Remarks on Pointwise Nonlinear ergodic theorems in L_p

Takeshi Yoshimoto (吉本武史)
Department of Mathematics, Toyo University

1. Introduction

In [1], [2] Baillon considered a class of nonexpansive self-mappings T of a bounded closed convex subset C of a Hilbert space H or L_p with 1 , formed the Cesàro <math>(C, 1) mean value peocess

$$C_n^{(1)}[T]f = \frac{1}{n+1} \sum_{k=0}^n T^k f, \quad n \ge 0$$

for $f \in C$ and established the weak nonlinear ergodic theorem for T. Then later, Krengel and Lin [5] considered another class of order preserving, L_{∞} -norm decreasing and L_1 -nonexpansive operators in L_p and proved the following weak nonlinear ergodic theorem which can not be covered by Baillon's theorem: Let T be an operator in L_p $(1 which is order preserving, <math>L_{\infty}$ -norm decreasing and L_1 -nonexpansive. Then for any $f \in L_p$, $C_n^{(1)}[T]f$ converges weakly in L_p . If the basic measure is finite, $C_n^{(1)}[T]f$ converges weakly in L_1 for $f \in L_1$. The same result holds for operators in L_1^{\dagger} .

In the settings of Baillon, Krengel and Lin, however, one can only expect weak convergence of the (C, 1) process. Indeed, the example due to Krengel and Lin [5] shows that $C_n^{(1)}[T]f$ need not converge in the strong topology of L_p and the example given by Krengel [4] shows that the pointwise convergence of $C_n^{(1)}[T]f$ may fail to hold. Note here that the iteration process considered by Wittmann [7] has a different aspect. So, as suggested (implicitly) by Krengel and Lin, it seems to be a question of great significance to find those (extra) conditions under which $C_n^{(1)}[T]f$ converges almost everywhere or in the strong topology of L_p (cf. [7]). In [9] the author made an attempt to deal with this question in the strong topology of L_p . [By the way, in [4] Krengel dared to say: It therefore seems that the example essentially eliminates all hopes for general pointwise nonlinear ergodic theorems. Of course, the possibility of positive results for specific class of nonlinear operators remains.]

We are particularly interested in finding some conditions or in changing the settings under which the almost everywhere convergence of $C_n^{(1)}[T]f$ holds in both linear and nonlinear cases. In a forthcoming paper [10] the author proved the following theorem:

Theorem. Let T be an order preserving operator in L_p $(1 \le p \le \infty)$ with T(0) = 0. Let $0 < \alpha < \infty$ and f, $f^* \in L_p^+$. Assume that E is a measurable set of measure zero such that for any $\omega \in E^c$, the generalized Dirichlet series $\sum_{n=0}^{\infty} \frac{A_n^{m-1}(T^n f)(\omega)}{(A_n^m)^2}$ converges (absolutely) for each $z \in C$ with Re(z) > 1. Here A_n^{α} , $n \ge 0$, denote the (C, α) coefficients of order α . Assume that for any $\omega \in E^c \cup \{f^* < \infty\}$, the analytic function

$$G_{\omega}(z) = \sum_{n=0}^{\infty} \frac{A_n^{\alpha-1}(T^n f)(\omega)}{(A_n^{\alpha})^2} - \frac{f^{\alpha}(\omega)}{z-1}, \quad \operatorname{Re}(z) > 1$$

has an analytic or just continuous extension (also called $G_{\omega}(.)$) to the closed half-plane $\{\text{Re}(z) \geq 1\}$. Finally assume that for each $\omega \in E^c \cup \{f^* < \infty\}$, there exists a constant $M_{\omega} \geq 1$ such that

(*)
$$G_{\omega}(z) = O(|z|^{M_{\omega}}), \quad \operatorname{Re}(z) > 1.$$

Then

$$\lim_{n\to\infty}\,\frac{1}{A_n^a}\sum_{k=0}^nA_k^{\alpha-1}(T^kf)(\omega)=f^*(\omega)$$

holds for almost all ω .

In this paper we will show that the above theorem is also valid even without assuming the growth condition (*). Our general approach to understanding analytic conditions will be via Dirichlet series concerning operators in L_p (cf. [10]). The proof will make heavy use of Landau's Tauberian technique in Landau-Wiener-Ikehara's Tauberian theorem for Dirichlet series (cf. [3]).

