<table>
<thead>
<tr>
<th>Title</th>
<th>Hyperbolicity of positively expansive C^r maps on compact smooth manifolds which are C^r structurally stable (New Development of Dynamical Systems with Topological and Computational Methods)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hiraide, Koichi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2006), 1485: 125-135</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2006-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/58135</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
</tbody>
</table>

Kyoto University
Hyperbolicity of positively expansive C^r maps on compact smooth manifolds which are C^r structurally stable

Koichi Hiraide

Department of Mathematics
Faculty of Science, Ehime University

Let X be a metric space with metric d, and let $f : X \to X$ be a continuous map. We say that f is positively expansive if there is a constant $e > 0$, called a expansive constant, such that for $x, y \in X$ if $d(f^n(x), f^n(y)) \leq e$ for all $n \geq 0$ then $x = y$. If X is compact, the property that $f : X \to X$ is positively expansive does not depend on the choice of metrics for X compatible with the topology of X, although so is not the expansive constant. Also, for continuous maps of compact metric spaces, positive expansiveness is preserved under topological conjugacy.

Reddy [20] proved that if X is compact and $f : X \to X$ is positively expansive then $f : X \to X$ is topologically expanding, i.e. there are constants $\lambda > 1$ and $\delta > 0$ and a metric D for X, called the hyperbolic metric, compatible with the topology of X such that for $x, y \in X$ if $D(x, y) < \delta$ then $D(f(x), f(y)) > \lambda D(x, y)$. As an application of this result, it is easily obtained that if a compact metric space X admits a positively expansive homeomorphism then X must be a finite set (for example, see [1, Theorem 2.2.12]).

If a positively expansive map $f : X \to X$ is an open map, obviously f is a local homeomorphism. Let X be compact. Then, using the hyperbolic metric, we can show that a positively expansive map $f : X \to X$ is an open map if and only if f has the shadowing property (for example, see [1, Theorem 2.3.10]). From this fact it follows that if a positively expansive map $f : X \to X$ is an open map then the dynamics of f behaves like Axiom A differentiable dynamics in topological viewpoint and, especially, X has Markov partitions. For details the readers can refer to [1].

Let M be a compact connected manifold. If M admits a positively expansive map then the boundary ∂M must be empty ([11]). Hence, every positively expansive map $f : M \to M$ is an open map, by Brouwer's theorem on invariance of domain, and it is a self-covering map with the covering degree greater than one. After the studies of expanding differentiable maps by Shub [21], Franks [5] and so on (see below for the definition), Coven-Reddy [3] showed that if $f : M \to M$ is positively expansive then the set $\text{Fix}(f)$ of all fixed points is not empty, the set $\text{Per}(f)$ of all periodic points is dense in M, the universal covering space of M is homeomorphic to the Euclidean space, and if another positively expansive $g : M \to M$ is homotopic to f then f and g are topologically conjugate. The author [9] proved that M admits a positively expansive map then the fundamental group $\pi_1(M)$ has polynomial growth. Combining these facts with results of Franks [5] and Gromov [7], we have that a positively expansive map $f : M \to M$ is topologically conjugate to an expanding infra-nilmanifold endomorphism, in the same way as expanding differentiable maps. See also [10]. Thus, the dynamics of positively expansive maps on compact manifolds is well-understood in topological viewpoint.
The purpose of this paper is to study the dynamics of positively expansive map form differetiable viewpoint.

Let M be a closed Riemannian smooth ($= C^\infty$) manifold, and let $f : M \to M$ be a C^1 map. We recall that f is expanding if there are constants $C > 0$ and $\lambda > 1$ such that the derivative $Df : TM \to TM$ has the following property: for all $v \in TM$ and $n \geq 0$

$$\|Df^n(v)\| \geq C\lambda^n \|v\|,$$

where $\| \cdot \|$ is the Riemannian metric. It is not difficult to check that an expanding C^1 map $f : M \to M$ is positively expansive.

Let $1 \leq r \leq \infty$, and denote by $C^r(M, M)$ the space of all C^r maps of M with the C^r topology. We let

$$PE^r(M) = \{ f \in C^r(M, M) \mid f \text{ is positively expansive } \},$$

and denote by $\text{int}PE^r(M)$ the interior of $PE^r(M)$ in $C^r(M, M)$ with respect to the C^r topology.

