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Nondifferentiable Multiobjective Fractional

Programming Problems under
Generalized Convexity!

D. S. Kim?, H. S. Kang® and H. S. Jeung®

Abstract. In this paper, we consider a class of nondifferentiable multiobjective
fractional programs in which each component of the objective function contains a
term involving the support function of a compact convex set. We present optimal-
ity conditions and duality results for a weakly efficient solution of nondifferentiable
multiobjective fractional programming problems under generalized convexity.

1 Introduction and Preliminaries

"The various concepts of generalized convexity and duality results for a frac-
tional programming problem was introduced by many authors [1]-[14]. Duality
and optimality for nondifferentiable multiobjective programming problems, in
which the objective function contains a support function was studied by Mond
and Schechter [15]. Bector et al. [1], derived optimality conditions for a class
of nondifferentiable convex multiobjective fractional programming problems and
established some duality theorems. Recently, Kuk et al. [7] defined the con-
cept of V-p-invexity for vector valued functions, which is generalization of the
V-invex function [4],[13], and they proved the generalized Karush-Kuhn-Tucker
sufficient optimality theorem, weak and strong duality for nonsmooth multi-
objective programs under the V-p-invexity assumptions. Subsequently, Kuk et
al. [8] extend their results to nonsmooth multiobjective fractional programs
and Liang et al. [11] introduced (F, e, p, d)-convexity and obtained some cor-
responding optimality conditions and duality results for the single-objective
fractional problem. Also, Liang et al. [12] extend their results to the multiob-
jective fractional programs. Very recently, Kim et al. [6] proved Fritz John and
Kuhn-Tucker necessary and sufficient optimality conditions for nondifferentiable
multiobjective fractional programming problems and obtained some duality re-
sults for a weakly efficient solution under V-p-invexity assumptions that was
given by Kuk et al. [7]..

In this paper, we consider a nondifferentiable multiobjective fractional pro-
grams in which each component of the objective function contains a term in-
volving the support function of a compact convex set. We present necessary and
sufficient optimality conditions, which is given by Kim et al. [6] and formulate
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a general dual problem. Also we establish duality theorems for weakly efficient
solutions of nondifferentiable multiobjective fractional programming problems
and introduce special cases of our duality results.

Now we consider the following multiobjective fractional programming prob-
lem,

(MFP) Minimize <f1(x) + s(2|C1) folz) + s(:c]C'p)>

91(x) o 9p(2)

subject to h(z)£0, ze€ Xo,

where X is an open set of R, f := (f1,...,fp) : Xo = R?, g:=(91,---,9p) :
Xo — RP, and h := (hy,...,hAn) : Xo — R™ are continuously differentiable
over Xp; Cj, for each i € P = {1,2,...,p}, is a compact convex set of R™ and
$(z|C;) = max{(z,y) | y € C;}. Further let, S = {z € Xy : h(z) < 0} be the
set of all feasible solutions and I(z) := {i : h;(z) = 0} for any z € Xo. Let
ki(z) = s(z|C;), =1,...,p. Then k; is a convex function and 8k;(z) = {w €
Ci| (w, z) = s(z|C;)} [15], where Ok; is the subdifferential of k;. We assume that
f(z) =0 for all z € Xy and g(z) > 0 for all z € X, whenever ¢ is not linear.

We introduce the following definition due to Kuk et al [7].
Definition 1.1. A vector function f : Xy — RP is said to be (V, p)-invex
at u € Xp with respect to functions n and 8 : Xy x Xy — R if there exists

a;: Xo x Xo = Ry\{0} and p; € R, i = 1,...p such that for any z € Xy, and
fori=1,2,...,p,

(e, ) | £i(2) — £i(w)] 2 Vfilwin(z, u) + ol 6z, )

The function f is (V, p)-invex on Xy if it is (V, p)-invex at every point in Xg.
We shall use the following theorem.

Theorem 1.1.[6] Assume that f and g are vector-valued differentiable func-
tions defined on Xo and f(z)+(w,z) 2 0, g(z) > O forallz € Xo. If f(-)+(w,-)

and —g(-) are (V, p)-invex at o € Xg, then ﬂjﬁ%’”—l is (V, p)-invex at zq, where

ai(z,20) = L9 (2, 20), Bz, 20) = (gi(io))” *0:(z, 20).