2. Pointwise nonlinear ergodic theorems in L_p

Let $L_p = L_p(\Omega, \Xi, \mu)$, $1 \le p \le \infty$, be the usual Lebesgue spaces, where (Ω, Ξ, μ) is a σ -finite measure space. A operator T in L_p is said to be L_p -norm decreasing if $\|Tf\|_p \le \|f\|_p$ holds for all $f \in L_p$. T is called order preserving in L_p if f, $g \in L_p$ and $f \le g$ imply $Tf \le Tg$. T is called nonexpansive in L_p if $\|Tf - Tg\|_p \le \|f - g\|_p$ holds for all f, $g \in L_p$. W say that T is positively homogeneous if T(cf) = cTf for all $f \in L_p$ and any constant $c \ge 0$. For a real number $\alpha > -1$ and each integer $n \ge 0$, let A_n^α denote the (C, α) coefficient of order α , which is defined by the generating function

$$\frac{1}{(1-\lambda)^{\alpha+1}} = \sum_{n=0}^{\infty} A_n^{\alpha} \lambda^n, \quad 0 < \lambda < 1$$

with $A_0^{\alpha}=1$. We also let $A_0^{-1}=1$ and $A_n^{-1}=0$ for all $n\geq 1$. Then for $\alpha>-1$, we have $A_n^{\alpha}>0$, $A_n^0=1$, $A_n^{\alpha}\sim \frac{n^{\alpha}}{\Gamma(\alpha+1)}$, and

$$A_n^{\alpha} = \sum_{k=0}^n A_{n-k}^{\alpha-1} = \sum_{k=0}^n A_k^{\alpha-1} = \frac{(\alpha+1)(\alpha+2)\cdots(\alpha+n)}{n!}.$$

Moreover, it follows that A_n^{α} is increasing in n for $\alpha > 0$ and decreasing in n for $-1 < \alpha < 0$. We will prove

Theorem 1. Let T be an order preserving operator in L_p $(1 \le p \le \infty)$ with T(0) = 0 and let $0 < \alpha < \infty$, f, $f^* \in L_p$. Assume that E is a set in Ξ with $\mu(E) = 0$ such that for any $\omega \in \Omega - E$, the generalized Dirichlet series $\sum_{n=0}^{\infty} \frac{A_n^{n-1}(T^nf)(\omega)}{(A_n^n)^2}$ converges (absolutely) for each $z \in C$ with Re(z) > 1. Assume that for any $\omega \in \Omega - (E \cup E_0)$, where $E_0 = \{f^* = \infty\}$, the

analytic function

$$G_{\omega}(z) = \sum_{n=0}^{\infty} \frac{A_n^{g-1}(T^n f)(\omega)}{(A_n^g)^z} - \frac{f^*(\omega)}{z-1}, \qquad \operatorname{Re}(z) > 1$$

has an analytic or just continuous extension (also called $G_{\omega}(.)$) to the closed half-plane $\{\text{Re}(z) \geq 1\}$. Then $\frac{1}{A_n^{\alpha}} \sum_{k=0}^n A_k^{\alpha-1}(T^k f)(\omega)$ converges as $n \to \infty$ to $f^*(\omega)$ for almost all $\omega \in \Omega$.

We need some lemmas.

Lemma 1. Let T be an order preserving operator in L_p $(1 \le p \le \infty)$ with T(0) = 0 and let $0 < \alpha < \infty$, $f \in L_p^+$. Assume that E is a set in Ξ with $\mu(E) = 0$ such that for any $\omega \in \Omega - E$, (the abscissa of convergence)

$$a_{\omega}(\alpha;f) = \limsup_{n\to\infty} \frac{\log \left[\sum_{k=0}^{n} A_{k}^{\alpha-1}(T^{n}f)(\omega)\right]}{\log A_{n}^{\alpha}} \leq 1.$$

Then for each $\omega \in \Omega - E$, the generalized Dirichlet series $\sum_{n=0}^{\infty} \frac{A_n^{n-1}(T^n f)(\omega)}{(A_n^n)^2}$ converges (absolutely) for $z \in C$ with Re(z) > 1.

