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WEIGHTED BERGMAN KERNELS AND BALANCED METRICS

MIROSLAV ENGLIS

ABSTRACT. Motivated by the recent results for compact manifolds, we study the
existence and uniqueness of balanced metrics in the noncompact setting, in partic-
ular, on smoothly bounded strictly pseudoconvex domains in C". By an analysis
of the boundary behaviour of weighted Bergman kernels, we show that, as with the
solution to the Monger-Ampére equation, balanced metrics on such domains cannot
be determined solely from their boundary singularities: ‘in fact, we exhibit a whole

_ family of metrics on the disc which are balanced up to an error term which is smooth
up to the boundary. Finally, some applications are indicated which would follow once
the existence and uniqueness of balanced metrics were established.

1. INTRODUCTION

Let © be a bounded domain in C™, n > 1, which we assume for simplicity to be
contractible to a point, and w a positive continuous weight function on Q. It is then
well known that the subspace L2 (€2, w) of all holomorphic functions in L?(f, w)
(the weighted Bergman space) is closed and admits a reproducing kernel K,,(z,y)
(weighted Bergman kernel): that is,

fe) = [ 10 K w) s Vi€ La@w) Veeo,

For brevity, we will usually write just K, (z) instead of K (z, z).
Let now ® be a strictly plurisubharmonic (or strictly-PSH for short) functlon

on {2, so that
92d
(1) 9.,;3 - 521;3_2—]'

defines a Kéhler metric on . Let det[00®] =: det[g,z] be the associated volume

density, and consider the weight function w = e~® det[#0®]. Weighted Bergman
kernels for such weights arise in certain approaches to quantization on Kéahler man-
ifolds, where one considers the family of these weights obtained by replacing ® by
®/h where h (Planck’s constant) is a positive parameter, and the problem is to
describe the asymptotic behavior of the corresponding kernels as h tends to zero.
In this paper, however, we will be interested in another aspect of these weighted
Bergman kernels.
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M. ENGLIS
Definition 1. The function ® is called balanced if

(2) e %) K, (2) = const.

Note that (2) is not really a property of ®, but rather of the metric ( 1) defined
by it. Indeed, if ®’ is another potential for g;5, then it follows from 00% = 06%'
and the contract1b1hty of © that ' = & — 2Re F for some holomorphic function
Fon Q. Thus e ® = e ?|ef|? and w’ := e~¥ det[689'] = wleF|2. meg to the
holomorphy of F, the mapping f — e f is a unitary isomorphism of Lhol(ﬂ w')
onto L2 (Q,w), which implies that the corresponding reproducing kernels are re-
lated by Ky = |e~F|2K,,. Thus e~® K, = e~?K,,. Consequently, the left-hand
side of (2) depends only on the metric (1). The following definition is therefore

consistent.

Definition 2. If (2) holds, then (1) is called a balanced metric.

Example. Let = D, the unit disc in C, and

1
(3) o= o:log1 PR a>1.

Then det[009] = /(1 — |2]%)?, s0 w = a(l — |2|2)®~2. It is well known that the
- corresponding weighted Bergman kernel is

Ko() = Z2 (1~ |29

Thus :
"q’(z)Kw(z) = aﬂ_;l vz €D,

so ® is balanced. O

The two definitions extend in an obvious way also to domains which are not
contractible, and more generally to polarized Kéhler manifolds. Namely, let 2 be
a complex manifold of dimension n, and w a K#hler metric on € such that the
second cohomology class [w] is integral. Then there exists a holomorphic Hermitian
line bundle £ over 2 with compatible connection V such that curvV = w. Let £*
be the dual bundle, and L ;(£*, A" w) the Bergman space of all square-integrable
holomorphic sections of £*. Let {s;} be any orthonormal basis of this space, and

@ () = 3 (@)l

(where || - ||; denotes the fiber norm in £,). It is easy to see that this function does
not depend on the choice of the orthonormal basis {s;}, and a similar argument as
above also shows that it does not really depend on the line bundle £ but only on
the Kéhler form w.
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BALANCED METRICS

Definition 3. The Kahler form w (or the associated Kéhler metric) is called
balanced if € = const. :

Of course, if € is contractible, then the bundle £ is trivial, so fixing a trivializa-
tion its sections can be identified with functions on €2, and under this identification
the fiber norm of a function f at a point z is given by h(z)|f(z)|? for some positive
smooth function h on  satisfying w = 1 80log h. Setting ® := log h, we see that the
space L2 (L*, A" w) reduces to LZ;(,e~? det[00®]), and e(z) = e~ *@ K, (z).
Thus the last definition agrees with Definitions 1-2.

