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THE ASYMPTOTIC EXPANSION OF BERGMAN KERNELS ON
SYMPLECTIC MANIFOLDS

XIAONAN MA AND GEORGE MARINESCU

1. INTRODUCTION

In this talk, we explain some ideas of our approach to the asymptotic expansion of
the Bergman kernel associated to a line bundle. The basic philosophy developed in
[8, 15, 18] is that the spectral gap properties for the operators proved in [3, 14] implies
the existence of the asymptotic expansion for the corresponding Bergman kernels if the
manifold X is compact or not, or singular, or with boundary, by using the analytic
localization technique inspired by [2, §11]. The interested readers may find complete
references in [8, 15, 17], and in the forthcoming book [18]. ‘

We consider a compact complex manifold (X, J) with complex structure J, and holo-
morphic vector bundles L, E on X, with rkL = 1. Let {H*(X,L? ® E)};_, be the

Dolbeault cohomology groups of the Dolbeault complex (2%°(X,[* ® E),_LmE) =
(@,2%9(X, [ ® E), 5" °F).

We fix Hermitian metrics hX, h¥ on L, E. Let V% be the holomorphic Hermitian
connection on (L, h%) with curvature RX and let g7* be a Riemannian metric on X such

that
(L.1) | g (I, J) = g™ ().

We denote by - °°" the formal adjoint of the Dolbeault operator 8 = on the Dol-

beault complex 2%*(X, L? ® E) endowed with the L%-scalar product associated to the
metrics h%, hZ and g7X and the Riemannian volume form dvx(z'). Set

(1.2) Dp - \/i(g[ﬂ’@E + 5L"®E,t).

Then %Dz is the Kodaira-Laplacian acting on Q%*(X, LPQF) and preserves its Z-grading.
By Hodge theory, we know that

(1.3) Ker Dp|aoe = Ker D|qoq ~ H*(X, [? ® E).

We denote by P, the orthogonal projection from Q%*(X, L? ® E) onto Ker D,. The
Bergman kernel P,(z,z'), (z,2' € X) of L? ® E is the smooth kernel of F, with respect
to the Riemannian volume form dvx(z').

In this setting, we are interested to understand the asymptotic expansion of Py(z,z')
as p — oo. If R is positive, it is studied in [22, 20, 26, 7, 4, 21, 13, 23, 12] in various
generalities. Moreover, the coefficients in the diagonal asymptotic expansion encode
geometric information about the underlying complex projective manifolds. This diagonal
asymptotic expansion plays a crucial role in the recent work of Donaldson [10] where the
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existence of Kahler metrics with constant scalar curvature is shown to be closely related
to Chow-Mumford stability.

In the symplectic setting, Dai, Liu and Ma [8] studied the asymptotic expansion of
the Bergman kernel of the spin® Dirac operator associated to a positive line bundle on
compact symplectic manifolds, and related it to that of the corresponding heat kernel.
This approach is inspired by local Index Theory, especially by the analytic.localization
techniques of Bismut-Lebeau [2, §11]. In [8] they also focused on the full off-diagonal
asymptotic expansion [8, Theorem 4.18] which is needed to study the Bergman kernel
on orbifolds. By exhibiting the spectral gap properties of the corresponding operators,
in [17], we also explained that without changing any step in the proof of [8, Theorem
4.18], the full off-diagonal asymptotic expansion still holds in the complex or symplectic
setting if the curvature R of L is only non-degenerate. Note that Berman and Sjéstrand
[1] recently also studied the asymptotic expansion in the complex setting when the
curvauture R” of L is only non-degenerate.

Along with %Dg there is another geometrically defined generalization to symplectic

manifolds of the Kodaira-Laplace operator, namely the renormalized Bochner-Laplacian. -

In this talk, we explain the asymptotic expansion of the generalized Bergman kernels
of the renormalized Bochner-Laplacian on high tensor powers of a positive line bundle
on compact symplectic manifolds. In this situation the operators have small eigenvalues
when the power p — 0o (the only small eigenvalue is zero in [8], thus we have the key
equation [8, (3.89)]) and we are interested in obtaining Theorem 3.2, that is, the near
diagonal expansion of the generalized Bergman kernels.

