight converse situations in which B would be inferior to A. Actually the
relationships (1) and (4) in the above comparison of A and B coincide with the relationships
(5) and (8), respectively. Therefore, we define the following six kinds of classification for
set-relationships.

Definition 2.1. (Set-relationships in [5]) Given nonempty sets A, B C Z, we define six
types of relationships between A and B as follows:

(1) ASE) Bby ACNhep(6—C),  (2) A<E Bby AN (Nees(b— C)) # 6,

(3) A<D Bby Useca(a+C) DB, () A<y Bby (Nueala+C))NB# 9,

(5) A< Bby ACUen(®—C), (6) A<® Bby AN (Upen(d—C)) # ¢.

Proposition 2.1. ([5]) For nonempty sets A,B € Z and a convez cone C in Z, the
following statements hold:
A<Y) B implies A<® B; A< B implies A <¥ B;
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A S(CZ) B implies A S(g) B; A Sg) B implies A g(c"’) B;
A Sg) B implies A S(C?) B; A Sg) B implies A S((?) B.

3 Nonlinear Scalarization Method

We introduce a nonlinear scalarization for set-valued maps and show some properties
on a characteristic function and scalarizing functions introduced in the sequel.

Let X and Y be a nonempty set and a topological vector space, C a convex cone in Y’
with nonempty interior, and F' : X — 2¥ a set-valued map, respectively. We assume that
C #Y, which is equivalent to

intCN(—clC)=10 (3.1)

for a convex cone with nonempty interior, where int C and cl C denote the interior and the
closure of C, respectively. ‘
To begin with, we define a characteristic function

ho(y; k) :==inf{t : y € tk — C}

where k € int C and moreover we get —ho(—y; k) = sup{t : y € tk + C}. This function
hc(y; k) has been treated in some papers; e.g., see [3] and [12], and it is regarded as a
generalization of the Tchebyshev scalarization. Essentially, hc(y; k) is equivalent to the
smallest strictly monotonic function with respect to int C' defined by Luc in {7]. Note that
he(:; k) is positively homogeneous and subadditive for every fixed k € int C, and hence it
is sublinear and continuous.

Now, we give some useful properties of this function hc, which are proved in [9].

Lemma 3.1. Let y € Y, then the following statements hold:
(i) Ify € —int C, then ho(y; k) <O for all k € int C;
(ii) If there ezists k € int C' with he(y; k) <0, theny € —int C.

Proof. First we prove the statement (i). Suppose that y € —int C, then there exists an
absorbing neighborhood V; of 0 in Y such that y + Vo C —int C. Since V} is absorbing, for
all k € int C, there exists o > 0 such that tok € V;. Therefore, y + tok € y + Vo C —int C.
Thus, we have y € —tok — int C C —tok — C. Hence, inf{t : y € tk — C} < —ty < 0, which
shows that he(y; k) < 0.

Next we prove the statement (ii). Let y € Y. Suppose that there exists k € int C such
that hc(y; k) < 0. Then, there exist ¢, > 0 and ¢y € C such that y = —tok—co = —(tok+cp).
Since tok € int C and C is a convex cone, we have y € —int C. O

Lemma 3.2. Let y € Y, then the following statements hold:
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(i) Ify € —clC, then ho(y; k) <0 for all k € int C;
(ii) If there exists k € int C with ho(y; k) <0, theny € —clC.

Proof. First we prove the statement (i). Suppose that y € —clC. Then, there exists a net
{ya} C —C such that y, converges to y. For each yy, since yy € 0-k — C for all k € int C,
ho(ya; k) < 0 for all k € int C. By the continuity of ho(-; k), ho(y; k) < 0 for all k € int C.