2 Optimality Conditions

We present Fritz John and Kuhn-Tucker necessary and sufficient conditions,
that were proved by Kim et al. [6] for weakly efficient solutions of (MFP).

Theorem 2.1. Fritz John Necessary Optimality Conditions
If zo € S is a weakly efficient solution of (MFP), then there exists \;,i =
1,...,p, 4j, 3=1,...,msuch that

fi(zo) + (wi, To) m
;)\1 ( ng(l'o) : >+;M:‘th(wo)=o,

(wi,xo) = s(xOIC,-), w, €Ci, i=1,...,p,

m

> ushj(mo) =

j=1

(/\11"-1/\17’“1)"',/-1'771)—2—0’ (Ala"'v)‘p)#l""vﬂm)#o'

Theorem 2.2. Kuhn-Tucker Necessary Optimality Conditions
Let zo € S is a weakly efficient solution of (MFP) and assume that there
exists z* € R"™ such that (Vh;(xo),2*) > 0, 7 € I(xzo). Then there exist
Ai20,i=1,...,p, u;20,j=1,...,mand w; € C;,5=1,...,p such that

ZA V(fz(a:og-f-x(o't;h, To) ) + Z“thj(xo) =0,
i j=1 .

(wi, zo) = 8(z0|Ci), wi € Ci, i=1,...,p,

> uihi(zo) =
j=1

(Ao Ap) # (0, ., 0).



Theorem 2.3. Kuhn-Tucker Sufficient Optimality Conditions

Let g be a feasible solution of (MFP). Suppose that there exists A = (A1,..., Ap) €

RE,A>0, 3% A =1and u= (u1,...,4m) € RT such that

EP: ,\N(fi(”‘)) + (ws “")) + Zm:ujvm(xo) =0,
i=1

9i(xo) P

(w‘iax0> = S(xolC’i), w; € C’ia 1= 1) SRRy 2
> uihi(zo) = 0.
Jj=1

If f(:) + (w,-) and —g(-) are (V, p)-invex at xo and h is (V, o)-invex at zo with
respect to the same 7 with 3°7_; Xjp; 2 0 and 37, 05 = 0,then zo is a weakly
efficient solution of (MFP).

3 Duality Theorems

We consider the following general dual problem to primal problem (MFP).

f1 (u) + ('wl, u)

@ + prhr(u), ...,

(MFD)g Maximize (

subject to iA,—V(fi(u) + (w,—,u)> + f:,uthj(u) =0,(1)

i=1 gi(u) j=1

prhs(u) 20,
w, €Cii=1,...,p,
(U1, s ) 20, A= (A, .. Ap) € AT,

where JUJ ={1,---,m}=Mand INJ =0. Let At = {A e RP: A 20,\Te =
lLe=(L,...,1) € RP}.

Theorem 3.1. Weak Duality Let z € S be a feasible for (MFP)
and (u, A, w, u) be a feasible for (MFD)g. Assume that the functions f(-) +
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(w,-), —g(-) and h are (V, p)-invex functions over S with respect to the same 7
with Zzpsl /\ip'i, _2_ 0.
Then the following cannot hold,;

f@) +5(e0) _ f) +(ww) =
e D ML

Proof. Assume that the result does not hold. Since (w;,z) £ s(z|C;), we
have for all s € {1,...,p}

fi(z) +{wi,z) . filz) + s(z|Ci)

gi(z) - 9i(z)
fi( w't,
< 7 u) + ;lh _

Since 3.y pihi(z) £ 0and 3, uihj(u) 20, for i=1,...,p,

(:E) + wza wu
5 (@) +Z“’ gxu) '+ Z"J

By using (V, p)-invexity of h at u and Theorem 1.1, it follows that

&i(:c,u)[fi(x); (wi, 2) + Z,ujhj(u) f,(u) + wh Z/ijh (u) }

fz(u) + (w‘i’u> - i)
2 [V(FE ) + ;ujku)] (@, w)+ pillBs( ).

Since A € A, we have

(Do rew (B 4 57, )]t ) < (- S plBi@ I (@)
i=]

j=1
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Since Y F_, Aip:||6:(z, u)||> 2 0, it follows from (2) that

[Z v(Et ey ZW w)|n(z,u) <0,

which contradicts (1). O

Remark. If we replace A € At in (MFD)g by A > 0, then above weak
duality theorem holds in the sense of efficient solutions.