There are three steps: In Step 1, by using the finite propagation speed of solutions of
hyperbolic equations, we can localize our problem if the spectral gap properties holds.
In Step 2, we work on T, X =~ R?™, and extend the bundles and connections from
a neighborhood of 0 to all of T;,X such that the curvature of the line bundle L is
uniformly non-degenerate on T,,X. We combine the Sobolev norm estimates from (8]
and a formal power series method to obtain the asymptotic expansion. In Step 3 we
compute the coefficients by using the formal power series method from Step 2. Actually,
in [17], we compute also some coefficients in the asymptotic expansion of the Bergman
kernel associated to the spin® Dirac operators in [8] by using the formal power series
method here.

2. MAIN RESULTS

Let (X,w) be a compact symplectic manifold of real dimension 2n. Assume that
there exists a Hermitian line bundle L over X endowed with a Hermitian connection
VI with the property that %;ERL = w, where RE = (VF)? is the curvature of (L, VE).
Let (E, h®) be a Hermitian vector bundle on X with Hermitian connection VZ and its
curvature RE. _

Let g7X be a Riemannian metric on X. Let V7X be the Levi-Civita connection
on (TX,g™¥) with its curvature RTX and its scalar curvature r*. Let dux be the
Riemannian volume form of (T'X, g7*). The scalar product on the space #*°(X, L ® E)
of smooth sections of I? ® F is given by (s1, 52) = [ (s1(), 82(2)) Lrer dvx(x) .
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Let J : TX — TX be the skew—adjoint linear map which satisfies the relation
(2.1) w(u,v) = ¢ (Ju,v)

for u,v € TX. Let J be an almost complex structure which is (separately) compatible
with ¢g7% and w, especially, w(-,J-) defines a metric on TX. Then J commutes also
with J. Let VXJ € T*X ® End(TX) be the covariant derivative of J induced by
VX, Let VL*®E be the connection on L? ® E induced by VI and VE. Let {e}:
be an orthonormal frame of (TX,g7X). Set |[VXJ|2 = 3., [(VZJ)e;?. Let ALP®F =
= Sl(vireEy? V@:&i ] be the induced Bochner-Laplacian acting on €°(X, L? Q E).
We fix a smooth hermitian section ® of End(E) on X. Set 7(z) = —7 Trirx[JJ], and

(2.2) Dpp=AY®F —pr+ .

By [14, Cor. 1.2] (cf. also [11, Theorem 2]) there exist yg, C1, > 0 independent of p such
that the spectrum of A, s satisfies

(2.3) Spec Ay ¢ C [~Cr, Cr) U [2puo — CL, +00[.

This is the spectral gap property which plays an essential role in our approach. In the
first place, it indicates a natural space of sections which replace the space of holomorphic
sections from the complex case.

Let P, , be the orthogonal projection from (¢°(X, [*QE), (-, )) onto the eigenspace
of A, e with eigenvalues in [-Cy, Cp]. If the complex case (i.e. J is integrable and ® =
—EZ;——IRE (ej, Je;)) the interval [-Cy, Cy] contains for p large enough only the eigenvalue
0 whose eigenspace consists of holomorphic sections. For the computation of the spectral
density function we need more general kernels. Namely, we define P ,(z,2’), ¢ > 0 as the
smooth kernels of the operators P, = (Ap¢)?Po, (We set (Aps)® = 1) with respect to
dux(z'). They are called the generalized Bergman kernels of the renormalized Bochner-
Laplacian A, 5. Let det J be the determinant function of J, € End(T;X).

Theorem 2.1. There exist smooth coefficients b, ,(z) € End(E), which are polynomials
in RTX  RE (and RL, ®) and their derivatives of order < 2(r + q) — 1 (resp. 2(r + q)),
and reciprocals of linear combinations of eigenvalues of J at x, and

(2.4) boo = (det J)/21dp,

such that for any k,l € N, there ezists Ci,; > 0 such that for anyz € X, p€N,

(2.5) q,,,(x T qur(m - o S Cr,ip™*!

r=0

Moreover, the expansion is uniform in that for any k,l € N, there is an integer s such
that if all data (97X, AL, VL, hE, VZ, J and ®) run over a bounded set in the €°*-norm
and gTX stays bounded below, the constant Cy,; is independent of g7*; and the €*-norm
in (2.5) includes also the derivatives on the parameters.
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Theorem 2.2. If J = J, then forq 2 1,

1 1
(26) bO,l = 8—7I' [TX + Z]VXJP + 2\/ —].RE(CJ‘, .]6]')] y
1 v-1 q
(27) bq,o = (ﬂlVXJP + TRE(GJ‘, Je,») + (I)) .