Next we prove the statement (ii). Let y € Y. Suppose that there exists ¥ € int C
such that hc(y; k) < 0. In the case ho(y; k) < 0, from (ii) of Lemma 3.1, it is clear that
y € —clC. Then we assume that hc(y; k) = 0 and show that y € —clC. By the definition
of he, for each n = 1,2,..., there exists ¢, € R such that

ho(y; k) < tn < ho(y; k) + -,1; | (3.2)

and
yet,k—-C. (3.3)

Condition (3.2) implies lim,_,« ¢, = 0. Hence by condition (3.3), there exists ¢, € C such
that y = t,k — ¢y, that is, ¢, =,k —y. Since ¢, = —y as n — oo, we have y € —clC. O

Lemma 3.3. Let y,y € Y, then the following statements hold:
(i) fy€eg+intC, then hd(y; k) > ho(F; k) for all k € int C;
(ii) Ify € §+clC, then ho(y; k) > ho(F; k) for all k € int C.
Lemma 3.4. Let y,j € Y and § € int C, then the following statements hold:
() fyg¢y+JC, then ho(3;9) < he(y; 9);
(i) If § ¢ y +clC, then ho(7;9) < ho(y; 7).
Lemma 3.5. Let Y, €Y, then the following statements hold:
() fj¢ y+intC, then —ho(—7; k) < ho(y; k) for all k € int C;
(i) Ifg ¢ y +clC, then —hc(—7; k) < ho(y; k) for all k € int C.
Lemma 3.6. Lety,j €Y and § € int C, then the following statementé hold:
() Ifg €y +intC, then ho(y; §) < —ho(—5; 9);
(i) 1§ € y+IC, then ho(y;3) < ~ho(~4:).

Remark 3.1. In the above lemma, we note that each converse does not hold.
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Now, we consider several characterizations for images of a set-valued map by the non-
linear and strictly monotone characteristic function hc. We observe the following four
types of scalarizing functions:

(1) ¥z k) = sup {ho(y; k) : y € F(z)},
(2) ¢&(z;k) := inf {ho(y; k) : y € F(z)},
(3) —¢5" (z;k) = sup {—he(-y;k) : y € F(z)},
(4) —v5"(z; k) = inf {~ho(-y;k) : y € F(z)}.

Functions (1) and (4) have symmetric properties and then results for function (4) —yg"
can be easily proved by those for function (1) ¥&. Similarly, the results for function (3)
—pg" can be deduced by those for function (2) ¢£. By using these four functions we
measure each image of set-valued map F' with respect to its 4-tuple of scalars, which can
be regarded as standpoints for the evaluation of the image with respect to convex cone C.

Without proofs, which are referred in [9], we state the following characterizations on
the scalarizing functions above.

Proposition 3.1. Let z € X, then the following statements hold:

(i) If F(z) N (~int C) # 0, then p&(x; k) <0 for all k € int C;

(ii) If there ezists k € int C' with p&(z; k) <0, then F(z) N (~int C) # 0.
Proposition 3.2. Let z € X, then the following statements hold:

@) If F(z) N (=clC) # 0, then pE(z;k) <0 for all k € int C;

(i) If F(z) is a compact set and there ezists k € int C with p&(z; k) < 0, then F(z) N
(—clC) #0.

4 Optimality Conditions for Set-Valued Optimization
Problems

In this section, we introduce new definitions of efficient solution for set-valued optimiza-
tion problems. Using the sclarization method introduced in Section 3, we obtain optimal
sufficient conditions on such efficiency. Throughout the section, let X be a nonempty set,
Y a real ordered topological vector space with convex cone C. We assume that C # Y and
intC # 0. Let F: X — 2Y be a set-valued map. A set-valued optimization problem is
written as

(SVOP) min F(x) subject to z € V, where V = {z € X : F(z) # ¢}.
In this problem, we were defined an efficient solution as follows ever. Vector zo € V is an
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efficient solution of (SVOP) if there exists yy € F(zo) such that (F(z)\{»})N(yp—C) = ¢
for all z € V. This type of solution is defined based on a comparison between vectors.
However F is a set-valued map, so it is natural to define efficient solution concepts based
on direct comparisons between sets given in Definition 2.1.

