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Abstract
We develop a general framework to analyze endogenous relationships. To con-

sider relationships in the modern society, neither one-shot games nor repeated games
are appropriate models becausc the formation and dissolution of a relationship is not
an option. We formulate voluntarily separable repeated games, in which players are
randomly matched to play a component game as well as to choose whether to play
the game again with the same partner. When the component game is a prisoner’s
dilemma, ncutrally stablc distribution (NSD) requires souxc $t7’ ust$-building $pe$riods
to defect at the beginning of a partnership. We find that bimorphic NSDs with
voluntary break-ups include strategies with shorter trust-building periods than any
monomorphic NSD with no voluntary separation, and hence the average payoff of
bimorphic NSD is higher.
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1 Introduction

We develop a general framework to analyze endogenous relationships. To consider rela-

tionships in the rnodern society, neither one-shot games nor repeated games are appro-
priate modols because the formation and dissolution of a relationship is not an option.

‘Special thanks go to Nobue Suzuki, for her (’ $\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}$ help. We also thank useful eomments from
Akihiko Matsui, Chiaki Hara, and seminar partieipants at KIER, Kyoto University, Keio University,
University of Tokyo, Matheinatical Sciences $\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{f}\mathrm{c}^{\backslash }\mathrm{r}\mathrm{c}^{\backslash }1\downarrow \mathrm{c}.\mathrm{e}$ (Kyoto Univcrsity, November 2005), and Sym-
posium ou Markct Quality (Keio Univcristy, Tokyo, Dcceuxber 2005). All $\mathrm{c}^{\backslash }\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r}\mathrm{s}^{\backslash }$ are ours. This work was
supported by $\mathrm{C}_{l}\mathrm{r}\mathrm{a}\iota\iota \mathrm{t}$-in-Aid for Scientific Research on Priority Areas, No.12124204.

数理解析研究所講究録
1488巻 2006年 156-176 156



We formulate voluntarily separable rcpeatcd garnos iii a large society of hoinogcneous
players. Players are randomly matched to play a stage game, and. after each round of
play, they can choose whether to continue playing the gallle with the sarne partner or not.
Each direct interaction (a partnership) is voluntarily separable, and, moreover. there is
no information flow to other partnerships.

We focus on two-person prisoner’s dilemma as the component game: since it high-
lights $\mathrm{t}_{}\mathrm{h}(\backslash$. merit of $\mathrm{m}\mathrm{u}\mathrm{t}$,ual cooperation as well as a strong incentive to $\mathrm{d}\mathrm{t}^{1},\mathrm{f}e,(^{\backslash }\mathrm{t}_{}$ and escape
to avoid retaliation. There are many real-world situations which fit this rnodel. Borrowers
can move froin a city to another after defaulting. Workers can shirk aiid then quit the
job. Still. we often observe cooperative modes of behavior in such situations. We provide
aii evolutionary foundation to cooperative behaviors. We extend Neutrally Stable Distri-
bution (NSD) concept to fit for our model, $\mathrm{u}\mathrm{I}\mathrm{l}\mathrm{d}\mathrm{c}^{\backslash }\mathrm{r}$ which no other stratcgy earns strictly
higher payoff than the incumbents do.

Known disciplining strategies such as trigger strategies (Fudenberg and Maskin, 1986)
and contagion of defection (Kandori, 1992, and Ellison, 1994) do not sustain cooperation
in our model. There are two reasons. First, personalized punishlnent is iinpossible due
to the ability to end the partnership unilaterally and the lack of iIlforInatioIl flow to the
future part,ners. Seeond. the large society and random death make it impossible to spread
defection izi the society to eventually reach the original deviator. Our model describes a
large, anonymous, and member-changing society, which needs a different type of discipline
from those of a society of directly interacting long-run players.