The function e has appeared in the literature under different names. The earliest
one was probably the n-function of Rawnsley [Raw| (later renamed to e-function
in [CGRY)), defined for arbitrary Kahler manifolds; followed by the distortion func-
tion of Kempf [Ke] and Ji [Ji] for the special case of Abelian varieties, and of
Zhang [Zha] for complex projective varieties. The metrics for which ¢ is constant
were called critical in [Zha]; the term balanced was first used by Donaldson [Don],
who also established the existence of such metrics on any (compact) projective

-Kahler manifold with constant scalar curvature.

However, very little seems to be known about the existence or uniqueness of
balanced metrics on general (noncompact) manifolds or even domains in C™. Apart
from the example above for the unit disc, the only existing examples of balanced
metrics are the similar metrics on the unit ball B® C C™:

(5) P(z) = o;log1 H R a>n,

for which the constant on the right-hand side of (2) turns out to be

I'(a)
(6) ['(a — n)mnan ’

and the similarly defined metrics (multiples of the Bergman metric) on bounded
symmetric domains. (Note however that except for the unit balls, bounded sym-
metric domains are never smoothly bounded nor strictly pseudoconvex).

For this reason, in this paper we will investigate the problem of existence and
uniqueness of balanced metrics on smoothly bounded strictly pseudoconvex do-
mains in C". Our strategy will be to look at the boundary singularities of both
sides in the equation (2). More specifically, assume that

(M e ¥ = pe9,

where p is a (smooth) defining function for Q and g € C®°(RQ); we will see in a
moment that in order that the weighted Bergman spaces that appear be nonempty,
we will need to assume that a > d. Recall that for any function u,

det[dBlogu] = v~ (=1)"J[u],
where J[u] is the Monge-Ampére determinant

Jl] = (- 1)%@[5‘ a%“uj
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M. ENGLIS
It follows that w = e~ det[90P] is given by

w =pa——n—1an J[peg/a] . e9'(

v

1=

Note that the underbraced term is smooth up to the boundary and positive there.
Thus if @ ~n — 1 =: m is a positive integer, then

p 1= p- (" J[ped/*]es (1)) 1/m

is also a defining function for Q. Recall now (see e.g. [E1]) that for any defining
function p’ and any positive integer m, we have the following generalization of
Fefferman’s classical result for the unweighted Bergman kernel:

Kym = +blogp’

a
plm+n+1
where a,b € C®(Q); further, the derivatives of a of order < m + n as well as the

derivatives of b of all orders at a point  on the boundary depend only on the jet
of the boundary at z (i.e. on the jet of p at z). Thus in our case

, :
(8) w = ;C:; + ' log p, a',b' € C*(Q),

and
e—‘PKw =a’ + b//pa log p,

where the derivatives of a” of order < a and the derivatives of §” of all orders at a
point x € 02 depend only on the jets of p and g at z. If the left-hand side of the last
equation is to be constant, we therefore obtain some conditions on the behaviour
of g at the boundary, from which it might hopefully be possible to construct a
(formal) solution to (2) or to prove that it is unique.

With minor modifications, all this remains in force also if & —n — 1 is not a
positive integer, provided @ —n—1 > —1, i.e. & > n (otherwise the space L ;(p"™)
contains just the constant zero); the only difference is that for @ not an integer (8)
gets replaced by Ky = a’p~® + V', and e * K, = a” + b"p*. See [E2]. It can also
be shown, by evaluating the function a” on the boundary, that the value of the
constant in (2) always has to be the same as for the unit ball, i.e. be given by (6).

Of course, in a way this approach is rather naive: as is well known, a similar
treatment can be applied to solving the complex Monge-Ampére equation, and in
that case the procedure breaks down at a certain stage since the solution is in
fact not of the form (7) but contains also logarithmic terms of the form p™*! log p.
However, for domains such as the disc or the ball we know that there exist solutions
of the form (7) (cf. (3)), so we might at least be able to prove uniqueness of these
solutions. (The solution of the Monge-Ampére equation also turns out to contain
no logarithmic terms in this case, for that matter.)