Proof. Let $\omega \in \Omega - E$ be fixed and let $z \in C$, Re(z) > 1. We choose some $\delta > 0$ (which may depends on (α, ω, z)) such that

$$a_{\omega}(\alpha;f) + \frac{\delta}{2} < a_{\omega}(\alpha;f) + \delta < \operatorname{Re}(z).$$

Then there exists a sufficiently large number $N_0 = N_0(\delta, a_{\omega})$ (where $a_{\omega} = a_{\omega}(\alpha; f)$) such that

$$\sum_{n=0}^{m} A_n^{\alpha-1}(T^n f)(\omega) < (A_m^{\alpha})^{a_{\omega}+\frac{\delta}{2}}, \quad m \geq N_0.$$

Thus, letting

$$D_{\omega,n}(s) = \sum_{k=0}^{n} \frac{A_{k}^{q-1}(T^{k}f)(\omega)}{(A_{k}^{q})^{s}}, \quad s \geq 0$$

and using the partial summation formula of Abel, we have, for $m \ge n + 1 > N_0$

$$\begin{split} \sum_{k=n+1}^{m} \frac{A_{k}^{a-1}(T^{k}f)(\omega)}{(A_{k}^{a})^{a_{\varpi}+\delta}} &= \left(\sum_{k=0}^{m} - \sum_{k=0}^{n}\right) \frac{A_{k}^{a-1}(T^{k}f)(\omega)}{(A_{k}^{a})^{a_{\varpi}+\delta}} \\ &= \sum_{k=n}^{m-1} \left\{ \frac{1}{(A_{k}^{a})^{a_{\varpi}+\delta}} - \frac{1}{(A_{k+1}^{a})^{a_{\varpi}+\delta}} \right\} D_{\varpi,k}(0) + \frac{D_{\varpi,m}(0)}{(A_{m}^{a})^{a_{\varpi}+\delta}} - \frac{D_{\varpi,n}(0)}{(A_{k}^{a})^{a_{\varpi}+\delta}} \\ &\leq \sum_{k=n}^{m-1} (A_{k}^{\alpha})^{a_{\varpi}+\frac{\delta}{2}} \left\{ \frac{1}{(A_{k}^{a})^{a_{\varpi}+\delta}} - \frac{1}{(A_{k+1}^{a})^{a_{\varpi}+\delta}} \right\} + \frac{1}{(A_{k}^{a})^{a_{\varpi}+\delta-(a_{\varpi}+\frac{\delta}{2})}} + \frac{1}{(A_{k}^{a})^{a_{\varpi}+\delta-(a_{\varpi}+\frac{\delta}{2})}} \end{split}$$

$$\leq (a_{\omega} + \delta) \sum_{k=n}^{m-1} (A_{k}^{\alpha})^{a_{\omega} + \frac{\delta}{2}} \int_{\log A_{k}^{\alpha}}^{\log A_{k+1}^{\alpha}} e^{-(a_{\omega} + \delta)u} du + \frac{2}{(A_{n}^{\alpha})^{\frac{\delta}{2}}}$$

$$\leq (a_{\omega} + \delta) \sum_{k=n}^{m-1} \int_{\log A_{k}^{\alpha}}^{\log A_{k+1}^{\alpha}} e^{-\frac{\delta}{2}u} du + \frac{2}{(A_{n}^{\alpha})^{\frac{\delta}{2}}}$$

$$\leq \frac{2(a_{\omega} + \delta)}{\delta} \left\{ \frac{1}{(A_{n}^{\alpha})^{\frac{\delta}{2}}} - \frac{1}{(A_{n}^{\alpha})^{\frac{\delta}{2}}} \right\} + \frac{2}{(A_{n}^{\alpha})^{\frac{\delta}{2}}}.$$

This gives

$$0 \leq \lim_{n,m\to\infty} \sum_{k=n+1}^{m} \frac{A_{k}^{\alpha-1}(T^{k}f)(\omega)}{(A_{k}^{\alpha})^{Ro(x)}} \leq \lim_{n,m\to\infty} \sum_{k=n+1}^{m} \frac{A_{k}^{\alpha-1}(T^{k}f)(\omega)}{(A_{k}^{\alpha})^{\alpha\omega+\delta}} = 0,$$

and the lemma follows.