Theorem 1. Let $f : M \to M$ be a C^r map, $1 \leq r \leq \infty$. Then

$$f \in \text{int}PE^r(M) \iff f : M \to M \text{ is expanding.}$$

The implication \iff in Theorem 1 is clear because the set of all expanding C^1 maps on M is an open subset of $C^1(M, M)$ with respect the C^1 topology (see [21], and also Lemma 3.1). The case of $r = 1$ for the implication \implies in Theorem 1 can be shown in the same method as the proof given by Mañé [16] whose result says that the interior $\text{int}E^1(M)$ of the set $E^1(M)$ of all expansive C^1 diffeomorphisms in the space $\text{Diff}^1(M)$ of all C^1 diffeomorphisms endowed with the C^1 topology is consistent with the set of all Axiom A C^1 diffeomorphisms satisfying the condition that $T_x W^s(x) \cap T_x W^u(x) = \{0\}$ for all $x \in M$, where $W^s(x)$ and $W^u(x)$ are stable and unstable manifolds of x. However, our proof of the implication \implies in Theorem 1 will be different from the one given by Mañé, because we handle the C^r cases, $1 \leq r \leq \infty$, and can not use well-known methods such as Pugh’s closing lemmma ([19]), Franks’ lemma ([6]) and Hayashi’s connecting lemma ([8]) which work only for the C^1 case.

From Theorem 1 the following corollary is obtained immediately.

Corollary 2. Let $1 \leq r \leq \infty$. Then

$$\text{int}PE^r(M) = \text{int}PE^1(M) \cap C^r(M, M).$$

We say that a C^r map $f : M \to M$ is C^r structurally stable if there is a neighborhood \mathcal{N} of f in $C^r(M, M)$ such that any $g \in \mathcal{N}$ is topologically conjugate to f. Since positive expansiveness is preserved under topological conjugacy, we also obtain the following corollary.
Corollary 3. Let $1 \leq r \leq \infty$. If a C^r map $f : M \to M$ is positively expansive and C^r structurally stable, then $f : M \to M$ is expanding.

For $f \in C^r(M, M)$ we denote by $\text{Sing}(f)$ the set of all singularities of f, i.e.

$$\text{Sing}(f) = \{ x \in M \mid D_x f : T_x M \to T_{f(x)} M \text{ is not an isomorphism } \}.$$

If $\text{Sing}(f) = \emptyset$, then $f : M \to M$ is called regular, which is a self-covering map. It is evident that any expanding C^1 map is regular.

We say that $p \in \text{Per}(f)$ is repelling if the absolute value of any eigenvalue of $Df^n : T_p M \to T_p M$ is greater than one, where n is the period of p. Using our idea of the proof of Theorem 1, we will also obtain the following theorem.

Theorem 4. Let $f : S^1 \to S^1$ be a C^r map of the circle, $1 \leq r \leq \infty$. Suppose that $f : S^1 \to S^1$ is positively expansive. Then f belongs to $PE^r(S^1) \setminus \text{int}PE^r(S^1)$ if and only if $\text{Sing}(f) \neq \emptyset$ or there exists a periodic point of f which is not repelling.

Corollary 5. Suppose that a C^1 map $f : S^1 \to S^1$ of the circle is positively expansive and regular. If all periodic points of f are repelling, then $f : S^1 \to S^1$ is expanding.

We remark that the C^2 version of Corollary 5 is obtained from a result of Mañé [18, Theorem A].

It remains a problem of whether or not there is $f \in PE^r(M) \setminus \text{int}PE^r(M)$, in the case where $\dim(M) \geq 2$, such that f is regular and all periodic points of f are repelling, where $1 \leq r \leq \infty$. Compare with a result of Bonatti-Díaz-Vuillemin [2] which says that there are expansive C^3 diffeomorphisms on the two-dimensional torus T^2 with the property that all periodic points are hyperbolic but the diffeomorphisms do not belong to the interior $\text{int}E^3(T^2)$ of the set $E^3(M)$ of all expansive C^3 diffeomorphisms in the space $\text{Diff}^3(T^2)$ of all C^3 diffeomorphisms with the C^3 topology. See also Enrich [4].

§1 Positively expansive C^r maps with singularities

In this section we first show the following Lemma 1.1.

Lemma 1.1. Let $f : M \to M$ be a C^r map, $1 \leq r \leq \infty$. If $f : M \to M$ is a self-covering map and there is a neighborhood N of f in $C^r(M, M)$ with respect to the C^r topology such that any $g : M \to M$ belonging to N is a self-covering map, then $f : M \to M$ is regular.

