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1 Introduction

In this article, we present the fundamental theory of operator spaces due to
Ruan [R], Effros and Ruan [ER1], Blecher and Paulsen [BP] from the view
point of the numerical radius operator space which is recently introduced
in [IN4]. This is a joint work with M. Nagisa (Chiba Univ.). Most of the
results related to this note are in [IN2], [IN3], [IN4].

The main ingredient can be described in the following figure.

W
0 (W-Operator space,W-cb)
(Operator space, cb) ' 4

N
(Normed space, bdd)

0 10]

Figure: 1st and "2nd” Quantizations .

Let N denote the category of normed spaces, in which the objects are the
normed spaces and the morphisms are the bounded maps (in short, bdd).
We let O denote the category of operator spaces, in which the objects are
the operator spaces and the morphisms are the completely bounded maps
(in short, cb). As mentioned in the section 3.3 in [ER3], the category of
normed spaces N is a subcategry of the category of operator spaces O.

We also let W denote the category of numeical radius norm operator
spaces (in short, W-operator space) with the morphisms being the W-
completely bounded maps (in short, W-cb). We will obtain a functor



O:W—-»@suchthato(x):2w<8 )é

also find functors W : @ — W which satisfy O o W(X) = X for each
operator space X. In other word, the category of operator spaces O is a
subcategry of the category of numerical radius operator spaces W.

) symbolically. We will

2 Background}

Before going to a numerical radius operator space, we will explain the back-
ground. Let H" be the n-direct sum of a Hilbert space H, and B(H") the
bounded operators on H" which is identified with the n x n matrix space
My (B(H)). Recall that for z € B(H), the numerical radius w(z) is defined
by w(=) = sup{|(a£[é)] | [l = 1, € H}. We denote by wn(z) (resp. [lz],)
the numerical radius (resp. the operator norm) for z € M, (B(H)). We let o
be a bounded linear map from £! to £, {¢;}?°, the standard basis of £1. We
regard a as the infinite dimensional matrix [o;] where a;; = (e;, a(e;)). The
Schur multiplier So on B(¢2) is defined by S,(z) = aox for z = [z;;] € B(£2)
where o o z is the Schur product [oy;z;5]. In [IN2], it was shown that

w(a o x)
Sallw = su <1
” ”w :n;é% w(x)

if and only if o has the following factorization a = a‘ba with ||a||2]|6]| < 1:

el‘a,eoo.
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where a’ is the transposed map of a. This is an extension of Ando-Okubo’s
Theorem [AO].

Motivated by the above result, we proved a square factorization theorem
of a bounded linear map through a pair of column Hilbert spaces H, between
- an operator space and its dual space in [IN3]. More precisely, let us suppose
that A is an operator space in B(H) and A ® A is the algebraic tensor
product. We defined the numerical radius Haagerup norm |jul|,, of an
element u € A® A by

o erl =
Ilu”‘w’l = lnf{EH[xla e 7x'n7y1*7' .- 7y:l,]“2 Iu = Zmz ®y‘i},
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where the infimum runs over all representations of u as a finite sum u =
Yo 2 ® y;. The (original) Haagerup norm ||ull, is definded in [EK] by

lulls = mf{||lzy,. .., 2alllfyr, - 9a] I* | 0 = }:xz ®yi},

where [y1,...,yn]! is an n x 1 column matrix over A. Let 1': A — A* be
a bounded linear map. We showed that 1': A — A* has an extention 1"
which factors through a pair of column Hilbert spaces H,. (cf.[ER3]) so that

C*(A) — C*(A)*

S

Mo = T
with inf{|{a]|%||blle | 2" = a*ba} < 1 if and only if 1' € (A ®yn A)* with
I7'l}wr* < 1 by the natural identification {(z,1'(y)) = 1'(z ® y) for z,y € A.

As a consequence, the above result reads a square factorization of a
bounded linear map through a pair of Hilbert spaces from a Banach space
X to its dual space X*.

On the other hand, we also proved in [IN2] that if A is a C*-algebra
on ‘H and 1" a completely bounded A-bimodule map from the C*-algebra of
compact operators K(H) to B(H), then there exist o = [a;;] € B(£2(1)) and
{vi | i € 1} C A’ such that

sup{wn(1'® In(z)) | wn(z) < 1,n € N} = ||¢f], Zviv;" <1
, i€l

= Z Vi 0L TU; z € K(H).

uLjel
From this point of view, we can define a norm [u||, for u € A ® A by
1 n
lelhwes = it {Z oMz, o zallPll fu = ) ajzs @ 25)
ij=1

where [oy;] is an » X n complex matrix. Three above norms are mutually
equivalent and satisfy the inequality

. |
sl < Nullwn < flellwes < [lulln

forue A® A, if A is a selfadjoint operator space.



