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Remarks on Pointwise Nonlinear ergodic theorems in L,

Takeshi Yoshimoto (FAEKE)
Department of Mathematics, Toyo University

1. Introduction

In [1], [2] Baillon considered a class of nonexpansive self-mappings 7 of a bounded closed
convex subset C of a Hilbert space H or L, with 1 < p < o, formed the Cesaro (C, 1) mean
value peocess

cPLTf = ;i—lfjr*f, n>0
=0

for f € C and established the weak nonlinear ergodic theorem for 7. Then later, Krengel and
Lin [5] considered another class of order preserving, L., —norm decreasing and

L; —nonexpansive operators in L, and proved the following weak nonlinear ergodic theorem
which can not be covered by Baillon’s theorem: Let T be an operator in L, (1 < p < ) which
is order preserving, Lo —norm decreasing and L; —nonexpansive. Then for any f € L,, C[T]f
converges weakly in L. If the basic measure is finite, cP[TYf converges weakly in L, for

f € L. The same result holds for operators in Li.

In the settings of Baillon, Krengel and Lin, however, one can only expect weak
convergence of the (C, 1) process. Indeed, the example due to Krengel and Lin [5] shows that
CP[T]f need not converge in the strong topology of L, and the example given by Krengel [4]
shows that the pointwise convergence of Cf,”[T_lfmay fail to hold. Note here that the iteration
process considered by Wittmann [7] has a different aspect. So, as suggested (implicitly) by
Krengel and Lin, it seems to be a question of great significance to find those (extra) conditions
under which CS[7]f converges almost everywhere ot in the strong topology of L, (cf. [7]). In
[9] the author made an attempt to deal with this question in the strong topology of L,. [By the
way, in [4] Krengel dared to say: It therefore seems that the example essentially eliminates all
hopes for general pointwise nonlinear ergodic theorems. Of course, the possibility of positive
results for specific class of nonlinear operators remains.]

We are particularly interested in finding some conditions or in changing the settings under
which the almost everywhere convergence of Cf,l)[T,]f holds in both linear and nonlinear cases.
In a forthcoming paper [10] the author proved the following theorem:

Theorem. Let T be an order preserving operator in L, (1 < p < o) with 7(0) = 0. Let
0 <a <owandf, f* € L}. Assume that E is a measurable set of measure zero such that for

any @ € E°, the generalized Dirichlet series ¥ -‘“4(—7?,)(“'iconver es (absolutely) for each
y g n=0 " (AR 4 y.

z € C with Re(z) > 1. Here A%, n > 0,denote the (C,a) coefficients of order a. Assume that
for any @ € E° U {f* < o}, the analytic function

m [—)
Golz) = E A ‘&g{m - ff"?’ Re(z) > 1
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has an analytic or just continuous extension (also called G(.)) to the closed half-plane
{Re(z) > 1}. Finally assume that for each ® € E° U {f* < oo}, there exists a constant
M, > 1 such that

* Go(2) = O(z/™), Re(z) > 1.

Then
lim £ §A""‘(T*f)(w) = (o)

holds for almost all .

In this paper we will show that the above theorem is also valid even without assuming the
growth condition (*). Our general approach to understanding analytic conditions will be via
Dirichlet series concerning operators in L, (cf. [10]). The proof will make heavy use of
Landau’s Tauberian technique in Landau-Wiener-Ikehara's Tauberian theorem for Dirichlet
series (cf. [3]).

2. Pointwise nonlinear ergodic theorems in L,

Let Ly = Lp(Q,E, 1), 1 < p < o, be the usual Lebesgue spaces, where (Q,E, i) is a
o —finite measure space. A operator T in L, is said to be L, —norm decreasing if
I7f1l, < 1A, holds for all f € L,. T is called order preserving in L, iff, g € Lyandf< g
imply If < Tg. T is called nonexpansive in L, if | If — Tg| » S - gll » holds for all £,
g € Lp. W say that T is positively homogeneous if 7(cf) = cIf for all f € L, and any constant
¢ > 0. For a real number @ > —1 and each integer n > 0, let 4% denote the (C, a) coefficient
of order @, which is defined by the generating function

(H)“, ZA“A" 0<i<l

with 4§ = 1. We also let 43! = 1 andbA;1 = 0 forall n > 1. Then for @ > —1, we have
A;‘,>O,A9,=1,Ag ﬁﬁ:]—)-’ and '

= gAg:,} = Z z—l _ (¢+1)(a+2’)‘l--- (a+n).
=0

Moreover, it follows that 4% is increasing in n for @ > 0 and decreasing in n for -1 < a < 0.
We will prove