Proof. Let $\{(U_i, \varphi_i)\}_{i=1}^k$ be an atlas of M with a finite number of charts such that each chart $\varphi_i : U_i \to D$ is a C^∞ diffeomorphism, where D is the unit open disc in \mathbb{R}^n, $n = \dim(M)$. Since $f : M \to M$ is a C^r covering map and each U_i is an open disc in M, it follows that U_i is evenly covered by f, i.e. $f^{-1}(U_i)$ is expressed as a finite disjoint union $f^{-1}(U_i) = \bigcup_{j}^d V_j^i$ of open discs in M, where d is the covering degree of f, such that each restriction $f : V_j^i \to U_i$ is a C^r bijection. Let $2\delta > 0$ be the Lebesgue number of the covering $\{V_j^i \mid i = 1, \ldots, k, j = 1, \ldots, d\}$ of M. For $x \in M$ denote by
$D_\delta(x)$ the open disc of radius δ centered at x. Then the closure $\overline{D_\delta(x)}$ is contained in some V_i^+, which is homeomorphically mapped by f onto U_i. Therefore, there is a path connected neighborhood \mathcal{V} of f in $C^r(M,M)$, with $\mathcal{V} \subset \mathcal{N}$, such that for any $g \in \mathcal{V}$ and any $x \in M$, $g(\overline{D_\delta(x)})$ is contained in some U_i. Let $g \in \mathcal{V}$. By assumption, $g : M \to M$ is a covering map. Since U_i is an open disc, U_i is evenly covered by g, which implies that $D_\delta(x)$ is homeomorphically mapped by g onto an open subset of U_i.

Fix $x \in M$. Choose orientations

$$
\{y \in H_n(D_\delta(x), D_\delta(x) \setminus \{y\}) \mid y \in D_\delta(x)\}
$$

and

$$
\{z \in H_n(U_i, U_i \setminus \{z\}) \mid z \in U_i\}
$$
of $D_\delta(x)$ and U_i respectively. Since \mathcal{V} is path connected, there is a constant $\tau = \pm 1$ such that for any $g \in \mathcal{V}$ and $y \in D_\delta(x)$, $g_*(1_y) = \tau 1_{g(y)}$, where $g_* : H_n(D_\delta(x), D_\delta(x) \setminus \{y\}) \to H_n(U_i, U_i \setminus \{g(y)\})$ is the induced isomorphism. Since $\delta > 0$ is chosen to be small, we can take a C^∞ diffeomorphism $\phi_x : D_\delta(x) \to D$. For $y \in D_\delta(x)$ let $A_y = D_{\phi_x(y)}(\varphi_1 \circ f \circ \phi_x^{-1})$ be the derivative. Without loss of generality, we may assume that $\varphi_i : U_i \to D$ and $\phi_x : D_\delta(x) \to D$ send the orientations of U_i and of $D_\delta(x)$ to the standard orientation of D. Then, if the determinant $\det(A_y)$ is not zero, the sign of the constant τ is consistent with that of $\det(A_y)$.

For given $y \in D_\delta(x)$ assume $\det(A_y) = 0$, and choose regular matrices P and Q such that the signs of $\det(P)$ and $\det(Q)$ are both positive, and

$$
PA_yQ = \begin{pmatrix}
O_{11} & O_{12} \\
O_{21} & B_{22}
\end{pmatrix},
$$

where O_{11}, O_{12} and O_{21} are zero matrices, and B_{22} is a regular matrix. Let

$$
B_{11}^\varepsilon = \begin{pmatrix}
\varepsilon_1 & O \\
O & \varepsilon_m
\end{pmatrix}
$$

be a regular diagonal matrix, where m is the size of the matrix O_{11}, such that the absolute values $|\varepsilon_1|, \ldots, |\varepsilon_m|$ are small enough and the sign of $\det(B_{11}^\varepsilon)$ is different from that of τ. Then

$$
A_y^\varepsilon = P^{-1} \begin{pmatrix} B_{11}^\varepsilon & O_{12} \\
O_{21} & B_{22}
\end{pmatrix} Q^{-1}
$$
is a regular matrix and the norm $\|A_y - A_y^\varepsilon\|$ is small enough. Let W_1 and W_2 be open neighborhoods of $\phi_x(y)$ in D such that $\overline{W_1} \subset W_2$ and $\overline{W_2} \subset D$, and choose a C^∞ function $b : D \to \mathbb{R}$ satisfying the condition that $b(z) = 1$ for $z \in W_1$ and $b(z) = 0$ for $z \in D \setminus W_2$. Define $g : M \to M$ by

$$
\varphi_i \circ g \circ \phi_x^{-1}(z) = b(z)(A_y - A_y^\varepsilon)(z - \phi_x(y)) + \varphi_i \circ f \circ \phi_x^{-1}(z)
$$
for $z \in D$, and $g = f$ otherwise. Since each element of $A_y - A_y^\varepsilon$ can be chosen to be approximately zero, we have that $g \in \mathcal{V}$. On the other hand, $D_{\phi_x(y)}(\varphi_i \circ g \circ \phi_x^{-1}) = A_y^\varepsilon$, whose determinant has a different sign from τ, a contradiction.

We proved that $\det(A_y) \neq 0$ for all $y \in D_\delta(x)$. Since x is arbitrary, it follows that f is regular. The proof is complete.