Some literature exists on voluntarily separable repeated games for generalized pris-
oner’s dilemrna (Datta, $19^{(}\mathrm{J}6$ , Kranton $1^{(}\mathrm{J}96\mathrm{a}$ , and Ghosh and Ray, 1997). They foeused
on symmetric strategy distributions in which all (rational) players play the same strategy
and showed that a gradual-cooperation strategy sustaiiis eventual cooperation. By con-
trast, our halnework is valid for any component game, and we consider both syumletric
(called monomorphic) strategy distributions, in which no voluntary separation occurs. and
fundamentally as$\mathrm{y}\mathrm{m}\mathrm{m}\mathrm{c}^{\backslash }\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}$ strategy distributions, in which $\mathrm{v}\mathrm{o}1_{\mathrm{U}11\mathrm{t}\mathrm{a}\mathrm{I}}\mathrm{y}$ scparation occurs
on the equilibrium play path.
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We first show that Defect rnust be played initially to sustain future coopcration. We
then identify a relationship between the death rate (discount factor) and the sufficient
number of initial defection (called trust-building $per\dot{\tau}ods$) of both monomorphic NSDs and
bimorphic NSDs. We found that bimorphic NSDs include strategies with shorter trust-
building periods than monomorphic NSDs, thanks to double disciplining by not only trust
building but also possible $\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{l}\mathrm{o}\mathrm{i}\mathrm{t}\mathrm{a}\mathrm{t}_{l}\mathrm{i}o\mathrm{n}$ by a strategy with longer trust-building periods.
Hence bimorphie NSDs are more efficient than the most efficient monomorphie NSD.

2 Model and Stability Concepts
2.1 Model

Consider a society with a continuum of players, each of whom lnay die in each period
1, 2, . . . with probability $0<(1-\delta)<1$ . When they die, they are replaced by newly
born players, keeping the total population constant. A newly born player enters into
the $7natching$ pool where players arc randoxnly paired to play a $Volunta7’ilySep_{l\mathit{1}7}.able$

Prisoner’s Dilemma (VSPD) as follows.1
In each period, players play the following Extended Prisoners‘ Dilemma (EPD). First.

they play ordinary one-shot prisoners’ dilemma, whose actions are denoted as Cooperate
and $D$efect. After observing the play action profile of the period by the two players. they
choose simultaneously whether or not they want to keep the match into the next period
(action $k$ ) or bring $\mathrm{i}\mathrm{t}_{1}$ to an end $(\mathrm{a}\mathrm{c}^{\backslash }\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}e)$ . Unless both (’$\mathrm{h}\mathrm{o}\mathrm{o}_{\backslash }^{\iota};\mathrm{t}^{1},$ $k$ , the $\mathrm{m}\mathrm{a}\mathrm{t}_{\theta}(^{\backslash }l_{1}$ is dissolved
and players will have to start the next period in the matching pool. In addition, even if
they both choose $k$ , partner may die with probability 1–6 which forces the player to go
back to the inatching pool next period. If both choose $k$ and survive to the next period,
then the match continues, and the inatched players play EPD again.

Assumc that therc is limited information available to play EPD. In each period, playcrs
know the VSPD history of their current match but have no knowledge about the history
of other matches in the society.

1Although $\mathrm{w}\mathrm{c}^{\backslash }$ focus ou Prisoner’s $\mathrm{D}\mathrm{i}\mathrm{l}\mathrm{e}\mathrm{l}\mathrm{l}\mathrm{l}\iota \mathrm{u}\mathrm{a}$ as the $\mathrm{c}\mathrm{o}\mathrm{l}\mathrm{I}\mathrm{l}\mathrm{p}\mathrm{o}11\mathrm{C}^{\backslash }11\mathrm{t}\mathrm{g}\mathrm{a}\mathrm{n}\mathrm{l}\mathrm{C}^{\backslash }$, the framework ($j\mathrm{a}\mathrm{I}1$ be applied toany $\mathrm{c}\mathrm{o}\iota \mathrm{I}\downarrow 1$ ) $0\iota\downarrow \mathrm{e}\mathrm{t}\mathrm{l}\mathrm{t}$ garne.
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TABLE I