Lemma 2. Let $\omega \in \Omega - E$ be fixed. Then

$$\int_{1}^{\infty} \frac{1}{v^{z+1}} \left[\sum_{0 \le k \le n: A_{k}^{\alpha \le v}} A_{k}^{\alpha-1}(T^{k}f)(\omega) \right] dv = \frac{1}{z} \sum_{n=0}^{\infty} \frac{A_{n}^{\alpha-1}(T^{n}f)(\omega)}{(A_{n}^{\alpha})^{z}}, \quad \text{Re}(z) > 1.$$

Proof. Let $\varepsilon > 0$ be fixed sufficiently small and let $\omega \in \Omega - E$, $z \in C$, Re(z) > 1. By assumption there exists a number N_0 (which may depends on $(f, \varepsilon, \alpha, \omega, z)$) large enough so that

$$\sum_{k=N_0+1}^{\infty} \frac{A_k^{a-1}(T^k f)(\omega)}{(A_k^a)^{\text{Re}(x)}} < \varepsilon.$$

We then have for sufficiently large v

$$\frac{1}{\nu^{\text{Re}(z)}} \sum_{N_0+1 \le k \le n; \ A_n^{\alpha} \le \nu} A_k^{\alpha-1}(T^n f)(\omega) \le \sum_{k=N_0+1}^n \frac{A_k^{\alpha-1}(T^k f)(\omega)}{(A_k^{\alpha})^{\text{Re}(z)}} \le \sum_{k=N_0+1}^{\infty} \frac{A_k^{\alpha-1}(T^k f)(\omega)}{(A_k^{\alpha})^{\text{Re}(z)}} < \varepsilon.$$

This implies that $\lim_{N\to\infty} \frac{1}{(A_{N+1}^q)^2} \sum_{k=0}^N A_k^{\alpha-1}(T^k f)(\omega) = 0$. Now let us define

$$S_{\omega}(v) = \sum_{0 \le k \le n; A_n^{\alpha} \le v} A_n^{\alpha-1}(T^n f)(\omega), \quad v \ge 1, \quad (n \ge 0)$$

= 0,
$$v < 1.$$

Then it follows that

$$z \int_{1}^{A_{N+1}^{\alpha}} \frac{S_{\omega}(v)}{v^{s+1}} dv = z \sum_{j=0}^{N} \int_{A_{j}^{\alpha}}^{A_{j+1}^{\alpha}} \frac{S_{\omega}(v)}{v^{s+1}} dv$$

$$= z \sum_{j=0}^{N} S_{\omega}(A_{j}^{\alpha}) \int_{A_{j}^{\alpha}}^{A_{j+1}^{\alpha}} \frac{1}{v^{s+1}} dv$$

$$= \sum_{j=0}^{N} S_{\omega}(A_{j}^{\alpha}) \left[\frac{1}{(A_{j}^{\alpha})^{s}} - \frac{1}{(A_{j+1}^{\alpha})^{s}} \right]$$

$$=\frac{S_{\omega}(A_{0}^{q})}{(A_{0}^{q})^{z}}+\frac{S_{\omega}(A_{1}^{q})-S_{\omega}(A_{0}^{q})}{(A_{N-1}^{q})^{z}}+\cdots+\frac{S_{\omega}(A_{N}^{q})-S_{\omega}(A_{N-1}^{q})}{(A_{N}^{q})^{z}}-\frac{S_{\omega}(A_{N}^{q})}{(A_{N-1}^{q})^{z}}.$$

Thus, since $\lim_{N\to\infty} \frac{S_{\sigma}(A_N^{\sigma})}{(A_{N+1}^{\sigma})^2} = 0$ for Re(z) > 1, we obtain the desired equality

$$z \int_{1}^{\infty} \frac{S_{\omega}(v)}{v^{z+1}} dv = \sum_{n=0}^{\infty} \frac{A_{n}^{n-1}(T^{n}f)(\omega)}{(A_{n}^{n})^{z}}, \quad \text{Re}(z) > 1.$$

Lemma 3. Let $\omega \in \Omega - (E \cup E_0)$ be fixed and put

$$H_{\omega}(y) = e^{-y}S_{\omega}(e^y), \quad y \geq 0.$$

Then for some real a > 0,

$$\lim_{v\to\infty}\int_{-\infty}^{av}H_{\omega}(v-\frac{v}{a})K_1(v)dv=f^*(\omega)\int_{-\infty}^{\infty}K_1(v)dv$$

holds with the Fejér kernel $K_{\rho}(t) = \frac{\sin^2(\rho t)}{\rho t^2}, \ \rho > 0$.

