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Variation of Bergman metrics
in different views
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We shall show two views on the variation of Bergman metrics.
The one view comes from a quasiconformal deformation of a
Riemann surface holomorphically depended and the other view
comes from a holomorphic family of Riemann surfaces shapmg
a pseudoconvex domain.

1 Quasiconformally holomorphic movement of
a Riemann surface

Let R; be a Riemann surface which moves quasiconformally
depended on a complex parameter ¢ about 0 in the complex
plane. We say R; has quasiconformally holomorphic movement
if the Beltrami differential

pe = pz, t)dz Ezgﬁi

of quasiconfomal mapping

h:: Ry — Ry (w = hy(2))




satisfies the following conditions:

(i) u(2,0) = 0, u(z,t) is measurable, esssupg|u(z,t)| < 1,

(ii) For every ¢ there exist constants €; and M; such that
|e] < e => esssuprl|u(z,t +€) — p(z,t)| < |e| M,

(iii) For almost all z € Ry u(z,t) is holomorphlc
with respect to t.

2 holomorphic family
Let |
n:S — B

be a holomorphic family of a Riemann surfaces

R =n"\(t),t € B,

where S is a 2-dimensional analytic space, B is a disk in C and

R, is irreducible.

Suppose that S is unramified domain over B x C w1th smooth

boundary.
Let a defining function

®(t, 2)

be a real valued C? function in a neighborhood of 85 such that it

0®(t, z)
0z

is positive inside of S, negative outside of S and
vanish on the boundary of S.

For (t,z) € 0S set
0P (t, z)/‘atb(t, z)I

ot 0z "

kl(ts Z) =

doesn’t
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These do not depend on the choice of defining function ®(¢, 2).
If S is pseudoconvex, then ky(t, z) > 0.

kg(i, z) = |>—2Re{

3 Behavior space

Let
A = A(R)

be a real Hilbert space which consists of square integrable com-
plex differentials on a Riemann surface R. Its inner product is
given as follows:

< w, o >= Real part of//w/\ *7 = R(w, o),
R

where & is the complex conjugate differential of o, *¢ is the
conjugate differential of &, (w,o) denotes the integral itself of
above second expression which means the complex inner product
and R(w, o) means its real part. Typical subspaces of A are the
following;:

An = {X € A : ) is harmonic},

eo = {\ € A : X is orthogonal to Ay and closed differential},

Apse={A€Ar: [ . A = 0 for any dividing cycle 7},

Ape = {X € Ap: Xis exact}, Apo = *As,, Apm = *Aje,
where A; is the orthogonal complement of A, in Ap and *A, =
{*w:w € A,}. Note the following orthogonal decompositions:

Ap = Ape® *Ano = Anse® “Apm = "Ae @ Aho = “Ahoe ® Apm.
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Let
Fp={A€Ay:\is real}, Thse = Tp N Apge,

Che = Fh N Ahea Pho - Phe, th = a.‘I‘h.ge)
where Iy is the orthogonal complement of Iy in T, and *T, =
{*w;w e T\ }.

We say a subspace

Ay =Ty +i*Ts

behavior space, where I'; is a subspace of I';, and *I'; consists
of conjugate differentials of orthogonal complement of I'; in T},
We assume that

Az(Rt) o hy € Az(Ro) + Aeo(Ro)

For example, 'pe + i1, Tim +if‘hse, iI'y, and T';, are behavior
spaces.

4 Elementary differentials

Suppose that there is a point p excluded the support of u;,
take a local disk V = {z : |2 — (| < 1} around ¢ = p which does
not meet the support of y;.

There exist meromorphic differentials ¢?, 'd)n on R; with pole

only at hi(p) such that
dz dz
N oot arx
(1) Pn (Z _ C)n+17 ")bn (Z )n+1
is holomorphic on V; = h(V),
where z is a local variable on V;.
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(i) ¢ (!) coincides with a differential
i.ILiFh + Aeo (I‘__’L-l_ Aeo) on Rt - ‘/t.
@ + ¢t and ¢! — ot coincide with differentials in Ae,.

Set )
K; = nl(p}, — ¥1) /47 = K}(2,()dz,
L = nl(@f, +¥5)/4m = LE(2,¢)dz.
Let write ¢ for ¢} and 9* for 9t.
Theorem 1
d"w
(w, Kiyy) = a—;(()

for a square integrable holomorphic differential
w = w(z)dz on R;.

K® = K! is called a Bergman kernel and K*(¢,¢)d¢ A dC is the
Bergman metric.

. — —_— . . 2dz
Since ¢f, + ¢t — ¢t + Yt € A, has a singularity (——%,
z—(
-1
there exists a potential P!(z,{) with a singularity ——(_—_.,,C)
n(z —

such that
1 —_ — 2n —_—
dFy, = 5(en —¥n + b+ ¥h) = —(Kq + LE).

Let write P* for P}.
Let Gt = G%(z,¢) be the Green function with pole at ( =
hi(p) on R:. Set ¢ = dG* + i x dG*. We say

1 dz
OR3P

a Robin’s constant at h(p). The following theorem shows that
the Bergman metric closely relate to the Robin constant.