Theorem 3.2. Strong Duality If Z is a weakly efficient solution of (MFP),
and assume that there exists z* € R" such that (Vh;(z),2*) > 0, j € I(Z),
then there exists A € RP, i € R™ and @ € C such that (Z, A, @, i) is feasible
for (MFD)¢g and (@, %) = s(Z|C). Moreover, if the weak duality holds, then
(Z, )\, 0, i) is a weakly efficient solution of (MFD)g.

Proof. Since Z is a weakly efficient solution of (MFP) and there exists
z* € R™ such that (Vh;(Z),2*) >0, j € I(Z), there exists A € R?, it € R™ and

w; € Ci, 1 =1,...,p such that >F_, S\ZV(I—QQM(;’T—@) + 2 B Vh(Z) =

0, (w,,m) = s(z|C;), w; € C;, ¢ = 1,...,p and ZJ L Bihi(Z) = 0. Since
Y ier Bihi(Z)+3 ;¢ 5 Bjh;(Z) = 0 and Z is a weakly efficient solution of (MFP),

we can obtain 3° ;¢ ; fijh;(%) Z 0. Thus (, X, W, i) is a feasible for (MFD)g,
(W3, Z) = s(Z|Cy), @« = 1,...,p. Since Z is feasible for (MFP), it follows from

weak duality that f(i)“(“lc) £ f(”)+ L4 > jer Hihj(u)e for any (MFD)

feasible solution (u, A\, w, ). Hence (Z, A, w, i) is a weakly efficient solution of
(MFD)g. O

4 Special Cases

We introduce some special cases in [6] as our duality results.

21



If I =M and J = (), then (MFD)¢ is reduced to the following Mond-Weir
type dual problem for (MFP):

f1(w) + (w1, u) fo(u) + (%n“))

(MFD),, Maximize ( o) yeees o)

subject to Z)\ V(fz wz, ) ZMJVh

Zﬂy (u) 20,

wiECiJ t=1,...,p,
(.U'la---nu'm)go’ )‘z(}‘l""a)‘p) €A+’

where AT = {A€RP: A2 0, Te=1,e=(1,...,1) € RP}.

Theorem 4.1. Weak Duality Let z € S be a feasible for (MFP)
and (u, \, w, i) be a feasible for (MFD),,. Assume that the functions f(-) +
(w,-), —g(-) are (V, p)-invex functions over S and h is (V,0)-invex at u with
respect to the same n with Y 7_; Aip; 2 0 and )~72; 05 2 0.

Then the following cannot hold,

£@) +5((C) _ £ + w,)
(@) O

Theorem 4.2. Strong Duality If Z is a weakly efficient solution of (MFP),
and assume that there exists z* € R™ such that (Vh;(Z),z*) > 0, j € I(Z),
then there exists A € R?, i € R™ and @ € C such that (Z, ), @, 1) is feasible
for (MFD)a and (@,%) = s(Z|C). Moreover, if the weak duahty holds, then
(Z, N\, W, i) is a weakly efficient solution of (MFD)

If I =0 and J = M, then (MFD)¢ is reduced to the following Wolfe type
dual problem for (MFP):

22



(MFD),,  Maximize (fl( o u;”“ +Zu]h]

fp( wp’ +Z“Jh (u)

P . - m
subject to Z /\iV(f%(u);-(i;U“ u)) + Z 1 Vhji(u) =0,
i=1 t j=1

wiECi’i=1,...,p,
(K15 s tm) 20, A= (A1,...,Ap) €AT,
where At ={Ae€RP: 120, Te=1,e=(1,...,1) € RP}.
Theorem 4.3. Weak Duality Let z € S be a feasible for (MFP)

and (u, A\, w, u) be a feasible for (MFD)w,. Assume that the functions f(-) +
(w, ), —g(-) and h(-) are (V, p)-invex functions over S with respect to the same

n with 32 Aipi 2 0.
Then the following cannot hold;
f(z) +5|C) _ f(u) + (w,v)
g(z) g9(u)