Theorem 2.1 for ¢ = 0 and (2.6) generalize the results of [7], [26], [13] and [23] to the
symplectic case. The term rX +1|V*J|2 in (2.6) is called the Hermitian scalar curvature
in the literature and is a natural substitute for the Riemannian scalar curvature in the
almost-Kéhler case. It was used by Donaldson [9] to define the moment map on the
space of compatible almost-complex structures. We can view (2.7) as an extension and
refinement of the results of {11, §5] about the density of states function of A, 4, (2.7)
implies also a correction of a formula in [6].
Now, we try to explain the near-diagonal expansion of P, ,(z,z’).

Let aX be the injectivity radius of (X, g7X). We fix ¢ €]0,a*/4[ We denote by

BX(z,¢) and B=X(0,¢) the open balls in X and T, X with center z and radius e. We
identify BT=X(0,¢) with BX(z,€) by using the exponential map of (X, g7¥).

We fix 2o € X. For Z € B™0%(0,¢) we identify Lz, Ez and (L? ® E)z to Ly, Eq,
and (L? ® E), by parallel transport with respect to the connections V%, VZ and VL*®F
along the curve 7z : [0,1] 3 u — expX (uZ). Then under our identification, P,,(Z, Z') is
a section of End(E),, on Z,2' € T, X, |Z|,|Z'| < €, we denote it by P,p4,(Z,Z’). Let
m: TX xx TX — X be the natural projection from the fiberwise product of TX on X.
Then we can view Py .(Z, Z') as a smooth section of 7* End(E) on T'X x x TX (which
is defined for | Z|,|Z’| < €) by identifying a section S € €*°(TX xx T X, n* End(E)) with
the family (S;)zex. We denote by | |¢s(x) & €° norm on it for the parameter z € X.

We will define the function PV(Z, Z") in (4.5).

Theorem 2.3. There exist J,.(Z,Z') € End(E), polynomials in Z,Z' with the same
parity as r and deg J,»(Z,2') < 3r, whose coefficients are polynomials in RTX, RE
(and R, ®) and their derivatives of order < v — 1 (resp. r), and reciprocals of linear
combinations of eigenvalues of J at xo, such that if we denote by

(2.8) For(2,2") = Iy (2,2")PN(2,2"),
then for k,m,m' € N, ¢ > 0, there ezists C > 0 such that if t €]0,1], Z,Z' € T,, X,
1Z|,1Z2'| < o/ /P
(2.9)

Hlal+le|

k
n_ " —r/2 < Op—(k-m+1)/2
28 ez (P2, 2= 3 S B < O

’
r=2g ™ (X)

3. IDEA OF THE PROOFS

3.1. Localization. First, (2.3) and the finite propagation speed for hyperbolic equa-
tions, allows us to localize the problem. In particular, the asymptotics of P,,(zo,z’) as
p — oo are localized on a neighborhood of zo. Thus we can translate our analysis from
X to the manifold R*™ ~ T, X =: X,.
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Let f : R — [0,1] be a smooth even function such that f(v) =1 for |v| < €/2, and
f(v) =0 for |v| > €. Set

(3.1) F(a) = (

Then F(a) is an even function and lies in the Schwartz space S(R) and F(0) = 1. Let
F be the holomorphic function on C such that F (a?) = F(a). The restriction of F to R
lies in the Schwartz space S(R). Then there exists {c;}32, such that for any k € N, the
function

+o00 +o00

f(v)dv)_l / €% f (v)dv.

—00 —o0

k
(32 Fi(a) = F(a) - ) _ ¢’ F(a),
j=1
verifies
(33) FP0)=0 forany 0<i<k
Proposition 3.1. For any k,m € N, there exists Cm > 0 such that forp > 1
"'k m 41
(34) |Fk(%Ap,¢)($,x') — Poy(z, w’)\%m(x)(x) < Chymp™ 3 H2EmHI4D),

Here the €™ norm is induced by VX, VZ, hX, h¥ and g7x.

Using (3.1), (3.2) and the finite propagation speed of solutions of hyperbolic equations,

it is clear that for z,7’ € X, Fk(%AI,,@) (z,-) only depends on the restriction of A,

to B¥(z,ep~4), and Fk(%ﬁAp,q,)(w,m’) = 0, if d(z,2') > ep~i. This means that the
asymptotic of Al 4 Py, (z,) when p — 400, modulo &(p~*) (i.e. terms whose €™ norm
is @(p~") for any I,m € N), only depends on the restriction of A, to BX(z,ep~%).