The completion of A® A by || ||» (we denote it by A® A) is an operator
space by the natural way, but either A®,, A or A®.cp A is not an operator
space. However both of A®, A and A®, b A have many similar properties
of which A ®p A holds. We will show that these three tensor products are
typical examples which describe the relation between operator spaces and
. numerical radius operator spaces in section 5.

3 Definitions

We give the definition of an operator space and a numerical radius operator
~ space now.

Definition 3.1. (Ruan [R]) An (abstract) operator space is a complex
linear space X together with a sequence of norms O, () on the n x n matrix
space M,,(X) for each n € N, which satisfies the following Ruan’s axioms
OI, OII:

oL Onin (| 5 3 |) = mex(Oma), 0ate)),
on Onfazf) < || On(a) 6]

for all £ € M, (X),y € Mn(X) and « € My, 1 (C), B € My, (C).

Definition 38.2. (Itoh and Nagisa [IN4]) We call that X is an (abstract)
numerical radius operator space if a complex linear space X admits a
sequence of norms Why(-) on the n X n matrix space M, (X) for each n € N,
which satisfies a couple of conditions WI, WII, where W1 is the same as OI,
however WII is a slightly weaker condition than OII as follows:

Wi W ([0 ]) = mesttel
WIIL © Wh(aza®) < ||of)* Win(z),

for all z € M (X),y € Mn(X) and a € My i (C).

Given abstract numerical radius operator spaces (or operator spaces) X,
Y and a linear map ¢ from X to Y, ¢n from Mp(X) to My (Y) is defined
to be
on(lzs]) = [p(ziy)]  for each [zy] € Ma(X), neN.



We use the notation W(z) (resp. O(z)) for the norm of & = [z;;] € My (X)
instead of Wy (z) (resp. Op(z)) without confusion. We denote the norm
of v, by W(p,) = sup{W(pn(z))|z = [zi;] € Mn(X), W(z) < 1} (resp.
O(pn) = sup{O(pn(2))|z = [zi] € Mu(X),O(z) < 1}. The W-completely
bounded norm (resp. completely bounded norm) of ¢ is defined by

W(p), = sup{W(pn)|n € N}, (resp. O(p), = sup{O(pn)In € N}).

We say ¢ is W-completely bounded (resp. completely bounded) if W(yp),, <
oo (resp.O(yp),, < 00). We call ¢ is a W-complete isometry (resp. com-
plete isometry) if W(pn(z)) = W(z) (resp.O(pn(z)) = O(z)) for each
z €M, (X), neN. ' _

4 Ruan’s Theorem and Numerical Radius Opera-
tor Spaces

The next is fundamental in numerical radius operator spaces like the Ruan’s
Theorem in the operator space theory.

Theorem 4.1. If X is an (abstract) numerical radius operator space with
Wi, then there exist a Hilbert space H, a concrete numerical radius operator
space Y C B(H) with the numerical radius w(-), and a YW-complete isometry
@ from (X, Wy) onto (Y, wn).

Theorem 4.1 leads to the following immediately by using the well-known
equality for operators (See Holbrook [H]) between the operator norm and
- the numerical radius norm so that

%Hm” —w ([ 0 e D for 2 € B(H).

Corollary 4.2. (Ruan’s Theorem [R]) If X is an operator space with On,
then there exist a Hilbert space H, a concrete operator space Y C B(H),
and a complete isometry ¥ from (X,0,) onto (Y, || ||»).

Proof. Since (X, 0y,) is also a numerical radius operator space, we can find
a W-complete isometry ¢ from (X,0,) into (B(H),wn) by Theorem 4.1.



We put ¥(z) = $&(z). Then we have for z € M, (X),

¥ (2)[ln < 2wn(¥n(2)) = wn(Pn(2))

o0 (5 §) =on
N () R (T e ()

=||¥n () |ln-

Corollary 4.3. If X is a numerical radius operator space with Wy, then
there exist an operator space norm Oy on X and a complete & W- complete
isometry @ from X into B(H).