In the rest of this paper, we will therefore examine the case of radial balanced
metrics on the unit disc and the unit ball (i.e. those for which ® depends only
on ||z[]).
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2. RADIAL BALANCED METRICS ON D

Let us start with the case of the disc. Recall that if w(z) = F(|2]?) is a radial
weight on D, then the monomials z* form an orthogonal basis in L2 (D, w), with
norms

|2%]|2 = 7r/01 F(t)t* dt =: mep(w)

(by passing to polar coordinates). Consequently, by the familiar formula. for the
reproducing kernel in terms of an orthonormal basis,

© Lk
(9) | Ky(z) = %Z t t = |z)2

Our goal is to find all radial solutions ® of
Ke"I’ det[agé] = const - 8¢.

Following the strategy outlined in the preceding section, we look for solutions in the
form '

o

(10) o e t=(1-t)*> (1-tyf,

=0

where f; € R, fo = 1. We then compute, in turn, the weight w = e~ det[99@],
the moments ci(w), the kernel K,,, the function e~ ®K,, and then check when the

last is constant.
For practical computations, it is more convenient to replace the defining function

1—tin (10) by

(1-t)?
2 .

This has the same boundary behaviour, and has the advantage that the moments

cx(LP) evaluate rather neatly: for any 8> —1,

L(t)::log-i—=(1—t)+ +..

1 !

(The singularity of L(t) at t = 0 causes no problem since we are interested only in
the behaviour at the boundary ¢ = 1.) Thus we start from

o0
(12) e?=L*) Lf;, fo=1a>L
- 3=0

Taking logarithms yields

00
o= —alogL+ZfJ"Lj,
=1
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where
m k
(—1
frIn:Z k) Z Fir -« Fi
k=1 Jitetjr=m
Jtses a]k>1
= —fm + (a polynomial in fi,..., fm-1).
" Hence
00 = a——— + ij §(G —1) Li~2eL
j=1
o .
-l )
j=1
where
Z 30— 1)f,
(m = j)le
= —-ﬂl(%—lfm + (a polynomial in f1,..., fm-1)-
Consequently, -
w = e~ % det[00®] = o L* 2 [1 + ijLj],
j=1
where
m .
=S fresfl (55 = 1)
3=0
m(m — 1) ' S
= [1 - —a—] fm + (2 polynomial in fi,..., fm-1)-

Thus by (11),

cm(w) —O‘Z ,-(—(-%_%‘Z—)l—l (wo :=1)

B (a 2)la [ +§: ]
T (m+ 1)t = ( m+1

where

wj = S ) - (-,

= (o —1); {1 - j(—j&—-—l—)‘]fj + (a polynomial in fi,..., fi-1)-
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(Here (z); := z(z+1) ... (z+7—1) is the Pochhammer symbol.) Taking reciprocals

gives _
1 _(m41)tr o~ Y
em(w)  (a-2)la [1+j2=:1 ; ']’

where

5 EVID SR
k=1

j'1+..._7",,.—=n
J1yeendu21

= —w!, + (a polynomial in wj, ..., Wp_1)

— [1 — n_(ﬁ’aLQ] (a — 1) frn + (a polynomial in fi,..., fn-1)-

Substituting this into (9), we get formally

am Z "Z (M+1)J+1~a (wf :=1)

m=0

Here the double series on the right-hand side, strictly speaking, need not converge
in general, but is meaningful in the sense that as j increases, the summands have
weaker and weaker singularities at ¢ = 1. This is immediate from the standard
power series estimates

ZQJ gJ (J—m)a m Z 2 = g € Cm—Z('l—)').
Recall now that for Rev > 0 and s € C, the function

®(t,s,v) := Z (m+v)3

is known as Lerch’s transcendental func_tion. Thus
a-1«—
Ku(2) = —— Zow;.’ B, j+1-a,1).
It is also known (cf. [BE], §1.'11) that for s #1,2,...,

®(t,s,1)= [(——s)!Ls'1 +§:.(_:!'_)_j.§§i_:j_).[/j], L= log%
i=0 ’

H»]t—l H-Il-l

= s (ot + o@D\ (o))
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while for s = 1,2,...,

@(t,s,l)—-lt-[(i )) Ls—ll L+Z£_1)_k££s_i__)_l,k]
i 0)

where for k = s — 1, one should substitute 1 + % + et .TET for ¢(1).
Note that 1 = el. Consequently, for o ¢ Z,

cep oL _2TLlNN mpi e, ()
e Ky el = — ;w,L +L*-C(D\ {0}),

where
" (a—j-1!
P DU RN
_ - feswy
=0 (o= J7);
(13) = fr [1 - Ez:;gz (1 - k(k 1))] + (a polynomial in fi,..., fk—1)
=: K ’

if k> 1. For k = 0 we get w = fo = 1, showing that e”?K,, = &% for t = 1.
In order that e~® K, be constant, we thus must have