PAYOFF OF PD

In each match, a profile of play actions $\mathrm{d}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{r}\iota\dot{\mathrm{u}}\mathrm{n}\mathrm{e}\mathrm{s}$ the players’ instantaneous payoffi
for each period while they are matched. We denote the payoffs associated with each play
action profile as: $u(C_{\text{ノ}}, C)=c,$ $u(G_{\text{ノ}}, D)=l,,$ $u(D, C)=.q,$ $u(D, D)=d$ with thc ordering
$g>c>d>\ell$ and $2c\geq \mathit{9}+\ell$ . (See Table I.)

Because we assume that the innate discount rate is zero except for the possibility of
death, each player finds the relevant discount factor to be $\delta\in(0,1)$ . With this, life-long
payoff for each player is well-defined given his own strategy (for VSPD) and the strategy
distribution in the matching pool population over time.

Let $t=1,2,$ $\ldots$ indicate the periods in a $\mathrm{m}_{c}\backslash \mathrm{t}_{1}\mathrm{c},\mathrm{h}$ , not t,he $\mathrm{c}^{\backslash }\mathrm{a}\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{r}$ time in the game.
Under the limited inforlnation assumption, without loss of generality we can focus on
strategies that only depend on $t$ and the private history of actions in the Prisoner’s
Dilemma within a match.2 The (infinite) set, of pure strategies of VSPD is denoted as
$S$ and the set of all strategy distributions in the population is denoted as $P(S)$ . For
simplicity we $\mathrm{a}_{\mathrm{A}}\mathrm{s}\mathrm{s}\iota 1\mathrm{m}\mathrm{e}$ that each player uses a pure strategy.

We investigate stability of stationary strategy distributions in the matching pool.
Although the strategy distribution in the iatching pool may be different from the distri-
bution in the entire society, if the former is stationary, the distribution of various states
of matches (strategy pair and the “age” of the partnership) is also stationary, thanks to
thc stationary death process. Hence stability of stationary stratcgy distributions in the
matching pool implies stability of “social states”. By looking at the strategy distributions
in the lnatching pool, we can directly compute life-time payoffs of players easily.

When a strategy $s\in S$ is matched with another strategy $s’\in S$ , the expected length
of the match is denoted as $L(s, s’)$ and is computed as follows. Notice that even if $s$ and

2The$\overline{\mathrm{C}\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{O}1111\mathrm{t}\mathrm{t}\mathrm{i}2\mathrm{i}\mathrm{n}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{c}^{\iota}\mathrm{c}\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{o}11}$

is observable, but stratcgies cannot vary $\mathrm{d}_{\mathrm{C}^{\backslash }}\mathrm{p}_{\mathrm{C}1}\iota \mathrm{d}\mathrm{i}_{1}\iota \mathrm{g}$ oii combinations of
$\{k, e\}\mathrm{s}\mathrm{i}\iota \mathrm{l}\mathrm{c}\mathrm{e}$ ollly $(k, k)$ will lead to the future choice of $\epsilon,\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\iota\iota \mathrm{s}$ .
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$s’$ intend to maintain the match, it will only continue with probability $\delta^{2}$ , which is the

probability that both survive to the next period. Suppose that if no death occurs while

they form the partnership, $s$ and $s’$ will end the partnership at the end of $T(s, s’)$ -th

period of the match. Then

$L(s, s’):=1+ \delta^{2}+\delta^{4}+\cdot’\cdot+\delta^{2\{’\mathit{1}^{\tau}(6,b’)-1\}}=\frac{1-\delta^{2T(s.s’)}}{1-\delta^{2}}$ .

The expected total discounted value of the payoff stream of $s$ within the match urith $s’$

is denoted as $V^{I}(s, s’)$ . The average per period payoff that $s$ expects to receive within the

match with $s’$ is denoted as $v^{I}(s, s’)$ . Clearly,

$v^{I}(s, s’):= \frac{V^{I}(s,s’)}{L(s,s’)}’$. or $V’(s, s’)=L(s, s’)v^{\mathit{1}}(s, s’)$ .