From Lemma 1.1 the following Proposition 1.2 is obtained immediately.
Proposition 1.2. Let $f : M \to M$ be a C^r map, $1 \leq r \leq \infty$. Suppose that $f : M \to M$ is positively expansive. If $\text{Sing}(f) \neq \emptyset$, then f belongs to $\text{PE}^r(M) \setminus \text{int}\text{PE}^r(M)$.

In the rest of this section we give an example of a positively expansive C^∞ map $f : S^1 \to S^1$ on the circle such that $\text{Sing}(f) \neq \emptyset$.

Take $\ell \geq 1$ an integer. Let $\tilde{h} : \mathbb{R} \to \mathbb{R}$ be a strictly monotone increasing C^∞ function having the property that $\tilde{h}(x + 1) = \tilde{h}(x) + 1$ for all $x \in \mathbb{R}$, the derivative $\tilde{h}'(x)$ is positive whenever x is not an integer, $\tilde{h}(x) = x^{2\ell+1}$ on a small neighborhood of $x = 0$, and $\tilde{h}(x) = 2x - \frac{1}{2}$ on a small neighborhood of $x = \frac{1}{2}$. We choose $\tilde{g} : \mathbb{R} \to \mathbb{R}$, $x \mapsto 2x$, and define $\tilde{f} : \mathbb{R} \to \mathbb{R}$ by $\tilde{f} = \tilde{h} \circ \tilde{g} \circ \tilde{h}^{-1}$. Then $\tilde{f}(x) = 2^{2\ell+1}x$ if x is in a neighborhood of 0, and $\tilde{f}(x) = (4x - 2)^{2\ell+1} + 1$ if x is in a neighborhood of $\frac{1}{2}$. Let $p : \mathbb{R} \to S^1 = \mathbb{R}/\mathbb{Z}$ be the covering projection, and define $f : S^1 \to S^1$ as the projection of $\tilde{f} : \mathbb{R} \to \mathbb{R}$ by p. Then $f : S^1 \to S^1$ is positively expansive and of class C^∞, and $\text{Sing}(f) = \{p(\frac{1}{2})\} \neq \emptyset$.

§2 Invariant manifolds

Let $f : X \to X$ be a continuous map of a compact metric space, and denote the set of all orbits of f by

$$\lim_{\leftarrow}(X, f) = \{(x_i) \in \Pi_{-\infty}^{\infty}X \mid f(x_i) = x_{i+1}, \forall i \in \mathbb{Z}\},$$

which is called the inverse limit of f. Let d be the metric for X, and define a metric \tilde{d} for $\Pi_{-\infty}^{\infty}X$ by

$$\tilde{d}((x_i), (y_i)) = \sum_{i \in \mathbb{Z}} \frac{d(x_i, y_i)}{2^{|i|}}$$

and the shift $\sigma : \Pi_{-\infty}^{\infty}X \to \Pi_{-\infty}^{\infty}X$ by $\sigma((x_i)) = (x_{i+1})$. Then $\lim_{\leftarrow}(X, f)$ is a σ-invariant closed subset. The homeomorphism $\sigma : \lim_{\leftarrow}(X, f) \to \lim_{\leftarrow}(X, f)$ is called the inverse limit system for f, which is a natural extension of f. Define $p_0 : \lim_{\leftarrow}(X, f) \to X$ by $p_0((x_i)) = x_0$. Then, $f \circ p_0 = p_0 \circ \sigma$ holds.

Let $f : M \to M$ be a regular C^r map, and let $\Lambda \subset M$ be an f-invariant closed set (i.e. $f(\Lambda) = \Lambda$). Then $\lim_{\leftarrow}(\Lambda, f)$ is a σ-invariant closed subset of $\lim_{\leftarrow}(M, f)$. We say that Λ is a hyperbolic set if there there are constants $C > 0$ and $0 < \lambda < 1$ such that for any $(x_i) \in \lim_{\leftarrow}(\Lambda, f)$ there is a splitting

$$\bigoplus_{i \in \mathbb{Z}} T_{x_i}M = \bigoplus_{i \in \mathbb{Z}} E^s_{x_i} \oplus E^u_{x_i} = E^s \oplus E^u,$$

which is left invariant by Df, such that for all $n \geq 0$,

$$||Df^n(v)|| \leq C\lambda^n||v|| \text{ if } v \in E^s \text{ and } ||Df^n(v)|| \geq C^{-1}\lambda^{-n}||v|| \text{ if } v \in E^u.$$

When $(x_i) \neq (y_i)$ and $x_0 = y_0$, we have $E^u_{x_0} \neq E^u_{y_0}$ in most cases. Hence, we will sometimes write $E^u_{x_0} = E^u_{y_0}((x_i))$. On the other hand, even if $(x_i) \neq (y_i)$, it follows that $E^s_{x_0} = E^s_{y_0}$ whenever $x_0 = y_0$.