—1)*
(14) w;c”=(—k'—)—, Vk=1,2,....
If ki # 0 Vk > 1, then we can recursively solve (14) for f1, f2,.... Tracing back it is
easily seen that the whole argument is reversible and thus (12) produces a function

® for which

(15) K, =2"1e*  mod Cc®(D).
am
For o € Z, we get similarly
' -1
an _ _p —L_a wrj = "y a . oM
re P Kyeh = S wlLI+ Y wi'Llog L+ L*- C®(D\ {0}),
@ i=0 j=a
where iu;-’f is given again by (13) for j =0,...,a — 1, while for j > &
"o (_1)j+1—a .7(.7 — 1) s s .
wy = G—o)a=1) (1 - ———-&———) +(a polynomial in fi,..., fj-1)-

—

Vv’



BALANCED METRICS

Here the underbraced expression never vanishes, except when 7 = a = 2. Thus if
Ki,-..,ka—1 # 0 and a > 3, we can again recursively solve (14) for fi, f2,... and
arrive at a function ® satisfying (15).

Unfortunately, it turns out that there is a stumbling block: the coefficients &y
and ko always vanish. Indeed,

_q_ =1 5=
m=1- oo -0=0

_ (a—1Da - 2\
"2‘1’(a—1)(af2)(1_5>‘°'

A brief computation also shows that, regardless of the values of fi, f2, always
wl = -1, wy' = 1/2.

Thus the equations (14) are always fulfilled for k¥ = 1,2, and we arrive at the
following corollary.

Corollary. For any a > 1, there exists an infinite family of functions ® on D
(with different boundary behaviours) such that e~®(*) = (1 — |2/2)2¢®”(P) and

a—1

Ke"‘p det[880] = e + 0% (_ﬁ)

Proof. Let m be the largest index for which k, = 0; such index exists since |&;| ~
j%* — oo as j — oo. Let g1,g2,... be the Taylor coefficients (at = 0) of the

function (1=£-")*; that is (here still L = log }),

T

o
LY gL = (1-t)~
i=0

Set fj :=g; for j =1,...,m ~ 1. Since we know from (3) that e=® = (1 —t)® is
balanced, it follows that the equations (14) for 1 < k < m — 1 must be satisfied for.
these values of f;, while the equation (14) for k = m must have at least the solution
fm = gm. Since Ky = 0, (14) for £ = m must in fact be satisfied for any value
of fm. As k; # 0 for j > m, once we choose fp,, the unknowns fm+1, fmt2,... can
then be solved uniquely from the equations (14) for k = m + 1,m + 2,.... Thus
we have a family of solutions of (15) parameterized by f, € R. O

Example. Let e~® = (log })* = L®, and let @ be obtained from & by adjusting
it in a small neighbourhood of ¢ := |z|? = 0 so as to make it smooth on D. Since
Ky—K, € C®(D) when w—w' is supported in a compact subset of D, we see that
Ky, w = e~¥ 508, will differ by a term smooth up to the boundary from K.,
where

w:=e" 2980 = aL® %l
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Now by (11) cx(w) := —9‘_'—1 k=<, whence

(o o]

w(z) 'ﬂ- Zka_ltk

k=0

= g'—iit@(t 1—a,1)
[0 %8

[ a+ZC(1 _'?ajl)(' 1)/ La]

aTm

for any o > 1. Thus @' is a solution to (15) different from (3). O

3. RADIAL BALANCED METRICS ON B™

The case of the unit ball B™ is susceptible to the same treatment as for the
disc. Namely, for any radial weight w(z) = F(]|z||?), the monomials 2* (with v
a multnndex) form an orthogonal basis in L2 ;(B",w), with norms '

v 7"l . 1 N
l12¥]|2, = m%l(w), where ¢ (W) ==/0 F(t)t™t™ 1 dt;
and '
1 t"m I'(m+n
Kulz) = Zﬂ mmbn, =gt

Thus starting again with the ansatz

00
. 1
'"@:LaZLij, f0=1,a>n,L=log-E,
j=0

we get in turn

® = —alogL + ZfJL’
Jj=1

det[69®] = ¥ La [1 + }: f;'LJ]

w = e~® det[088] = 0" L1+ ijLj],
j=1

T —n)
em(w) = (m+n)°‘”z(m+n

1 (m+n)* "
cm(w)  arl(a—n) [1 +JZ__; (m —}—]n)j]’