Proof. For given Wy, and € M, (X), we define Oy, to be On(z) = 2Way, ({ 8 g J) '

By Theorem 4.1, there exist a /-complete isometry ¢ from (X, W,) into
(B(H),wy). Since

I2ntall =20m | o o7 |) =2 ([ 5 5 ]) = 0nlo)

¢ is also a complete isometry from (X, Op) into (B(H),]| ||n)-
(]

Remark 4.4. We have to prepare a crucial inequality to show the Theorem
4.1. The difference between the condition OIl and the condition WII essen-
tially leads to the different inequalities as follows:

(1) Let X be an operator space. If f € M,(X)* and O*(f) < 1, then
there exists a state pg,qp on My (C) such that '

£ (awB)| < po(ea)rao(6°8)10(a),

for all @ € M,, »(C),z € M, (X),8 € M, »(C),r € N. [ER2]

(2) Let X be a numerical radius operator space. If f € M,(X)* and
W*(f) < 1, then there exists a state pg on M, (C) such that

|f (eza™)| < po(aa®)W(z),

for all @ € M, »(C),z € M.(X),r € N.



As in the case of the operator space theory, we can see the basic op-
erations are closed in numerical radius operator spaces X,Y as well. For
¢ = [pi;] € Mp(WCB(X,Y)), we use the identification M,(WCB(X,Y)) =
WCB(X,M,(Y)) by o(z) = [p(z)] for £ € X with the norm W(p)es.
Especially, M, (X*) is identified with WCB(X,M,(C)) where we give the
numerical radius w(-) on My (C). If N is a closed subspace of X, we use the
identification My (X/N) = M, (X)/M,(N). Here we state only the funda-
mental operations.

Proposition 4.5. Suppose that X and Y are numerical radius operator
spaces. Then

(1) WCB(X,Y) is a numerical radius operator space.
(2)  The canonical inclusion X b X** is W-completely isometric.

(83) If N is a closed subspace of X, then X/N is a numerical radius
operator space.

5 Numerical Radius Norms and Operator Spaces

We note that if X is a numerical radius operator space with W,,, then W,
induces a canonical operator space norm OX on X. We define O}V by

OW(z) = 2Wy,, ([ g g for x € M,(X). By Theorem 4.1, there exists

a W-complete isometry ¢ from (X, W,,) into (B(H), wy). Since

[ntellh =20mn ([ o 257 ) =oman ([ § 5 ]) = 0200

¢ is also a completely isometry from (X,0)V) into (B(H), | ||»)-

On the other hand, given an operator space X with O,, the numerical
radius operator space which satisfies the equality

2 0 0

is not unique (cf. Example 5.4 below). We call that a sequence of norms
Wy, is a numerical radius norm affiliated with (X,0,,) if W, satisfies
WI, WII and (OW).

We often write W(resp. O) instead of W, (resp. Op).

(OW) -I-On(w);—wm([ 0 @ D for z € M (X).



Definition 5.1. We define a norm Wmnax on an operator spacé X by
1
Whnax(z) = inf ~2—Haa* + b*b|| for z € M, (X),

where the infimum is taken over all a € M, »(C),y € M;(X),b € M, »(C),r €
N such that z = ayb and O(y) = 1. We call Wpax is the maximal numerical
radius norm affiliated with X.

It is easy to see that, for z € M, (X), we have
O(z) = inf Hallllbll

where the infimum is taken over all z = ayb as in Definition 3.1. Then it
follows that

%O(x) < Whex(z) < O(z) for z € Mp(X).

Theorem 5.2. Suppose that X is an operator space. Then Wper s a nu-
merical radius norm affiliated with X and the mazimal among all of numer-
ical radius norms affiliated with X.

Next we set Wpin(z) = $0(z) for z € Mp(X). It is clear that Wy,
satisfies WI, WII and (OW). We can characterize numerical radius norms
affiliated with an operator space X by using Whin and Wpax. We call Wain
is the minimal numerical radius norm affiliated with X.

Corollary 5.3. Suppose that X is an operator space with O, and W, sat-
isfies WI, WII. Then the following are equivalent:

(1) (OW) %On(m) = Win q g ‘g D for z € My (X),
(2)  There exists a complete and W-complete isometry ¢ : X — B(H),
(3)  Whin(z) < W(z) < Whax(z) for z € M,(X).



Example 5.4. Let X be an operator space. We present that there are
uncountably many numerical radius norms affiliated with X.

From Corollary 5.3, there exists a complete and WW-complete isometry
Dmax : X — B(H) when we introduce the maximal numerical radius norm
Whmax on X. Let 0 <t < 1.

(a) Welet

a = € M,(C), n>3.