For \(x \in \Lambda \) and \(\varepsilon > 0 \) we define the local stable set
\[
W^s_\varepsilon(x) = \{ y \in M \mid d(f^i(x), f^i(y)) \leq \varepsilon, \forall i \geq 0 \},
\]
and for \((x_i) \in \lim_{\rightarrow} (\Lambda, f)\) and \(0 < \varepsilon \leq \varepsilon_0\), the local unstable set is defined by
\[
W^u_\varepsilon((x_i)) = \{ y \in M \mid \text{there exists } (y_i) \in \lim_{\leftarrow} (M, f) \text{ such that } y_0 = y \text{ and } d(x_i, y_i) \leq \varepsilon, \forall i \leq 0 \}.
\]

Let \(Y \) be a subset of \(\lim_{\rightarrow} (M, f) \). For \(\delta > 0 \) denote by \(L_\delta(Y) \) the set of points \(x \in \lim_{\rightarrow} (M, f) \) such that there is a path \(u \), contained in a \(\delta \)-neighborhood of \(\tilde{\Lambda} \) in \(\lim_{\rightarrow} (M, f) \), jointing \(x \) and some point of \(Y \).

Stable manifold theorem. Let \(f : M \rightarrow M \) be a regular \(C^r \) map, \(1 \leq r \leq \infty \), and let \(\Lambda \) be a hyperbolic set. Then there is \(\varepsilon_0 > 0 \) such that for \(0 < \varepsilon \leq \varepsilon_0 \), \(\{ W^s_\varepsilon(x) \mid x \in \Lambda \} \) and \(\{ W^u_\varepsilon(x) \mid x \in \lim_{\rightarrow} (\Lambda, f) \} \) are families of discs of class \(C^r \) which vary continuously on \(x \in \Lambda \) and \(x \in \lim_{\rightarrow} (\Lambda, f) \) respectively. Furthermore, there is \(\delta > 0 \) such that \(\{ W^s_\varepsilon(x) \mid x \in \Lambda \} \) and \(\{ W^u_\varepsilon(x) \mid x \in \lim_{\rightarrow} (\Lambda, f) \} \) are extended to families \(\{ D^s_\varepsilon(x) \mid x \in p_0(L_\delta(\lim_{\rightarrow} (\Lambda, f))) \} \) and \(\{ D^u_\varepsilon(x) \mid x \in L_\delta(\lim_{\rightarrow} (\Lambda, f)) \} \) of discs of class \(C^r \), respectively, which are semi-invariant under \(f \) and have the local product structure.

Let \(\Lambda \) be an \(f \)-invariant closed set of \(M \). We say that \(\Lambda \) has the dominated splitting if there are constants \(C > 0 \) and \(0 < \lambda < 1 \) such that for any \((x_i) \in \lim_{\rightarrow} (\Lambda, f)\) there is a splitting
\[
\bigsqcup_{i \in \mathbb{Z}} T_{x_i}M = \bigsqcup_{i \in \mathbb{Z}} E_{x_i} \oplus F_{x_i},
\]
which is left invariant by \(Df \), such that for all \(n \geq 0 \) and \(i \in \mathbb{Z} \),
\[
\frac{\|Df^n_{x_i}[E]|_M\|}{\|Df^n_{x_i}[F]|_m}\leq C \lambda^n,
\]
where \(\| \cdot \|_M \) is the maximum norm and \(\| \cdot \|_m \) is the minimum norm, and the correspondances \((x_i) \in \lim_{\rightarrow} (\Lambda, f) \mapsto E_{x_0} = E_{x_0}(\Lambda, f) \) and \((x_i) \in \lim_{\rightarrow} (\Lambda, f) \mapsto F_{x_0} = F_{x_0}(\Lambda, f) \) are continuous.

Invariant manifold theorem. Let \(f : M \rightarrow M \) be a regular \(C^r \) map, \(1 \leq r \leq \infty \), and let \(\Lambda \) be an \(f \)-invariant closed set having the dominated splitting. Then there is \(\varepsilon_0 > 0 \) such that for \(0 < \varepsilon \leq \varepsilon_0 \) there are families \(\{ D_\varepsilon(x) \mid x \in \lim_{\rightarrow} (\Lambda, f) \} \) and \(\{ D'_\varepsilon(x) \mid x \in \lim_{\rightarrow} (\Lambda, f) \} \) of discs of class \(C^r \) which are semi-invariant under \(f \) and vary continuously on \(x \in \lim_{\rightarrow} (\Lambda, f) \) respectively. Furthermore, there is \(\delta > 0 \) such that \(\{ D_\varepsilon(x) \mid x \in \lim_{\rightarrow} (\Lambda, f) \} \) and \(\{ D'_\varepsilon(x) \mid x \in \lim_{\rightarrow} (\Lambda, f) \} \) are extended to families \(\{ D_\varepsilon(x) \mid x \in L_\delta(\lim_{\rightarrow} (\Lambda, f)) \} \) and \(\{ D'_\varepsilon(x) \mid x \in L_\delta(\lim_{\rightarrow} (\Lambda, f)) \} \) of discs of class \(C^r \), respectively, which are semi-invariant under \(f \) and have the local product structure.
Let $f : M \to M$ be a regular C^r map, $1 \leq r \leq \infty$. For $b > 1$ we define