Definition 4.1. (Efficient solution of (SVOP)) z, € V is said to be an efficient (resp.,
strongly efficient) solution for (SVOP) with respect to <¥for i = 1,...,6 if there exists
no z € V\{zo} satisfying F(z) <& F(z,) (tesp., F(:z:) S..(::)c F(zp)) for i = 1,...,6,
respectively.

Using sclarization functions introduced in Section 3, we obtain the following optimality
conditions for (SVOP).

Theorem 4.1. Let z, e V and F(z0) C intC. o is a strongly efficient solution for
(SVOP) with respect to <ch if and only if for any x € V\{xo}, there ezists k € int C such

that o&(xzo; k) < V& (z; k).

Proof. Suppose that for any z € V\{z,}, there exists k € intC such that ©&(zo; k) <
Y& (x; k). Assume that zo in not a strongly efficient solution with respect to SS)C Then
there exists Z € V\{z,} such that F(z) <{, F(z,). From the condition (ii) in Lemma 3.3,
it follows that ho(7; k) < he(yo; k) for any k € int C. Hence we get ¥5(Z; k) < p&(zo; k),
which contradicts to the assumption.

On the other hand, suppose that z; is a strongly efficient solution with respect to <£})C
Then there no exists z € V'\{zo} such that F(z) <S)c F(zo). Hence for any z € V\{zy},
there exist § € F(z) and gy € F(zo) such that § ¢ 9 — c1C. From the condition (ii) in
Lemma 3.4, it follows that ho(%o; %o) < ho(F; %), and hence p&(zo; %) < YE(z; 7o) O

Theorem 4.2. Let zo € V. Suppose F(zo) C int C and F(z) is compact forallz € V. Ifz,
is a strongly efficient solution for (SVOP) with respect to si?’c then —waF (zo; k) < @E(z; k)
for any k € int C and z € V\{z,}.

Proof. Suppose that io is a strongly efficient solution with respect to <§?2, Then there no
exists € V\{=o} such that F(z) <, F(z,). Hence for any = € V\{zo}, there exists
Yo € F(zo) such that y ¢ go — c1C for any y € F(z). From the condition (ii) in Lemma 3.5,
it follows that —hc(—vo; k) < ho(y; k) for any k € int C. From the compactness of F(z),
there exists § € F(z) such that ho(§; k) = infyer(z){hc(y; k)}, and hence —y5* (zo; k) <
P& (a; k). | O
Theorem 4.3. Let zp € V. Suppose F(zo) C intC and F(z) is compact for allz € V.

Zo i a strongly efficient solution for (SVOP) with respect to <£ﬂ, if and only if for any
x € V\{zo}, there exists k € int C such that p5(zo; k) < & (z; k).
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Proof. Suppose that for any z € V\{zo}, there exists k¥ € int C such that p5(zo; k) <
©E(z; k). Assume that zo in not a strongly efficient solution with respect to SS% Then
there exists Z € V'\{z,} such that F(Z) 5533; F(x). From the condition (ii) in Lemma 3.3,
it follows that ho(; k) < he(yo; k) for any k € int C. Hence we get o5(Z; k) < @E(zo; k),
which contradicts to the assumption.

On the other hand, suppose that zo is a strongly efficient solution with respect to
<%, Then there no exists z € V\{zo} such that F(z) <8 F(z,). Hence for any
& € V\{zo}, there exists o € F(zo) such that g ¢ y + clC for any y € F(z). From the
condition (ii) in Lemma 3.4, it follows that hc(%; %) < hc(y; ). From the compactness
of F(x), there exists § € F(z) such that he(§; %) = infyep(z){hc(y; %)} Hence we have

©&(T0; Yo) < & (z; o). O

Theorem 4.4. Let o € V. Suppose F(z¢) C intC and F(z) is compact for all z €
V. o is a strongly efficient solution for (SVOP) with respect to <\ if and only if
-5 (z0; k) < YE(z; k) for any x € V\{zo} and k € int C.