3.2. Uniform estimate of the generalized Bergman kernels. We will work on the
normal coordinate for zo € X. We identify the fibers of (L, hY), (E, h®) with (Lg,, hl=0),
(Ey,, hP0) respectively, in a neighborhood of zo, by using the parallel transport with
respect to V£, VZ along the radial direction.

We then extend the bundles and connections from a neighborhood of 0 to all of T;, X.
In particular, we can extend V£ (resp. V) to a Hermitian connection V£ on (L, h*) =

(Xo X Lz, hl=0) (resp. V0 on (Ep, h®) = (Xo X Eyy, hF*0) ) on Ty, X in such a way’

so that we still have positive curvature R%; in addition R = RZ outside a compact
set. We also extend the metric g7*°, the almost complex structure Jy, and the smooth
section ®y, (resp. the connection V£0) in such a way that they coincide with their values
at 0 (resp. the trivial connection) outside a compact set. Moreover, using a fixed unit
vector St € L, and the above discussion, we construct an isometry Fo ® L§ ~ E,,. Let
A;fg,o be the renormalized Bochner-Laplacian on X, associated to the above data by a
formula analogous to (2.2). Then (2.3) still holds for A,’,fg,o with uo replaced by 4p/5.

Let durx be the Riemannian volume form on (T3, X, g™=0%) and x(Z) be the smooth
positive function defined by the equation dvx,(Z) = «(Z)dvrx(Z), with k(0) = 1. For
5 € €°(R™ Ey), Z € R™ and t = 1//p, set ||s|l} = [ran [8(Z)|26,, dvrx(Z), and
consider

(3.5) Y% = S[ltzﬂ%A;fg,on’%St, where (S¢8)(Z) = s(Z/t).
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Then ., is a family of self-adjoint differential operators with coefficients in End(E),,. We
denote by Pos : (€°(Xo, Ex,), || |lo) = (€°(Xo, Ex), || lo) the spectral projection
of % corresponding to the interval [— C’Lot Crot?). Let Pus(Z,Z") = Py120(2,2Z"),
(Z,Z' € Xy, g 2 0) be the smooth kernel of Py = (%) Py, with respect to durx(Z’).

We can view P,:,(Z,Z’) as a smooth section of 7* End(E) over TX xx TX, where

m:TX xxTX — X. Let § be the counterclockwise oriented circle in C of center 0 and
radius po/4. By (2.3),
1

=— [ -1
(3.6) Par =57 | MO = L)l

From (2.3) and (3.6) we can apply the techmques in [8], which are inspired by [2, §11],
to get the following key estimate.

Theorem 3.2. There exist smooth sections Fy, € €°(TX xx TX,n*End(E)) such
that for k,m,m’ € N, 0 > 0, there exists C > 0 such that if t €]0,1], Z,Z' € T, X,
12],12"| < o,

dlal+e| k
60 e |ozeage (P Lt )2

Let Pogp(Z,Z') € End(Ey,) (Z,Z' € Xo) be the analogue of P, (z,z'). By (3.5), for
Z,7' € R?™,

’ ~N
™ (X)

(3.8) Po o p(Z,2") = 7272 ~3(2) P,.(Z/t, Z' |t) k™3(2").
By Proposition 3.1, we know that
(3'9) POanp(Z’ ZI) = Pq:pumO(Z’ Zl) + ﬁ(p-oo)’

uniformly for Z,Z' € T3, X, |Z|,|Z'| < e/2.
To complete the proof the Theorem 2.1, we finally prove F,, = 0 for r < 2¢. In fact,
(3.7) and (3.8) yield

(3.10) ba,r(Zo) = Fo2r124(0,0).

4. EVALUATION OF F,

The almost complex structure J induces a splitting T X ®g C = T X @ TONX,
where 719X and TV X are the eigenbundles of J corresponding to the eigenvalues
v=1 and —y/=1, respectively. We choose {w;}, to be an orthonormal basis of T2 X,
such that

(4.1) ~2my/=1J,, = diag(ay,- - ,an) € End(TOX).