$$\Lambda_{b} = \{x \in M \mid \text{there is } v \in T_x M, v \neq 0, \text{ such that } ||Df^n(v)|| \leq b||v|| \text{ for all } n \geq 0\}.$$

It is evident that Λ_{b} is a closed subset of M.

Lemma 3.1. If there is $b > 1$ such that $\Lambda_{b} = \emptyset$, then $f : M \to M$ is expanding.

Proof. By assumption, for any $x \in M$ and $v \in T_x M$ with $v \neq 0$ there is $n > 0$ such that $||Df^n(v)|| > b||v||$. Let $S^1(M) = \{v \in TM \mid ||v|| = 1\}$. Since $S^1(M)$ is compact, there are finite open cover $\{U_1, \ldots, U_k\}$ of $S^1(M)$ and a sequence $\{n_1, \ldots, n_k\}$ of positive integers such that for each $v \in U_i$, $1 \leq i \leq k$, $||Df^{n_i}(v)|| \leq b||v||$. Let $N_0 = \max\{n_1, \ldots, n_k\}$, and choose $c > 0$ such that for all $v \in TM$ and $0 \leq n \leq N_0$, $||Df^n(v)|| \geq c||v||$. Since $b > 1$, there is $\ell > 0$ such that $N_0/N \geq \ell$. Then, for any $v \in TM$ there is $m \geq \ell$ such that

$$v \in U_{i_1}, Df^{n_{i_1}}(v) \in U_{i_2}, \ldots, Df^{n_{i_1} + \cdots + n_{i_m}}(v) \in U_{i_m},$$

and $0 \leq n = N - (n_{i_1} + n_{i_2} + \cdots + n_{i_m}) \leq N_0$. Hence, we have

$$||Df^N(v)|| = ||Df^n \circ Df^{n_{i_m}} \circ \cdots \circ Df^{n_{i_1}}(v)|| = cb^m||v|| \geq \lambda||v||,$$

which means that $f^N : M \to M$ is expanding. The proof is complete.

By Lemma 3.1, if $f : M \to M$ is not expanding, then $\Lambda_{b} \neq \emptyset$ for all $b > 1$. In this case, for $b > 1$ given we define

$$E_x^{sc}(0) = \{v \in T_x M \mid \text{there is } K > 0 \text{ such that } ||Df^n(v)|| \leq K||v|| \text{ for all } n \geq 0\}, \quad x \in \Lambda_{b}.$$

It is easy to see that $E_x^{sc}(0)$ is a subspace of $T_x M$. Since $x \in \Lambda_{b}$, it follows that $1 \leq \dim E_x^{sc}(0) \leq \dim M$. Let $\Lambda(b) = \cap_{n=0}^{\infty} f^{-n}(\Lambda_{b})$. If $x \in \Lambda(b)$ then $f^n(x) \in \Lambda_{b}$ for all $n \geq 0$, and so $f(x) \in \Lambda_{b}$, which implies that $f(\Lambda(b)) \subset \Lambda(b)$. Hence, $\Lambda_{\infty}(b) = \cap_{n=0}^{\infty} f^n(\Lambda(b))$ is an f-invariant closed set.

We consider the following two cases.

Bounded case. $\Lambda(b) \neq \emptyset$ for some $b > 1$.

In this case, $\Lambda_{\infty}(b) \neq \emptyset$. Thus, we can choose a minimal set, say $\Lambda_{\min}(b)$, for $f : \Lambda_{\infty}(b) \to \Lambda_{\infty}(b)$.

Unbounded case. $\Lambda(b) = \emptyset$ for all $b > 1$.

In this case, we take $b > 1$ sufficiently large, and define $\Lambda_{\text{exit}}(b)$ as the set of points $x \in \Lambda_b$ such that $f(x) \not\in \Lambda_b$. Then, $\Lambda_{\text{exit}}(b)$ is an open subset of Λ_b.