Ky(z) = ———-—1———1-1-5 in’(i)nmlé(t,j '+ n—o,l),
=0

ol (o — dt
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where

;&L
f=> Z > fie i
k=1 |

1t tje=m,
Jl;'°'s.7k.>_1
= —fm + (a polynomial in fi,..., fm-1);
k
" o__ n .
m - k' S[T'Jl “n 'T‘Jﬂ«—'l,

k+l+jl +"'+.7.n;-1=m)
kalyjl s---ajn—l 20

i (i —1
rj = 'Ejf;v ro:=1, 8; = J—(la—_)'f;’ so:=1,

_ {1_ m(m~n)]

fm + (a polynomial in f1,..., fm—1);

m
Wm = Z.fm-—]f]"
Jj=0

= [1 - ln_(_niaiﬁ)] fm + (a polynomial in fi,..., fm—1);

wh, = (& — N)mWmn;

"o_ % 1)k / /
Wy, = Z(— ) Z Wy, ... Wy,
k=1

J1+Jk=m,
Jtyeaim21

m(m — n)]

=—(a— n)m [1 - fm + (a polynomial in fi,..., fm-1).

'Now from the formulas in the preceding section for the singularity of ® at ¢t = 1,
it is not difficult to compute that for j+n—-a #1,2,...,

- - :
((%)n 1@(t).7 +n—q, 1) = el {(a -n— ])! Z Qk,j+n—a—1Lj+n~a-1”k + w]
k=0

where 1 € C°(B™ \ {0}) and g, are the numbers defined by

|
= (=1)" e, g = 1)
kv ( ) €n-1 k(la v 1) (V — k)"

where e;(zy,...,Zn-1) is the elementary symmetric polynomial (i.e. the coefficient
at o7 in H;:ll(l + z1y)). Similarly for j +n—a =1,2,... (when some log-terms
appear). Thus for a ¢ Z,

e—éKwe-—nL _ I'(a)

— "y a oo (mn
a2+ 5O\ 0

J=
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and similarly for a € Z (with some log-terms), where

Na—-d—-j+1
Wy, = Z fi ( F(a)] ) Qn—l—l,j+n—a—-1'w_;" (wp :=1)
j,iylZO, lS‘n—l:
j+i+l=m
=i- (_O‘:f_)ﬂ(l _ m_“‘_”))] fn + (& polynomial in fi,.. ., fm_t)
(@—)m o m vy Jm—1)
= Km

For m = 0 this gives wf’ = 1, showing that e~?K,, = w"a'l:l"aa—n for t = 1.

In order that e" 2K, be constant, we thus must have

Y
(16) wy = ¢ ]g) Vk > 1.
Consequently, as long as f{k # 0, we can recursively solve these equations and

obtain a solution ® which is “almost balanced” in the sense that K, has the same
r @
boundary singularity as ——mpri—ye®.
This time it turns out that, however, kx =0 for k =n,n +1, and again (16) is
always fulfilled for these two values of k. Hence we arrive at the same corollary as

for the disc.
Corollary. For any a > n, there exists an mﬁmte family of functions ® on B"

(with different boundary behaviours) such that e=® = (1 — ||2||2)2°™(®™) and
I'(a) o an
Koo det[83®] ~ (am)"T(a — n) -e¥ +C%(B).

4. HYPOTHETICAL CONSEQUENCES OF EXISTENCE
AND UNIQUENESS OF BALANCED METRICS

The result in the previous two sections raises a lot of questions. First of all,
it is unclear whether the situation we have encountered prevails also for general
smoothly bounded strictly pseudoconvex domains in C™: the above result for D
and B”™ could be just an anomaly caused by “too much symmetry” of these domains.
For domains with real-analytic boundaries, it should in principle be possible to carry
out a similar analysis using explicit formulas for the boundary singularity of Ky
(i.e. for the jets at a boundary point of the functions a’,b’ in (8)) provided by
Kashiwara’s microlocal description of the Bergman kernel; however, the resulting
formulas will probably be pretty complicated.

Also, in our approach we have always looked only at the boundary singularities,
so it by no means follows that we arrive at a genuine balanced metric (i.e. without
the smooth error term as in (15)). In conclusion, it is thus still unclear whether there
exists a balanced metric on any smoothly bounded strictly pseudoconvex domain
in C"; and the uniqueness of such metrics remains open even on the unit disc.
Nevertheless, let us conclude this paper by a brief speculation on the consequences
which would follow if the existence and uniqueness of balanced metrics could be
established.