We use the orthonormal basis ez;—; = 715(w,- +w;) and ey; = %(wj -w;),j=1,.

of T, X to introduce the normal coordinates as in Section 3. In what follows we will use
the complex coordinates z = (21, , 2,), thus Z = 2+ 7%, and w; = \/58—‘27, W; = 2;,%.
It is very useful to introduce the creation and annihilation operators b;, b;,

1 1
(42) b" = “2% + 5&;2,‘ y bj- = 2%‘ + 5042,’ y b= (bl, AR ,bn) .
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Now there are second order differential operators O, whose coefficients are polynomials
in Z with coefficients being polynomials in RTX, Rt RF R and their derivatives at
Zg, such that

(4.3) Z=%+) Of, with %= bb/.
i

r=1

Theorem 4.1. The spectrum of the restriction of %, to L*(R?") is given by {2 Yo ay

o; € N} and an orthogonal basis of the eigenspace of 23 v ; a4a; s given by
a 1 . n
(4.4) b (2P exp (—Z Zi:a,~|z,'|2)) , withBeN",

Let N1 be the orthogonal space of N = Ker.%, in (L*(R*",E,,),|| |lo). Let PV,
PN be the orthogonal projections from L2(R?", E,,) onto N, N+, respectively. Let
PN(Z,Z') be the smooth kernel of the operator PV with respect to dvrx(Z’). ;From
(4.4), we get .

(271r)" Ha‘ exp ( - iz ai |z + |2]* - 2z{2§)),
= i

Now for A € 6, we solve for the following formal power series on t, with g,(\) €
End(L*(R?, E,,),N), f+()\) € End(L*(R?, E,,), N+),

- (4.5) PN(z,Z2") =

(46) A =23 (&) + )t = diaon sy

r=0

(From (3.6), (4.6), we claim that

1 1
4. r - 4 r - 7 L 4
47) For =5 /5 Xig. (A + 5 /6 ML)

;From Theorem 4.1, (4.7), the key observation that PNO; PN = 0, and the residue
formula, we can get F,, by using the operators .%;!, PV, PN*, 0, (i < r). This
gives us a method to compute b,, in view of Theorem 4.1 and (3.10). Especially, for
g>0,7r<2q,

(4.8) Foo=PN, F,.=0,
Fyaq = (PNO,PN — PNO, -1 pN*©, PN)ipN,
Fop = £ PN 0.2 PV O, PY — &7 PN O, PY
+PNO, PN 0,47 PN - PN O PN
+ PN 210, PO 2 P — PO PN O, PN,
In fact %, and O, are formal adjoints with respect to | |[lo; thus in Foo we only need

to compute the first two terms, as the last two terms are their adjoints. This simplifies
the computation in Theorem 2.2.
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5. GENERALIZATIONS TO NON-COMPACT MANIFOLDS

In this section we come back to the case of complex manifolds, which was briefly
discussed in the introduction, but focus on non-compact manifolds. Let (X,0) be a
Hermitian manifold of dimension n, where O is the (1,1) form associated to a hermitian
metric on X. Given a Hermitian holomorphic bundles L and E on X with rk L = 1, we
consider the space of L? holomorphic sections H| ?2) (X,L?®E). Let P, be the orthogonal
projection from the space L*(X, L ® E) of L? sections of L* ® E onto Hfy (X, L* ® E).
By generalizing the definition from Section 1, we define the Bergman kernel Py(z,z’),
(z,2 € X) to be the Schwartz kernel of P, with respect to the Riemannian volume
form dux(z') associated to (X,©). By the ellipticity of the Kodaira-Laplacian and
Schwartz kernel theorem, we know P,(x, #’) is #. Choose an orthonormal basis (SP)2

i=1

(dp € NU {o0}) of H?z) (X,L? ® E). The Bergman kernel can then be expressed as

dp
 Bz,a) =) St(z)®(SV(z)" € (I” ® B), ® (I” ® E)3.
. i=1
Let Kx = det(T*®9 X) be the canonical line bundle of X and R%* be the curvature of
K% relative to the metric induced by ©. The line bundle L is supposed to be positive
and we set w = EQRL.

We denote by gZ* the Riemannian metric associated to w and by rX the scalar cur-
vature of gZX. Moreover, let ai,...,a, be the eigenvalues of w with respect to ©
(o = a;/(2m), j = 1,...,n where ay,...,a, are defined by (4.1) and (2.1) with g™
the Riemannian metric associated to ©). The torsion of © is T = [i(0), 98], where
i(©) = (8 A -)* is the interior multiplication with ©.

Theorem 5.1 ([15]). Assume that (X, ©) is a complete Hermitian manifold of dimension
n. Suppose that there existe > 0, C > 0 such that

(51) +-1RF>e0, V-1R*>-CO, V-1RF>-CO, IT| < CO.