Let $x \in \Lambda_{\text{exit}}(b)$. Then, there is $v \in E^c_2(0)$ with $v \neq 0$ such that $\|Df^n(v)\| \leq b\|v\|$ for all $n \geq 0$. If $f(x), \ldots, f^j(x) \not\in \Lambda_b$, for $1 \leq i \leq j$ there is $n_i \geq 1$ such that $\|Df^n_i(Df^j(v))\| > b\|Df^i(v)\|$. Since $\|Df^n_i(Df^j(v))\| \leq b\|v\|$, we have $\|v\| > \|Df^i(v)\|$ for $1 \leq i \leq j$. Hence, if $f^i(x) \not\in \Lambda_b$ for all $i \geq 1$ then, since $b > 1$ is taken large, $f(x) \in \Lambda_b$, a contradiction. Therefore, there is $j_x \geq 2$ such that $f(x), \ldots, f^{j_x-1}(x) \not\in \Lambda_b$ and $f^{j_x}(x) \in \Lambda_b$. Since $b > 1$ is taken sufficiently large, it follows that $\{j_x \mid x \in \Lambda_{\text{exit}}(b)\}$ is unbounded.

We define $r : \Lambda_b \to \Lambda_b$ by $r(x) = f(x)$ if $x \in \Lambda_b \setminus \Lambda_{\text{exit}}(b)$ and $r(x) = f^{j_x}(x)$ if $x \in \Lambda_{\text{exit}}(b)$. Then, we can choose a minimal set, say $\Lambda_{\text{min}}(b) = \Lambda_{\text{min}}(b; r)$, for $r : \Lambda_b \to \Lambda_b$, i.e. if Λ is a nonempty closed subset of Λ_b, $r(\Lambda) \subset \Lambda$, and $\Lambda \subset \Lambda_{\text{min}}$, then $\Lambda = \Lambda_{\text{min}}$. Note that $r(\Lambda_{\text{min}}) = \Lambda_{\text{min}}$. Let $\Lambda_{\text{min}}(b; f) = \bigcup_{n=0}^\infty f^n(\Lambda_{\text{min}}(b))$.

Lemma 3.2.

1. If the bounded case happens then $\dim \Lambda_{\text{min}}(b) = 0$.
2. If the unbounded case happens then $\dim \Lambda_{\text{min}}(b; f) = 0$.

Proposition 3.3. Let $f : M \to M$ be a regular C^r map, $1 \leq r \leq \infty$. Suppose that $f : M \to M$ is positively expansive and not expanding. Let $\Lambda_{\text{min}} = \Lambda_{\text{min}}(b)$ for the bounded case, and $\Lambda_{\text{min}} = \Lambda_{\text{min}}(b; f)$ for the unbounded case. Then in both cases the following holds. There are a Df-invariant continuous subbundle $E^{sc}(i_0) = \bigcup_{x \in \Lambda_{\text{min}}} E^{sc}_x(i_0)$ of $T\Lambda_{\text{min}} M$ with $\dim E^{sc}(i_0) \geq 1$, where $i_0 \geq 0$ is an integer, and finite families $\{D^u_i\}_{i=1}^\ell$ and $\{D^u'_i\}_{i=1}^\ell$ of m-discs of class C^r, $m = \dim M - \dim E^{sc}(i_0)$, such that

1. there is a constant $C_{i_0} > 0$ such that if $v \in E^{sc}(i_0)$ then $\|Df^n(v)\| \leq C_{i_0} n^{i_0} \|v\|$ for all $n \geq 0$,
2. $D^u_i \subset \text{int} D^u'_i$ for $i = 1, \ldots, \ell$,
3. $\Lambda_{\text{min}} \subset \bigcup_{i=1}^\ell \text{int} D^u_i$,
4. if $x \in D^u_i \cap D^u'_j \cap \Lambda_{\text{min}}$ then there is a neighborhood Λ_x of x in Λ_{min} such that $\Lambda_x \subset D^u_i \cap D^u'_j$,
5. if $x \in D^u_i \cap \Lambda_{\text{min}}$ then $E^{sc}_x = T_x D^u_i = T_x M$ and there are constant $C > 0$ and $\lambda > 1$ such that if $v \in T_x D^u_i$ then $\|Df^n(v)\| \geq C \lambda^n \|v\|$ for all $n \geq 0$.

Proof of Theorem 1. Let $f \in \text{int} PE^r(M)$. By Proposition 1.2, $f : M \to M$ is regular. We assume that $f : M \to M$ is not expanding, and derive a contradiction. Let $\Lambda_{\text{min}} = \Lambda_{\text{min}}(b)$ for the bounded case, and $\Lambda_{\text{min}} = \Lambda_{\text{min}}(b; f)$ for the unbounded case, as in Proposition 3.3.