Theorem 1. Let T be an order preserving operator in L, (1 < p < o) with 7(0) = 0 and let
0 <a<owm,f,ff €L, Assume that E is a set in E with g(E) = 0 such that for any

o € Q — E,the generalized Dirichlet series Z” ﬁ:(i—?;’,)ﬂ converges (absolutely) for each

z € C with Re(z) > 1. Assume that for any ® € Q — (E U Eo), where Ey = {f* = o«o},the
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analytic function

Guld) = R AL - L8, Re(d) > 1

has an analytic or just continuous extension (also called Go(.)) to the closed half-plane
{Re(z) > 1}. Then - X} A5/ (T*)(w) converges as n » o to f*(w) for almost all » € Q.

We need some lemmas.
Lemma 1. Let T be an order preserving operator in L, (1 < p < o) with T(0) = 0 and let
0 <a<ow, fe L} Assume that E is a set in E with 4(E) = 0 such that forany € Q ~ E,

(the abscissa of convergence)

log (3o AF'TH@] :
log A8 -

a.(a;f) = lim sup

©  AF(I")(@)

Then for each ® € Q - E, the generalized Dirichlet series 3~ 700

(absolutely) for z € C with Re(z) > 1.

converges

Proof. Let w € Q — E be fixed and let z € C, Re(z) > 1. We choose some § > 0 (which
may depends on (a,®,z)) such that

au(a;f) + £ < ao(a;f) + 6 < Re(z).

Then there exists a sufficiently large number Ny = No(8,a0) (Where ap = an(a;f)) such that

m

Y A5 (M) < (48)**E, m > No.
n=0 :
Thus, letting

2y AFN(TY
Dunts) = £ AETI, 52 ¢

and using the partial summation formula of Abel, we have, form > n+1 > N

o AP (T@) AN @)
EIW - 2 Z O

m-1
—_ 1 - 1 Dom(0) _ Das(0)
- E{w)«w g Dor0) + GiSics = G

< a\ast+l 1 - 1 1 1
- é(Ak) z{(At)““ (Ag“)w} + ¢ Aa.)auﬁ—(n.'bg-) + (Aﬁ)aaw-{nﬁ%)



log Af,
< (am+5)Z(Aa)“w+£ fueag o + 2

IA

log 4f, _s
(aa,+a)zj " etvdu 2y

IA
I
g
3

-y 2,
8 i wni’ wpl

This gives

m a m 1
0< lim > IO < i > AL o,

and the lemma follows.

Lemma 2. Let w € Q — E be fixed. Then

@D

[l T ap' @h@)ldy = 132800, Re(z) > 1.
0<kesn; A§<v n=0

Proof. Let ¢ > 0 be fixed sufficiently small and let w € Q ~ E, z € C, Re(z) > 1. By
assumption there exists a number Ny (which may depends on (f; &, @, ®, z)) large enough so that

i A (TH)(@)

<&
)
bNgr1 D

We then have for sufficiently large v

- N AP (TN@) o AL (T)(w)
a2 APINe) s Y TSe S X Tgpee <&
No+lSkSn; AgSV kFNo‘i'l " IO=N0+1

This implies that hm 2 HA“"(T"f)(a)) = 0. Now let us define

AC )l

Sa(v) 2 AN, vzl (n20)

O<k<n, A<y
=0, v<l1.

Then it follows that

ARt So(v) Al Se(v)
J‘]N-H vdv ZJ'M (vdv

- 235 D [ Sheav
J=0

N

1
J§Sm(A )[ sy - '(]]%;)_x]

29



o SeldD) | SaUDSeUD) L .. . SedB)SeUf) _ Sldf)

48y (afy (4% T @

Thus, since Jim (;;,S ';3 = 0 for Re(z) > 1, we obtain the desired equality

© So AF (Y
zf =y = 2—(75!3-3’-, Re(z) > 1.

Lemma 3. Let @ € Q ~ (E U E,) be fixed and put
Hm(y) = e_ySw(ey), y 2 O.

Then for some real @ > 0,
lim [ Hoy - $)Ki0)dv = f(@) [~ Ki(v)dv

holds with the Fejér kernel K,(f) = —-(—”—, p>0.

Proof. By Lemma 2 we see that

© D e .
Jo HaQ)etvdy = $ 3 47000, Re(a) > 1,

and so
f3 Ho®) = f(@))e e rdy = SOL@ - Re(z) > 1.

Note that the Fourier transform of K, () becomes

1

© M
17 Ka(@etd = { "= i bra,

if [yp2a.