Proof. Suppose that —pg" (zo; k) < ¢&(z; k) for any z € V\{xo} and k € int C. Assume
that zp in not a strongly efficient solution with respect to SS‘)C. Then there exists Z €
V\{zo} such that F(z) <4}, F(z,). From the condition (ii) in Lemma 3.6, it follows that
he (@3 90) < —ho(—go; o). Hence we get ¢&(Z;90) < —¢g" (2o; %), which contradicts to
the assumption.

On the other hand, suppose that z is a strongly efficient solution with respect to 5,‘;1‘)0.
Then there no exists z € V\{z,} such that F(z) _<_£'1% F(z,). Hence for any z € V\{z,}
and yo € F(x,), there exists § € F(z) such that yo ¢ § + c1C. From the condition (ii) in
Lemma 3.5, it follows that —he(—yo; k) < ho(; k) for any k € int C. From the compact-
ness of F(zo), there exists go € F(zo) such that —ho(—go; k) = SUPy e p(zo){—ho(—vo; k)}-
Hence we get —og” (z0; k) < ¥5(z; k). 0

Theorem 4.5. Let zy € V. Suppose F(zo) C int C and F(z) is compact for allz € V. Ifz
is a strongly efficient solution for (SVOP) with respect to <G, then —pgF (zo; k) < V5 (z; k)
Jor any z € V\{zo} and k € int C.

Proof. Suppose that z; is a strongly efficient solution with respect to ggf},. Then there no
exists z € V\{zo} such that F(z) <&, F(zo). Hence for any z € V\{zo}, there exists
§ € F(z) such that § ¢ yo — clC for any yo € F(zo). From the condition (ii) in Lemma 3.5,
it follows that —ho(—yo; k) < he(§; k) for any k € int C. From the compactness of F(z,),
there exists go € F(zo) such that —hc(—go; k) = SuPyyc p(zo){—hc(—10; k)}. Hence we get
—pg" (zo; k) < YE(z; k). ]

Theorem 4.6. Let zp € V. Suppose F(zo) C int C and F(z) is compact for all z €
V. z¢ is a strongly efficient solution for (SVOP) with respect to ng)g if and only if
—pg (zo; k) < @(z; k) for any x € V\{zo} and k € int C.
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Proof. Suppose that —og” (z0; k) < @E(x; k) for any z € V\{zo} and k € int C. Assume
that zp in not a strongly efficient solution with respect to SS%. Then there exists Z €
V\{zo} such that F(z) <, F(z,). From the condition (ii) in Lemma 3.6, it follows that
he(F; o) < —he(—%o; o). Hence we get 5(Z;%0) < —@g” (xo;¥o), which contradicts to
the assumption.

On the other hand, suppose that zo is a strongly efficient solution with respect to
<® .. Then there no exists z € V\{zo} such that F(z) <%, F(z,). Hence choose
any z € V\{zo}, then y ¢ yo — clC for any y € F(z) and yo € F(z,). From the con-
dition (ii) in Lemma 3.5, it follows that —hc(—yo;k) < he(y;k) for any k € intC.
The compactness of F(x) and F(z), there exist § € F(z) and o € F(zo) such that
ho(9; k) = infyer@) {he(y; k)} and —ho(—gio; k) = SUDye pzp) {—ho(—Yo; k) }, respectively.
Therefore, —g" (zo; k) < @E(z; k). O

5 Saddle Point Concepts for Set-Valued Maps

In the section, we stated an existence theorem for loose saddle point of set-valued maps
by using inherited properties of convexity and semicontinuity of set-valued maps through
the scalarizing method in Section 3. Besides, we state several notions for saddle point of
set-valued maps, and propose a new idea on efficient-like saddle points in order to apply
results given in Section 4. ‘