Thus, from now on let us assume that the following conjecture holds.
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Conjecture. On each smoothly bounded strictly pseudoconvex domain Q C C™
and for each fixed o > n, there exists a unique smooth strictly-PSH function
® = ®q , on Q such that

* K, o det[sB®] = CONSt * e®, i.e. @ is balanced;

. e‘q’ /u® — 1 at 0N, where u = uq is the solution to the Monge-Ampére
equation J[u] =1 on Q.

The second condition is just a holomorph1cally—mvar1ant version of saymg that
e~%/ ghould be commensurable to a defining function.
Our first observation is the biholomorphic invariance of balanced metrics: namely,
assume that f: Q' — Q is a biholomorphic map, and let & = &g 4. Set

@ i=Pof+-

logIJaCfI,

where Jac f stands for the complex Jacobian of f. In terms of the weights w =
e~® det[00®], this becomes

w=wof- [Jacf|2—2&/(n+1)_

Using the standard transformation formula Kuyos = Kyo f-|Jac f|? (easily proved
by change of variables in integration), this implies

Ky = Ky o f - | Jac f|2/(n+1),

Ase® = ePof.|Jac f|2*/("+1) we thus see that @’ is balanced. On the other hand,
from the transformation formula for the solution of the Monge-Ampére equation
w = wuof-|Jacf|"¥ ™D it follows that e~ /u'® = (e~®/u®) o f — 1 at the
boundary. (Recall that f extends continuously to the boundary by Fefferman’s
theorem.) Consequently, ® = ®q/ 4.

Recall that a domain functional Q — Fq (i.e. & mapping assigning to a domain
a function on it) is said to obey transformation law of weight » € R (or simply to
be of weight r) if for any biholomorphic map f: Q' — Q

Fo = (Fa o f) - | Jac f|2/+D),
Thus our finding means that Q — e®2. is 3 domain functional of weight a:
e? =e®o f-|Jac f|2e/(n+D),
In particular, for each a > n, the balanced metric

(o) ._ *Pqa
95 T 82,67:]

is invariant under biholomorphic maps.
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Recall furthermore that there is a standard procedure for fabricating new domain
functionals from old ones: namely, if F is & domain functional of any weight r € R
such that I, is never zero, then

det[85 log Fq)
is always a domain ﬁlnctional of weight n + 1; in particular, if r # 0, then
Br := F~(+1/T det[98 log F]

is a domain functional of weight 0, i.e. a biholomorphic invariant. Examples of do-
main functionals of this kind include the Bergman invariant, obtained upon taking
for F the unweighted Bergman kernel K; =: K (which is a domain functional of
weight n + 1):

Bk = K1 det[68log K];

or the somewhat less familiar “Szegd invariant” obtained upon taking for F' the
invariantly defined Szeg6 kernel K,, which is a domain functional of weight n:

Bks, = Ko™ det[981og Ks,)-

We can also apply this to F' = w, the solution of the Monge-Ampére equation, which
is a domain functional of weight —1; however, now the corresponding invariant is
rather trivial, since

By = u™*t! det[@dlogu] = (—1)"J[u] = (-1)™
However, we do get interesting new invariants from our balanced metrics:
Bo.o = (€2/%)""1 det[88B] = (—a)" J[e~*/?].
Observe that for & = n + 1, in particular,
B ns1 = e~ % det[00D] = w,

the weight function occurring in the definition of the balanced metric.

For the Bergman and Szegd kernels, there exist various ways of obtaining inter-
esting CR-invariants from suitable “invariant” descriptions of their boundary sin-
gularity [Hi],[HK],[HKN]. It is quite conceivable that other invariants of this kind
might similarly be obtained by studying the boundary behaviour of the potentials
®,, of balanced metrics.

Remark. We remark that a very similar phenomenon as in the two Corollaries in
Sections 2 and 3 occurs if one tries to solve formally the Monge-Ampére equation
J[u] = 1 on B™ within the class of radial functions, i.e. looks for solutions of the
formu =1L E?f’;o Liu;, L := log %, t := ||z||%. Namely, there exist infinitely many
formal solutions, parameterized by the value of un,4+1 € R. Perhaps this indicates
that the solutions to the equation (2), i.e. the potentials ®,, if they exist, have
the same kind of logarithmic boundary singularities as the Bergman kernel or the
Monge-Ampére solution (which would hardly be surprising).
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