Proof. By Lemma 2 we see that

$$\int_0^\infty H_\omega(y)e^{-(z-1)y}dy = \frac{1}{z}\sum_{n=0}^\infty \frac{A_n^{g-1}(T^nf)(\omega)}{(A_n^g)^z}, \quad \text{Re}(z) > 1,$$

and so

$$\int_0^\infty (H_\omega(y) - f^*(\omega))e^{-(z-1)y}dy = \frac{G_\omega(z) - f^*(\omega)}{z}, \quad \text{Re}(z) > 1.$$

Note that the Fourier transform of $K_a(t)$ becomes

$$\frac{1}{\pi}\int_{-\infty}^{\infty}K_a(t)e^{-iyt}dt = \begin{cases} 1 - \frac{|y|}{2a}, & \text{if } |y| \le a, \\ 0, & \text{if } |y| > 2a. \end{cases}$$

Using the Fejér kernel

$$\frac{1}{2}\int_{-2a}^{2a}\left(1-\frac{|t|}{2a}\right)e^{i(y-u)t}dt=\frac{1}{4a}\int_{0}^{2a}\left\{\int_{-\tau}^{\tau}e^{it(y-u)}dt\right\}d\tau=\frac{1-\cos(2a(y-u))}{2a(y-u)^{2}}=K_{a}(y-u),$$

we have for $\sigma > 1$ and every a > 0

$$\frac{1}{2a} \int_{-2a}^{2a} e^{iyt} \left(1 - \frac{|t|}{2a} \right) \frac{G_{\omega}(\sigma + it) - f^{*}(\omega)}{\sigma + it} dt$$

$$= \frac{1}{2} \int_{-2a}^{2a} \left[\int_{0}^{\infty} (H_{\omega}(u) - f^{*}(\omega)) e^{-(\sigma - 1 + it)u} du \right] \left(1 - \frac{|t|}{2a} \right) dt$$

$$= \frac{1}{2} \int_{0}^{\infty} (H_{\omega}(u) - f^{*}(\omega)) e^{-(\sigma - 1)u} du \int_{-2a}^{2a} \left(1 - \frac{|t|}{2a} \right) e^{i(y - u)t} dt$$

$$= \int_0^\infty H_\omega(u) e^{-(\sigma-1)u} K_a(y-u) du - f^*(\omega) \int_0^\infty e^{-(\sigma-1)u} K_a(y-u) du.$$

So, letting $\sigma \rightarrow 1$ gives

$$\frac{1}{2} \int_{-2a}^{2a} e^{iyt} \left(1 - \frac{|t|}{2a} \right) \frac{G_{\omega}(1+it) - f^{*}(\omega)}{1+it} dt$$

$$= \int_{0}^{\infty} H_{\omega}(u) K_{a}(y-u) du - f^{*}(\omega) \int_{0}^{\infty} K_{a}(y-u) du$$

$$= \int_{-\infty}^{ay} H_{\omega}(y - \frac{v}{a}) K_{1}(v) dv - f^{*}(\omega) \int_{-\infty}^{ay} K_{1}(v) dv.$$

Consequently, the desired conclusion follows immediately from this and the Riemann-Lebesgue theorem.

Proof of Theorem 1. After observing that $y_2 \ge y_1 > 0$ implies $H_{\omega}(y_2)e^{y_2} \ge H_{\omega}(y_1)e^{y_1}$, it follows from Lemma 3 that

$$f^{*}(\omega) \int_{-\infty}^{\infty} K_{1}(v) dv \geq \limsup_{y \to \infty} \int_{-\sqrt{a}}^{\sqrt{a}} H_{\omega}(y - \frac{v}{a}) K_{1}(v) dv$$

$$\geq \limsup_{y \to \infty} \int_{-\sqrt{a}}^{\sqrt{a}} H_{\omega}(y - \frac{1}{\sqrt{a}}) e^{-\frac{2}{\sqrt{a}}} K_{1}(v) dv$$

$$= \limsup_{y \to \infty} H_{\omega}(y - \frac{1}{\sqrt{a}}) e^{-\frac{2}{\sqrt{a}}} \int_{-\sqrt{a}}^{\sqrt{a}} K_{1}(v) dv.$$

