<table>
<thead>
<tr>
<th>Title</th>
<th>Invariant sets associated with critical orbits for holomorphic endomorphisms of \mathbb{P}^2 (New Development of Dynamical Systems with Topological and Computational Methods)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Maegawa, Kazutoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1485: 145-148</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2006-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/58133</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Invariant sets associated with critical orbits for holomorphic endomorphisms of \mathbb{P}^2

前川 和俊 (Kazutoshi Maegawa)

Graduate School of Human & Environmental studies, Kyoto University
$km@math.kkyoto-u.ac.jp$

This note is the abstract of my talk in the conference held at RIMS, 20-24 June 2005. The study concerns the dynamics of rational self-maps of \mathbb{P}^2 (the complex projective plane), mainly focusing on the case of holomorphic maps. We proceed on the basis of [U] and refer to [S] for the general theory. A forthcoming paper [M2] will contain more details.

1 Steinness of Fatou sets

Let f be a rational self-map of \mathbb{P}^2 of degree at least 2 which is dominant, i.e. $f(\mathbb{P}^2) = \mathbb{P}^2$. Denote by $I(f)$ the set of indeterminacy points for f, i.e. the set of points where f cannot extend to be holomorphic. The set $I(f)$ is a finite set. In case of dimension 1, every rational map has no indeterminacy points, so, when we extend the Fatou-Julia theory to a higher dimensional setting, we must consider how we deal with $I(f)$. The following regularity condition was introduced by Fornæss-Sibony.

Definition 1.1. ([S]) We say that f is algebraically stable (AS) if for all $n \geq 1$, the set $f^{-1}(I(f^n))$ contains no compact complex curve in \mathbb{P}^2. This is equivalent to $\deg(f^n) = (\deg(f))^n$ for all $n \geq 1$.

In the sequel, we suppose that f is AS. For any $m \geq 1$, the map f^m is holomorphic in $\mathbb{P}^2 \backslash \bigcup_{n>1} I(f^n)$. From a dynamical viewpoint, we can define the Fatou set to be the set of Lyapunov stable points.

Definition 1.2. We define the Fatou set \mathcal{F} to be the maximal open subset of $\mathbb{P}^2 \backslash \bigcup_{n \geq 1} I(f^n)$ in which $\{f^n\}_{n \geq 1}$ is locally equicontinuous. A connected component of \mathcal{F} is called a Fatou component. The complement \mathcal{J} of \mathcal{F} is called the Julia set.
On the other hand, from a viewpoint of complex analysis, we can define Fatou sets using several notions of convergence for a sequence of meromorphic maps.

Definition 1.3. Let \(\{g_n\}_{n \geq 1} \) be a sequence of meromorphic maps from an open set \(D \subset \mathbb{P}^2 \) to \(\mathbb{P}^2 \). Let \(\Gamma_n \subset D \times \mathbb{P}^2 \) denote the graph of \(g_n \). Let \(g : D \to \mathbb{P}^2 \) be a meromorphic map and \(\Gamma \subset D \times \mathbb{P}^2 \) be the graph of \(g \).

(i) We say that \(\{g_n\}_{n \geq 1} \) **strongly converges** to \(g \) in \(D \) if for any compact set \(K \subset D \)

\[
\lim_{n \to \infty} \Gamma_n \cap (K \times \mathbb{P}^2) = \Gamma \cap (K \times \mathbb{P}^2)
\]

with respect to the Hausdorff metric.

(ii) We say that \(\{g_n\}_{n \geq 1} \) **weakly converges** to \(g \) in \(D \) if there is an analytic subset \(A \subset D \) of \(\text{codim}_{\mathbb{C}} A \geq 2 \) such that \(\{g_n\}_{n \geq 1} \) strongly converges to \(g \) in \(D \setminus A \).

By (i) and (ii) above, we may introduce notions of normality for a sequence of meromorphic maps in strong and weak senses. Thus, in case of the iterates \(\{f^n\}_{n \geq 1} \), we define the strong (resp. weak) Fatou set \(\mathcal{F}_s \) (resp. \(\mathcal{F}_w \)) as the maximal open subset of \(\mathbb{P}^2 \) in which \(\{f^n\}_{n \geq 1} \) is strongly (resp. weakly) normal.