+ Z Mjhj (u)e
j=1

Theorem 4.4. Strong Duality If z is a weakly efficient solution of (MFP),
and assume that there exists 2* € R™ such that (Vh;(Z),2*) > 0, j € I(Z),
then there exists A € RP, i € R™ and @ € C such that (%, A, @, [i) is feasible
for (MFD)w and (@,Z) = s(Z|C). Moreover, if the weak duahty holds, then
(Z, A, @, i) is a weakly efficient solution of (MFD)w

5 Conclusions

We introduce a class of nondifferentiable multiobjective fractional program-
ming problem (MFP) with (V,p)-invexity. We present the concept of (V,p)-
invexity for vector valued functions and give Fritz John and Kuhn-Tucker nec-
essary, sufficient optimality conditions for weakly efficient solutions of our prob-
lem, in which each component of the objective function contains a term involving
the support function of a compact convex set.
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Also we formulate a general dual problem (MFD)g to the primal problem
(MFP) and prove the weak and strong duality theorems. Furthermore, we
obtain some special cases of our duality results. Our results may serve as a
framework for further reserch in this growing area of multiobjective fractional
programming problems.

References

1.

10.

BecTor, C.R., CHANDRA, S., and HUSAIN, 1., Optimality Conditions
and Subdifferentiable Multiobjective. Fractional Programming, Journal of
Optimization Theory and Applications, Vol. 79, pp. 105-125, 1993.

. HANSON, M.A.,' On Sufficiency of the Kuhn-Tucker Conditions, Journal

of Mathematical Analysis and Applications, Vol. 80, pp. 544-550, 1981.

JEYAKUMAR, V., Equivalence of Saddle-Points and Optima, and Duality
for a Class of Nonsmooth Non-convex Problems, Journal of Mathematical
Analysis and Applications, Vol. 130, pp. 334-343, 1988.

JEYAKUMAR, V., and MOND, B., On Generalized Convex Mathematical
Programming, Journal of the Australian Mathematical Society, Vol. 34B,
pp. 43-53, 1992.

KHAN, ZULFIQAR A., and HANSON, MORGAN A., On Ratio Invexity in
Mathematical Programming, Journal of Mathematical Analysis and Ap-
plications, Vol. 205, pp. 330-336, 1997.

KiM, D. S., Kim, S. J.', and KiM, M. H., Optimality and duality for a
class of nondifferentiable multiobjective programming problems, To appear
in Journal of Optimization Theory and Applications.

Kuk, H., Leg, G.M., and KM, D.S., Nonsmooth Multiobjective Pro-
grams with (V,p)-Invezity, Indian Journal of Pure and Applied Mathe-
matics, Vol. 29, pp. 405-412, 1998.

Kuk, H., LEg, G.M., and TANINO, T., Optimality and Duality for Non-
smooth Multiobjective Fractional Programming with Generalized Invezity,
Journal of Mathematical Analysis and Applications, Vol. 262, pp. 365-
375, 2001.

Liu, J.C., Optimality and Duality for Multiobjective Fractional Program-
ming Involving Nonsmooth Pseudoinvex Functions, Optimization, Vol. 37,
pp. 27-39, (1996).

Liu, J.C., Optimality and Duality for Multiobjective Fractional Program-
ming Involving Nonsmooth Functions, Optimization, Vol. 36, pp. 333-346,
1996.

24



11.

12.

13.

14.

15.

LIANG, Z., Huang, H., and PArRDALOS, P.M., Optimality Conditions
and Duality for a Class of Nonlinear Fractional Programming Problems,
Journal of Optimization Theory and Applications, Vol. 110, pp. 611-619,
2001.

LIANG, Z., HUANG, H., and PARDALOS, P.M., Efficiency Conditions and
Duality for a Class of Multiobjective Fractional Programming Problems,
Journal of Global Optimization, Vol. 27, pp. 444-471, 2003.

MisHRrA, S.K., and MUKHERJEE, R.N., On Generalized Conver Multi-
objective Nonsmooth Programming, Journal of the Australian Mathemat-
ical Society, Vol. 38B, pp. 140-148, 1996.

VENKATESWARA REDDY L., and MUKHERJEE, R.N., Some Results on

Mathematical Programming with Generalized Ratio Invexity, Journal of
Mathematical Analysis and Applications, Vol. 240, pp. 299-310, 1999.

MoND, B., and SCHECHTER, M., Nondifferentiable Symmetric Duality,
Bulletin of the Australian Mathematical Society, Vol. 53, pp. 177-187,
1996.

25