Therefore

$$\limsup_{y\to\infty} H_{\omega}(y) \leq \frac{\int_{-\sqrt{a}}^{\infty} K_1(v)dv}{\int_{-\sqrt{a}}^{\sqrt{a}} K_1(v)dv} \int_{-\infty}^{\infty} K_1(v)dv.$$

Moreover, letting $a \rightarrow \infty$ yields

$$\limsup_{y\to\infty}H_{\omega}(y)\leq f^*(\omega).$$

This also implies that $H_{\omega}(y)$ is bounded, so we may write $H_{\omega}(y) \leq C_{\omega}$ with a suitably chosen constant C_{ω} . On the other hand, for $y \geq \frac{1}{\sqrt{a}} > 0$,

$$\int_{-\infty}^{ay} H_{\omega}(y - \frac{v}{a}) K_1(v) dv \leq \left(\int_{-\infty}^{-\sqrt{a}} + \int_{-\sqrt{a}}^{\sqrt{a}} + \int_{\sqrt{a}}^{ay} \right) H_{\omega}(y - \frac{v}{a}) K_1(v) dv$$

$$\leq 2C_{\omega} \int_{\sqrt{a}}^{\infty} K_1(v) dv + \int_{-\sqrt{a}}^{\sqrt{a}} H_{\omega}(y + \frac{1}{\sqrt{a}}) e^{\frac{2}{\sqrt{a}}} K_1(v) dv.$$

Thus by Lemma 3 again we have

$$f^*(\omega) \int_{-\infty}^{\infty} K_1(v) dv \leq 2C_{\omega} \int_{\sqrt{a}}^{\infty} K_1(v) dv + \liminf_{v \to \infty} \int_{-\sqrt{a}}^{\sqrt{a}} H_{\omega}(v + \frac{1}{\sqrt{a}}) e^{\frac{2}{\sqrt{a}}} K_1(v) dv$$

$$=2C_{\omega}\int_{\sqrt{a}}^{\infty}K_{1}(v)dv+\liminf_{y\to\infty}H_{\omega}(y)e^{\frac{2}{\sqrt{a}}}\int_{-\sqrt{a}}^{\sqrt{a}}K_{1}(v)dv,$$

and hence

$$\lim_{y\to\infty}\inf H_{\omega}(y)\geq \frac{f^*(\omega)\int_{-\infty}^{\infty}K_1(v)dv-2C_{\omega}\int_{\sqrt{a}}^{\infty}K_1(v)dv}{\int_{-a}^{\sqrt{a}}K_1(v)dv}e^{-\frac{2}{\sqrt{a}}}.$$

Finally, let $a \to \infty$ to get

$$\liminf_{y\to\infty} H_{\omega}(y) \geq f^*(\omega).$$

The above two parts together shows that $\lim_{y\to\infty} H_{\omega}(y) = f^*(\omega)$. Hence we may take $y = \log A_n^{\alpha}$ to conclude that the theorem follows. The proof of the theorem has hereby completed.

Remarks. It should be noticed that an essential role in the proof of Theorem 1 is played by Wiener's general Tauberian theorem ([6], Theorem VIII) which guarantees that the following equation to hold for some a > 0

$$\lim_{y\to\infty}\frac{1}{\pi}\int_{-\infty}^{\infty}K_a(y-u)H_{\omega}(u)du=\frac{f^*(\omega)}{\pi}\int_{-\infty}^{\infty}K_a(u)du$$

is in fact valid for all real a > 0. We next demonstrate two cases realizing all the conditions of Theorem 1.