At first, we give the preliminary terminology used throughout this section. Let X and
Y be two Hausdorff topological vector spaces, and Z be a real ordered topological vector
space with the vector ordering < induced by a convex cone C in the same manner of
Section 2. For C, an element z, of a subset A of Z is said to be a C-minimal point of
A (or an efficient point of A with respect to C) if {x € A| = <¢ 0o,z # o} = 0, which
is equivalent to AN (zo — C) = {zo}. We denote the set of all C-minimal points of A by
MinA. Also, C%-minimal [resp., C-maximal, C°-maximal] set of A is defined similarly where
C?° := int CU{0}, and denoted by Min,, A [resp., MaxA, Max, A]. These C°-minimality and
CP-maximality are weaker than C-minimality and C-maximality, respectively.

Let ACX and BCY,and f: AxB — Z and F : Ax B — 27 be a vector-valued
function and a set-valued map, respectively.

Definition 5.1. A point (zo, ) is said to be with respect to A x B:
(i) a C-saddle point of f if f(zo,y0) € Maxf(xo, B) N Minf (A, yo);
(ii) a weak C-saddle point of f if f(zo,y0) € Max,, f(xo, B) N Min,, f(4, 1);
(iif) a C-saddle point of F if F(zy,yy) N MaxF(z¢, B) N MinF'(A, yo) # 0;
(iv) a weak C-saddle point of F if F(z,yo) N Maxy F(zo, B) N Min, F(A, %) # 0;
(v) a C-loose saddle point of F
if F(zo,y0) N MaxF(zo, B) # 0 and F(zo,4) " MinF(A,yo) # 0;
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(vi) a weak C-loose saddle point of F
if F(:Bo, yo) N Mawa(:co, Y) 7é 0 and F(ﬂ:o, yo) N MinwF(X, yo) ;é Q

We note that any C-saddle point of f is a weak C-saddle point of f, and that any
C-saddle (resp., C-loose saddle) point of F is a weak C-saddle (resp., weak C-loose saddle)
point of F', obviously. Moreover, any C-saddle (resp., weak C-saddle) point of F becomes
a C-loose saddle (resp., weak C-loose saddle) point of F. Also, in the case C° = C, the
conditions (i) and (ii) are coincident. We have three types of existence theorem of weak
C-saddle points for vector-valued functions, and that of C-loose saddle point for set-valued
maps.

Theorem 5.1. (cf. [1,10].) Let AC X and B C Y be two nonempty compact convez sets.
If a set-valued map F : A x B — 2% satisfies the following conditions:
(i) F is compact-valued and upper semicontinuous on A x B such that
(a) for any z € A, F(z,-) is C-lower semicontinuous on B,
(b) for anyy € B, F(-,y) is (—C)-lower semicontinuous on A,
(ii) for any z € A, F(z,-) is C-quasiconcave on B,
(iii) for any y € B, F(-,y) is C-quasiconvez on A,
then F' has a weak C-loose saddle point with respect to A x B.

Finally, we propose a new idea of saddle point concept for set-valued maps based on
direct comparisons between sets given in Definition 2.1.

Definition 5.2. A point (2, ) is said to be an efficient saddle (resp., strongly efficient
saddle) point of F on A x B with respect to Sg)for i=1,...,6if for any (z,y) € A x B,
the following conditions hold for ¢ = 1,...,6, respectively:

(@) F(z,%) <& F(s0, o) implies F(zo, ) <§ F(z,u)
(resp F(m7 yO) Scl() F((Dg,yo) lmphes F($o,yo) Scl)C F(.’D yO) )
(ii) F(zo,yo) 58) F(wo{ y) implies F(zo,y) SC) F(zo,y0)
(resp., F(zo, %) <40 F(zo,y) implies F(zo,y) <3 F(zo,0) )
We can verify each saddle point of F' with Theorems 4.1-4.6.
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