Then the kernel P,(z,z') has a full off-diagonal asymptotic expansion uniformly on com-
pact sets of X x X and P,(z, z) has an asymptotic expansion analogous to (2.5) uniformly
on compact sets of X. Moreover, by = a; -+ a, Idg and

b= 871' = [rff Idg —24, ( log(o - -+ an)) e +4 ; A5 )] ’

where {w, ;} is an orthonormal basis of (T*9X, gT%).

By full off-diagonal expansion we mean an expansion analogous to (2.9) where we allow
121,12 < o.
Let us remark that if L = K, the first two conditions in (5.1) are to be replaced by

(5.2) hL is induced by © and v—1R%* < —¢®.

Moreover, if (X, ©) is Kéhler, the condition on the torsion T is trivially satisfied.

The proof is based on the observation that the Kodaira-Laplacian 00, = 1D? acting
on L?(X, [P ® E) has a spectral gap as in (2.3). The proof of Theorem 2.1 applies then
and delivers the result.
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Theorem 5.1 has several applications e.g. holomorphic Morse inequalities on non-
compact manifolds (as the well-known results of Nadel-Tsuji [19], see also [15, 25]) or
Berezin-Toeplitz quantization (see [18] or the fothcommimg [16]).

We will emphazise in the sequel the Bergman kernel for a singular metric. Let X be a
compact complex manifold. A singular Kdhler metric on X is a closed, strictly positive
(1,1)-current w. If the cohomology class of w in H?(X,R) is integral, there exists a
holomorphic line bundle (L, h*), endowed with a singular Hermitian metric, such that
325”1RL = w in the sense of currents. We call (L, k%) a singular polarization of w.

If we change the metric h%, the curvature of the new metric will be in the same
cohomology class as w. In this case we speak of a polarization of [w] € H%(X,R). Our
purpose is to define an appropriate notion of polarized section of L?, possibly by changing
the metric of L, and study the associated Bergman kernel.

Corollary 5.2. Let (X,w) be a compact complex manifold with a singular Kdhler metric
with integral cohomology class. Let (L, kL) be a singular polarization of [w] with strictly
positive curvature current having singular support along a proper analytic set ¥.. Then
the Bergman kernel of the space of polarized sections

H?z)(X NI, IP) = {ue LP(X N, I[P, 0p,Rh): 7 u= 0}

has the asymptotic expansion as in Theorem 5.1 for X \ X, where Op is a generalized
Poincaré metric on X N\ X and hE is a modified Hermitian metric on L.

Using an idea of Takayama [24], Corollary 5.2 gives a proof of the Shiffman-Ji-
Bonavero-Takayama, criterion, about the characterization of Moishezon manifolds by
(1,1) positive currents.

We mention further the Berezin-Toeplitz quantization. Assume that X is a complex
manifold and let €22,(X) denote the algebra of smooth functions of X which are con-
stant outside a compact set. For any f € €%, .,(X) we denote for simplicity the operator

const
of multiplication with f still by f and consider the linear operator
(5.3) Tfp: LX(X,[P) — L3(X,LP), Tip=F,fPF,.

The family (7} ,)p>1 is called a Toeplitz operator. The following result generalizes [5] to
non-compact manifolds.

Corollary 5.3. We assume that (X,0) and (L, h*) satisfy the same hypothesis as in
Theorem 5.1 or (5.2). Let f,g € Comu(X). The product of the two corresponding
Toeplitz operators admits the asymptotic expansion

(5.4) TypTyp = Zp—ch,(f,g),p +0(p™)
r=0
where C, are differential operators. More precisely,
1
5-5 [} = [} C b] - ) = =7 H
(5.5) Co(f,9) = fg, Ci(f,9)—Cil(g,f) \/:T{f g}

where the Poisson bracket is taken with respect to the metric 2nw. Therefore

(5.6) [Tf,ng.p] = p_le:T{f,y},p + 0(17_2)'
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Remark 5.4. For any f € €°°(X,End(E)) we can consider the linear operator
(5.7) Typ: XX, [P ® B) — IAX, [’ ® B), Tjp="F,fF,.

Then (5.4) holds for any f, g € €°°(X, End(E)) which are constant outside some compact
set. Moreover, (5.5), (5.6) still hold for f,g € €X,,.(X) C €°(X,End(E)).
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