(1) We consider the function space C[0,1] consisting of functions f(t) continuous for $0 \le t \le 1$ such that $||f|| = \max|f(t)|$. Let T be an order preserving, positively homogeneous and norm decreasing operator in C[0,1] with T(0) = 0. Let $T_r = rT$ for some r, 0 < r < 1. Let $0 < \alpha < \infty$ and $f \in C[0,1]^+$. Then one gets

$$\limsup_{n\to\infty}\frac{\log\left[\sum_{k=0}^nA_k^{n-1}(T_n^k)(t)\right]}{\log A_n^n}=0.$$

We can thus define the function $G_t(z)$ by the convergent Dirichlet series $\sum_{n=0}^{\infty} \frac{A_n^{n-1}(T_t^n f)(t)}{(A_n^n)^2}$ for $z \in \{\text{Re}(z) \ge 1\}$. Clearly $G_t(z)$ is analytic in the closed half-plane $\{\text{Re}(z) \ge 1\}$.

(2) Let $\beta > 0$ be fixed positive and define an operator T_{β} in C[0, 1] by the fractional integral

$$(T_{\beta}f)(t) = \frac{1}{\Gamma(\beta)} \int_0^t (t-u)^{\beta-1} f(u) du, \quad 0 \le t \le 1$$

for $f \in C[0,1]$. Let $0 < \alpha < \infty$ and $f \in C[0,1]^+$. Then we see that

$$\limsup_{n\to\infty}\frac{\log\left[\sum_{k=0}^nA_k^{n-1}(T_k^*)(t)\right]}{\log A_k^n}=0.$$

Thus we may obtain a function $G_l(z)$ analytic in $\{\text{Re}(z) \geq 1\}$ which is defined by the convergent Dirichlet series $\sum_{n=0}^{\infty} \frac{A_n^{q-1}(T_n^{p})(t)}{(A_n^q)^z}$ for $z \in \{\text{Re}(z) \geq 1\}$.

Applying a modified Karamata's argument for series to nonlinear operators (see [9]), we have

Theorem 2. Let T be an order preserving and L_{∞} -norm decreasing operator in L_p $(1 \le p \le \infty)$ with T(0) = 0. Let $0 < \alpha < \infty$ and $f \in L_p^+ \cap L_{\infty}$. Define

$$\Psi_a(t;f) = A_n^{\alpha-1} T^n f, \qquad n \leq t < n+1, \quad n \geq 0.$$

If $\lambda^{\alpha} \int_{0}^{\infty} e^{-\lambda t} \Psi_{\alpha}(t; f) dt$ $(\lambda > 0)$ converges a.e. as $\lambda \to 0 + \text{to some } f_0 \in L_p^+$, then $\frac{1}{A^{\alpha}} \sum_{k=0}^{n} A_k^{\alpha-1} T^k f$ converges a.e. as $n \to \infty$ to the function f_0 .

References

- [1] J.B. Baillon, Un théorème de type ergodique pour les contractions non-linéaires dans un espace de Hilbert, Compt. Rend. Acad. Sci. Paris A, 280 (1975), 1511-1514.
- [2] J.B. Baillon, Comportment asymptotique des itérés de contractions non-linéaires dans les espaces L_p , Compt. Rend. Acad. Sci. Paris, 286 (1978), 157-159.
- [3] J. Korevaar, Tauberian Theorey, Springer, 2004.
- [4] U. Krengel, An example concerning the nonlinear pointwise ergodic theorem, Isr. J. Math. 58 (1987), 193-197.
- [5] U. Krengel and M. Lin, Order preserving nonexpansive operators in L_1 , Isr. J. Math. 58 (1987), 170-192.
- [6] N. Wiener, Tauberian theorems, Ann. of Math. 33 (1932), 1-100.
- [7] R. Wittmann, Hopf's ergodic theorem for nonlinear operators, Math. Ann. 289 (1991), 239-253.
- [8] T. Yoshimoto, On non-integral orders of strong ergodicity in nonlinear ergodic theory, Proc. the 3rd International Conf. on Nonlinear Anal. and Convex Anal. (Tokyo, 2003), 577-585.
- [9] T. Yoshimoto, Strong nonlinear ergodic theorems for asymptotically nonexpansive semigroups in Banach spaces, J. Nonlinear Convex Anal. 5 (2004), 307-319.
- [10] T. Yoshimoto, Remarks on nonlinear ergodic theory in L_p , to appear in Proc. the 4th Inernational Conf. on Nonlinear Anal. and Convex Anal. Okinawa, 2005.