By Proposition 3.3 there are a Df-invariant continuous subbundle $E^{sc}(i_0)$ of $T\Lambda_{\text{min}} M$, and finite families $\{D^u_i\}_{i=1}^\ell$ and $\{D^u'_i\}_{i=1}^\ell$ of m-discs of class C^r such that the properties in Proposition 3.3 hold. Let $D_m = \{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid x_1^2 + \cdots + x_{m+1}^2 = \cdots = x_n = 0\}$, where $n = \dim M$. Choose charts $\varphi_i : U_i \to V_i$, $i = 1, \ldots, \ell$, of M such that U_i is an open neighborhood of D^u_i in M, V_i is an open neighborhood of D_m in \mathbb{R}^n, and
\[\varphi_i(D^{u_i'}) = D_m. \] By Lemma 3.2 and Proposition 3.3 (4) we can decompose \(\Lambda_{\min} \) into a disjoint union \(\Lambda_{\min} = \Lambda_1 \cup \cdots \cup \Lambda_\ell \) of open and closed subsets such that \(\Lambda_i \subset \text{int}D^{u_i'} \) for \(i = 1, \ldots, \ell. \) Fix \(i \) with \(1 \leq i \leq \ell. \) Choose \(W_1^i, W_2^i \subset V_i, \) which are neighborhoods of \(\varphi_i(\Lambda_i) \) in \(M, \) such that \(\bar{W}_1^i \subset W_2^i, \) \(\bar{W}_2^i \subset V_i, \) and \(W_2^i \cap \varphi_i(\Lambda_{\min} \setminus \Lambda_i) = \emptyset. \) Let \(\varepsilon > 0 \) be sufficiently small. Let \(E_m \) is the identity matrix of size \(m, \) and let \(B \) be a diagonal matrix of size \(n - m \) defined by

\[
B = \begin{pmatrix}
1 - \varepsilon g(x) & 0 \\
& \ddots & \\
0 & & 1 - \varepsilon g(x)
\end{pmatrix},
\]

where \(g : V_i \to \mathbb{R} \) is a \(C^\infty \) function satisfying \(g(x) = 1 \) on \(\bar{W}_1^i \) and \(g(x) = 0 \) on \(V_i \setminus W_2^i. \) Define \(g_i : V_i \to V_i \) by

\[
x \mapsto \begin{pmatrix} E_m & O \\ O & B \end{pmatrix} x,
\]

where \(O \) is the zero matrix. Then \(g_i : V_i \to V_i \) is a \(C^\infty \) diffeomorphism. If \(x \in \varphi_i(\Lambda_i) \) then

\[
D_x g_i = \begin{pmatrix}
1 & & & 0 \\
& \ddots & & \\
& & 1 - \varepsilon & \\
0 & & & 1 - \varepsilon
\end{pmatrix},
\]

and \(g_i = id \) on \(D_m. \)

Define \(g : M \to M \) by

\[
g = \begin{cases}
\varphi_i^{-1} \circ g_i \circ \varphi_i & \text{on } V_i \quad (i = 1, \ldots, \ell) \\
id & \text{otherwise}.
\end{cases}
\]

Then we have

1. \(g = id \) on \(\Lambda_{\min}, \)
2. there is \(0 < \tau < 1 \) such that if \(x \in \Lambda_i, \) \(1 \leq i \leq \ell, \) and \(v \in (T_xD^{u_i'})^\perp \) then \(\|Dg(v)\| \leq \tau \|v\|, \) and
3. \(g : M \to M \) is sufficiently close to \(id : M \to M \) with respect to the \(C^r \) topology.

By (3), \(g \circ f : M \to M \) is sufficiently close to \(f : M \to M \) with respect to the \(C^r \) topology, and so \(g \circ f \in \text{int}PE^r(M). \) Therefore, \(g \circ f : M \to M \) is positively expansive. By (1), \(\Lambda_{\min} \) is \(g \circ f \)-invariant. From (2) it follows that \(\Lambda_{\min} \) is a hyperbolic set of \(g \circ f \) with contracting direction. Hence, by the stable manifold theorem all points in \(\Lambda_{\min} \) have non-trivial local stable manifolds with sufficiently small diameter, a contradiction. The proof is complete.

Proof of Theorem 4. If \(\text{Sing}(f) \neq \emptyset \) or there exists a non-repelling periodic point of \(f, \) then by Proposition 1.2 and the discussion in the proof of Theorem 1 it follows that
f belongs to $PE^r(M) \setminus \text{int}PE^r(M)$. Conversely, if $f \in PE^r(M) \setminus \text{int}PE^r(M)$ and $f : M \to M$ is regular, then by Theorem 1, $f : M \to M$ is not expanding. Since $\dim S^1 = 1$, from Proposition 3.3 it follows that $m = 0$, and so Λ_{min} is a finite set, which implies that there is a non-repelling periodic point. The proof is complete.

For the details of this paper, the author hope to appear elsewhere.

References