Using the Fejér kernel

1 I-—Za(l _L)et(y—u)tdt €L I {j‘ e"-idfydr = _2__;_‘_.'&;’3"_ Koy - u),

we have foro > 1 and everya > 0

L[ e (1- ) eore gy

o+t

= 31510 (Haw) - f(@))ee-tiua] (1 - 2

= 1[5 (Ho(w) - f(@))ec-wau [ (1~ L) ety
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= [ Ho(w)e Koy - udu - f*(0) [ DKoy ~ u)du.
So, letting 0 — 1 gives

L[ (1 - ) sy

1+it
= [} Ho()Kaly - w)du - (@) [ Kaly - u)du
= |7 Holy - Ki(v)dv - @) |7, Ki(v)dbv.

Consequently, the desired conclusion follows immediately from this and the Riemann-Lebesgue
theorem.

Proof of Theorem 1. After observing that y; > y; > 0 implies Hy(y2)e”? > Hp(y1)e, it
follows from Lemma 3 that

£ @) [° Kiw)dv 2 limsup [* Ho(y — £)K: (v)dv
—© Yo -Ja
. Ja 1\ 2%
> lim sup j'_ﬁ Hy(y - E)e & Ki(v)dv

T 1 y,~% (V@
= lim sup Hy,(y - 73)8 J' Lﬁ Ki(v)dv.
Therefore

‘ 2
lim sup H,(y) < —%‘—ﬁ—- f: Ki(v)av.
yo I_ . Ky(v)av

Moreover, letting a —+  yields
lim sup Hy(y) < f*(@).
y=0

This also implies that H,(y) is bounded, so we may write H,(y) < C, with a suitably chosen

constant C,. On the other hand, for y > % >0,

2 Hoy = KWy < ([27 4] +]% JHaly - HE I
® 2.
< 2Ca [ KiW)dv + fr Ho(y + L)eFKi(v)dv.
Thus by Lemma 3 again we have

L@ KW <2C, | ‘:’F Ki(v)dv + lim inf | fr Ho(y + -Jl_a-)f,rfﬂrc1 (v)dv
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L . 2 rja
= 2Cy I & Ki(v)av + llr;i;nf Hy(y)e J‘_aﬁ Ki(v)av,

and hence

> ) 0
r@ | Kedr-2ce | TN

7

lim infHo(y) > -
ye0 Ir K ()dv
-

Finally, let @ - oo to get

lim inf Hp(y) = f*(w).
Y0

The above two parts together shows that ;‘i_,rgH.,,(y) = f*(w). Hence we may take y = log 4% to
conclude that the theorem follows. The proof of the theorem has hereby completed.

Remarks. It should be noticed that an essential role in the proof of Theorem 1 is played by
Wiener's general Tauberian theorem ([6], Theorem VIII) which guarantees that the following
equation to hold for some a > 0

lim + |7, Ka(y — w)Ho(u)du = £E [* Ko (u)du

is in fact valid for all real @ > 0. We next demonstrate two cases realizing all the conditions of
Theorem 1.

(1) We consider the function space C[0, 1] consisting of functions f{f) continuous for
0 < < 1 such that ||f]| = max|f{r)|. Let T be an order preserving, positively homogeneous
and norm decreasing operator in C[0, 1] with 7(0) = 0. Let 7, = rT forsomer, 0 < r < 1.
Let 0 < @ < wand f € C[0,1]*. Then one gets

i log (3, o AF'THO]
e

We can thus define the function G(z) by the convergent Dirichlet series 2:_0 A’%—;’?—@— for
z € {Re(z) > 1}. Clearly G,(z) is analytic in the closed half-plane {Re(z) > 1}.
(2) Let B > 0 be fixed positive and define an operator T in C[0, 1] by the fractional

integral
TN® = 75 [t - Ruydu, 0<r<1

for f € C[0,1]. Let0 < @ < wand f € C[0,1]*. Then we see that

. tog [3, o 4F'(THH®]
hn"l_iup log 77 =0

Thus we may obtain a function G,(z) analytic in {Re(z) > 1} which is defined by the

© A0 fr g e {Re(z) > 1}.

convergent Dirichlet series 3 ") ——=%
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Applying a modified Karamata's argument for series to nonlinear operators (see [9]), we
have

Theorem 2. Let T be an order preserving and L., —norm decreasing operator in L,
(1<p=<Lo)withT(0) =0. Let 0 < @ < wand f € L} N L. Define

Yo(t;) = AT, n<t<n+l, n>0.

If A® I : e W, (t;f)dt (A > 0) converges a.e. as A - 0 + to some fy € L}, then
4 2po AT T converges a.c. as n ~ <o to the function fo.
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