By definition, it follows that \(\mathcal{F} \subset \mathcal{F}_s \subset \mathcal{F}_w \). By combining Ivashkovich's results on the convergence of meromorphic maps to a compact Kähler manifold and Sibony's results on Green currents, the following theorem is verified.

Theorem A. If \(f \) is a dominant AS rational self-map of \(\mathbb{P}^2 \) of degree at least 2,

\[\mathcal{F} = \mathcal{F}_s = \mathcal{F}_w. \]

In particular, each Fatou component is Stein, hence, the Julia set \(J \) is connected.

Concerning the dynamics inside Fatou sets, we can find an interesting dynamical phenomenon which is related with indeterminacy points ([M1]).

2 Critically hyperbolic maps

Suppose that \(f \) is a holomorphic self-map of \(\mathbb{P}^2 \) of degree \(d \geq 2 \). Then, \(f \) is a \(d^2 \) to 1 branched covering. We denote by \(C = C(f) \) the critical set for \(f \). We define the critical limit set \(E = E(f) \) by

\[E := \bigcap_{i \geq 1} \bigcup_{j \geq 1} f^i(C). \]
We denote the Green (1,1) current for f by T. Since f is holomorphic, it follows that
\[\mathcal{J} = \mathcal{J}_1 := \text{supp}(T). \]
Further, it is known that $T \wedge T$ is a unique invariant probability measure of maximal entropy. We set $\mathcal{J}_2 := \text{supp}(T \wedge T)$.

Throughout this section, we consider a set $\Lambda = \Lambda(f)$ defined by
\[\Lambda := \bigcap_{n \geq 0} f^n(\mathcal{J}_1 \cap E \cap \Omega), \]
where Ω is the nonwandering set for f. Since \mathcal{F} is Stein, the critical set C always intersects \mathcal{J}_1. This implies that Λ is nonempty.

Proposition 2.1. The set Λ is a nonempty compact set such that $f(\Lambda) = \Lambda$. All saddle periodic points for f are contained in Λ.

We consider the situation in which f is hyperbolic on Λ. (Concerning hyperbolic sets for non-invertible maps, see [BJ] for instance.) We are going to study the global dynamics assuming some condition on the critical orbit. Critically finite maps have been studied by several authors (Fornæss-Sibony, Ueda, Jonsson, de Thelin, ...), so here we introduce a new condition. Let $\hat{\Lambda}$ denote the space of histories of points in Λ for $f|_{\Lambda} : \Lambda \rightarrow \Lambda$.

Definition 2.2. We say that f is critically hyperbolic if Λ is a hyperbolic set for f and $\hat{\Lambda}$ has local product structure.

We find examples of critically hyperbolic maps in the class of Axiom A. In case when f satisfies Axiom A, we denote by
\[\Omega = S_0 \cup S_1 \cup S_2 \]
the decomposition of the nonwandering set Ω for f according to the unstable dimensions.

Proposition 2.3. Let f be a holomorphic self-map of \mathbb{P}^2 of degree at least 2. If f satisfies Axiom A and $f^{-1}(S_2) = S_2$, then f is a critically hyperbolic map such that
\[S_1 = \Lambda, \quad S_2 = \mathcal{J}_2. \]

Remark 2.4. If f is a direct product of two hyperbolic polynomials in one variable, then f and its perturbed maps satisfy this condition.
For critically hyperbolic maps, we can establish the following theorems.

Theorem B says that each Fatou component is eventually mapped to the immediate basin of an attracting periodic orbit and the number of attracting periodic orbits is finite.

Theorem B. Suppose f is critically hyperbolic. Then, the Fatou set \mathcal{F} for f consists of the basins of attraction for finitely many attracting periodic orbits.

For a history $\hat{p} \in \hat{\Lambda}$, we denote the unstable manifold by $W^u(\hat{p})$. Then, the critical limit set E can be described as follows.

Theorem C. Suppose that f is critically hyperbolic and Λ has pure unstable dimension 1. Then,

$$E = \{\text{attracting periodic points}\} \cup \bigcup_{\hat{p} \in \hat{\Lambda}} W^u(\hat{p}).$$

The dynamics inside the Julia sets for critically hyperbolic maps will be investigated in a future article.

References

[S] N.Sibony, Dynamique des applications rationnelles de \mathbb{P}^k *Panor.Syntheses*, 8, 1999, 97-185