Define that @;(z) = Pmax(2) @ a; for z € X. Since ||a¢|| = 1, then & :
X — B(H) ® M,,(C) is complete isometric. Set W (z) = wy,([@¢(2i;)])
for z = ] € Min(X). It is clear that W is a numerical radius norm
affiliated with X. We can show that (in case t = 1 for W®)

1 - < WD (@) < Wiae(s) fora € Mim(X), m € N. (f.[HH])

Whex () cos -

It turns out that W(l)(a:) is very close to Wmax(z) when n is sufficiently
large. We note that W©® = Wy, (in case t = O for w®). Since [0,1] 3
t — W (2) e C is continuous, then there exist uncountably many distinct
numerical radius norms W® affiliated with X.

(b) We let
by = [8 vif;t] € M,(C).

Define that ¥i(z) = Pmax(z) ® b; for z € X. Set VO (2) = wm([We(zi5)])
for £ = [z;;] € Mj(X). Then, by the same argument as ay, {V®} are
uncountably many distinct numerical radius norms affiliated with X.

Example 5.5. Let Cl be the one dimensinal operator space. Then for
a = [a;5] € My (C1), we have

Whax(@) = w(a).



Indeed, since Whax(a) = w([as;2]) for some z € B(K) with ||2]| = 1, and «
2

double commutes with , we have Wpax(a) < w(e). This and

2
the maximality of Wpax imply that

w(a) = inf{%llﬁﬁ* + 7y | @ =By, |lyll =1, B,y,7 € Ma(C)}.

We note that the above equality for w(«) is a special case of Ando’s Theorem
in [An] in case dimH < oc. _
In fact, Ando’s Theorem [An] implies the next equality in general.

For every a € B(H), we have
NPT TR
w(a) = inf{7{lzz" +yy|| [ a = zby, o] = 1, 2,b,y € B(H)}. ()

Moreover the infimum is attained in (x).

Example 5.6. Let X,Y be operator spaces in B(H). For z € My, ,(X) and
Yy € M, »(Y), we denote by z®y the element [} _; 24 Qyk;] € Mp(X ®Y).
We note that each element u € M,(X ® Y) has a form =z ® y for some
zeMp,(X),yeMpn(Y)andr e N.

(a)
We define
| el ..
lullun = nf{7[|lz2* + y"y[| [ u=2Oy eMa(X ®Y)}
for u € Mn(X ® Y) (cf. [IN3]). Then it is not hard to verify that || [|lun

satisfies the conditions WI and WII. Moreover || ||y is a numerical radius
norm affiliated with the Haagerup norm || ||, that is,

1 0 u
-2-||u||h—”[0 O]wh for ue X®Y.

(b)

10



11

We let denote X1 = {z* € B(H) | z € X} and also define a norm || ||y
on X ® Xt by

[ilhues = int 2lfalllz)f | = sa0s" € Mu(XX1),2 € My (X), 0 € M.(T))

for u € Ma(X ® X1) (cf. [Su2], [IN2]).
It is easy to see that || |l also satisfies WI and WIL. Since || ||,» has
another form [IN3] on X ® X1 as

|elwn = inf{w(a)]]x[|2 | u==za®z* € M,( XX,z € M, .(X),a € M.(C)},
we have
Sl < Ml < lullan < lulla € Mo(X ® X1,

Thus it turns out from Corollary 5.3 that || ||lye is also a numerical radius
norm affiliated with the operator space X ®;, X' with the Haagerup norm

| s, ie
lll I = 0 u
gl¥lih =119 o

We denote by W(X) the numerical radius operator space together with
a numerical radius norm W affiliated with an operator space X. We call
W(X) a numerical radius operator space affiliated with X. Let X,Y be
operator spaces. It is clear that if ¢ : X — Y is completely bounded, then
v : W(X) — W(Y) is W-completely bounded.

We have already obtained a functor O : W — © such that O(X) =

2W( 8 )g > symbolically. We have also found functors W : O — W

which satisfy O o W(X) = X for each operator space X. Wpax and Whin
can be seen as the functors which embed @ into W strictly. This is the reason
why we named the figure 1st and ”"2nd” quantizations in Introduction.

for ue X ® X1.

web

Theorem 5.7. Let X,Y be operator spaces. If ¢ : X — Y is a linear
map, then

(1) W(‘P : Wma.a:(X) — Wmaz(y))cb = O(‘P X — Y)cb;
(2) W((P : Wmin(X) — Wmin(Y))cb = O((p X — Y)cb-
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