Theorem 2 ( Suita’s theorem)

. _18%()

5 Variation of a meromorphic differential
The elementary meromorphic differentials ¢, 4% may behave
smoothly in our circumstance.

Theorem 3

Suppose that R; has quasiconformally holomorphic movement.
Let a meromorphic differential ¢* on R; satisfy that

¢t0ht"—¢0€Az+Aeo

where the pole» of ¢° is excluded the support of ;.
There exist differentials ¢t, @', € Az + Aeo on Ry such that

¢t o hyyu o bt — ¢

. — At =

lim | - Bl =0,
t+iv — At '

ll_i% lI ¢ o ht+'l.:; o ht ¢ _ ¢f]” =0.

And & + it =ix (¢, +idl) is a holomorphic differential.

Set |

6¢t_1 ¢
—5?——5(975 — i),

1
% = L idh).
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6 Variation of Robin’s constant

In the one view we have the first and second variational for-
mulas of Robin’s constant.

Theorem 4
Suppose that R; has quasiconformally holomorphic movement.

(¢ _ 1,94
' 47r( Bto’(po)

0G* ow 26,u 5
/ aw az ht) dZdZ,

210 _ L6 o,

otot
_— 6900 BGt ow 2611' R
B / (5% ot Ow az) ——(ht);d2zdz < 0.

In the other view they are given by the following forms.

Theorem 5
Suppose that S is unramified domain over B x C with smooth
boundary. ‘

() _ -1 aGt(z ¢)
at - T oR, k(t )I

8244(¢) B _1/ a(t, z)'BGt(z 0|2d
R, '

otot — «
2 82Gt(z Oy o
// | 5755 |*dzdz.

<0 if S is pseudoconvex.

———==%ds,,

0°+*(¢)

otot |
The first formula may be regarded as Hadamard’s variational
formula.

Hence
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7 Variation of Bergman metrics

In the one view we have the first and second variational for-
mulas of Bergman metrics.

Theorem 6
Suppose that R, has quasiconformally holomorphic movement.

0K (¢, ¢) OK!
5 = &),
oK (¢, () OK! 8K,  OLt AL

gor. -~ e w) T ) 20
O?log K¥(¢,¢) 1 OK® 8K, OL! OL!
Otot _Rt(C,C){( ot ’ 8t—)+(_55:’_5t:)}
1 8Kt .,
e G KO 20

In the other view they are given by the following forms.

Theorem 7
Suppose that S is unramified domain over B x C with smooth
boundary.

0K (CQ) _ /f Ri(z, g)mdzdz,

ot
62Kt
Bt(act 8 f ka(t, 2) (1K (2, Q)1° + |22, ¢) ) ds,
+’L[/ 62Kt Z C) |2 |32Lt(z C) |2)dZdz
Hence FK t(c 9, >0, if S is pseudoconvez.

- otot



8 Application

Using the above variational formulas we have several appli-
cations.

Theorem 8 (Lewittes)

Let R be a non-planar Riemann surface. If the Gaussian
curvature of the Bergman metric has zero, then R is an (ultra)
hyper-elliptic Riemann surface of parabolic type. Conversely, if
R.is an (ultra) hyper-elliptic Riemann surface of parabolic type,
then the branch points coincide with the zeros of the Gaussian
curvature of the Bergman metric.

Theorem 9

Let a compact bordered Riemann surface R; of genus g with
m (> 0) boundary component have a quasiconformally holomor-
phic movement. If 29+ m + 1 Robin’s constants v'(p;) are har-
monic with respect to t, all R; are conformally equivalent.

Theorem 10

Let a compact bordered Riemann surface R; of finite type have
quasiconformally holomorphic movement. If log K*(¢,¢) is har-
monic with respect to t. All R; are conformally equivalent.

Theorem 11

Let S be an unramified pseudoconver domain over B x C with
smooth boundary. Then log K*(¢,¢) is plurisubharmonic on S.
Further, if, for each t € B, OR has at least one strictly pseudo-
convez point (t,a(t)), then log K*(¢,¢) is a strictly plurisubhar-
monic function on S.
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Theorem 12 (S.Hamano and H.Yamaguchi)

Let S be an unramified pseudoconvez domain over B x C with
smooth boundary. If there exists a holomorphic section ¢ = ((t)
on B of S such that log K*(¢,¢) is harmonic on B, then S is
biholomorphic to the product B x Ry by the transformation of
the formt =t, w = f(t,2).

9 Variational formulas of Rauch type

Let R; be compact and represented as a covering surface on
C. Let {¢ (t)};=1 be the branch points of order {k;} and the
local parameters {w; = (z — (;(t))¥/*}.

Theorem 13

aKt(cc 1« ) 8"J 2(6P‘(w3, )6P‘(wj,€))]
27r 2 kilks — 20y Buy w; =0

PR, 1 am  o(z)
otot 47r2(”2k(k 2)! 5 dz”%t

Y ) 8._. z

j=1
where
oki—2 0P (w;, ()
Q;(z) [a—k,—2( BW‘: Pt(z w]))]w =0

0P (w;,
(Z) = [a_k_,_z( a(-sz C)

P¥(2,w;))}u;=0.
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