Thc expected $\mathrm{l}\mathrm{i}\mathrm{f}e,- \mathrm{t}\mathrm{i}\iota \mathrm{n}\mathrm{e}$ payoff of a strategy $s\in S$ when the rnatching pool has a

stationary distribution $p\in P(S)$ is denoted as $V(s;p)$ . A straightforward way to compute

$V(s;p)$ is to set up a recursive equation. If $p$ has a finite support, then we can write

$V(s;p)$ $= \sum_{s’\in\alpha upt)(p)}p(s’)[V^{I}(s, s’)$

$+[\delta(1-\delta)\{1+\delta^{2}+\cdots+\delta^{2\{T(s,s’\rangle-2\}}\}+\delta^{2\{T(s,s’)-1\}}\delta]V(s;p)]$ ,

where supp$(p)$ is the support of the distribution $p,$ $T(s, s’)$ is the date at the end of which

$s$ and $s’$ end the rnatch, the sum $()(1-\delta)\{1+\delta^{2}+\cdots+\delta^{2\{T(s,s’)-2\}}\}$ is t,he probability

that $s$ loses the partner $s’$ before $T(s.s’)$ , and $\delta^{2\{T(s,s’)-1\}}\delta$ is the probability that the

match continued until $T(s.s’)$ and $s$ survives at the end of $T(s, s’)$ and goes back to the

$\iota \mathrm{n}\mathrm{a}\mathrm{t}\mathrm{c}\mathrm{h}\mathrm{i}\mathrm{n}\mathrm{g}$ pool.

Let $L(s;p):= \sum_{\kappa\in s\tau\iota r\eta r(\mathrm{p})},p(s’)L(s, s’)$ . By computation.

V $(s;p)$ $=$ $\sum_{\partial’\in\sup p(p)}p(s’)[V^{I}(s, s’)+\{1-(1-\delta)L(s^{\backslash }, s’)\}V(s;p)]$

$‘ \sum_{\prime’\in\theta ur\eta)(p)}p(s’)V^{I}(s, s’)+\{1-\frac{T_{J}(s;p)}{L}\}V(s;p)$ .

Hence the average payoff can be decoinposed3 as a convex combination of “in-match”

3However, this $\iota\iota$} $\mathrm{e}\mathrm{a}\mathrm{I}\mathrm{l}\mathrm{S}$ that, in gcneral, $\tau’(s;p)\neq\sum_{n},$ $p(s’)\tau\prime^{I}(s, s’)$ . That is, $?$ ’ is not linear in the
second coinponent. This is due to the recursive structure of the $V$ function.
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average payoff:

$v(s;p)= \frac{V(s;p)}{I},=\sum_{s’\in\sup p(p)}p(s’)\frac{L(s_{\mathrm{t}}.s’)}{I_{\lrcorner}(_{S_{)}}p)}v^{I}(s, s’)$ , (1)

where the ratio $L(s, s’)/L(s;p)$ is the relative length of periods that $s$ expects to spend in

a match with $s’$ . In particular. if $p$ is a strategy distribution consisting of a single strategy

$s’$ , then

$v(s;p)=v^{I}(s, s’)$ .

2.2 Nash Equilibrium

DEFINITION. Given a stationary strategy distribution in the matching pool $p\in P(S)_{:}$

$s\in S$ is a best reply against $p$ if for all $s’\in S$ ,

$v(s;p)\geq v(s’;p)$ ,

and is denoted as $s\in BR(p)$ .

DEFINITION. A stationary strategy $\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{b}_{11}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{I}1}$ in $\mathrm{t}\mathrm{h}\mathrm{c}^{\backslash }\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{c}\mathrm{h}\mathrm{i}\mathrm{n}\mathrm{g}$ pool $p\in \mathcal{P}(S)$ is a Nash

$e,quilibn:um$ if. for all $s\in \mathrm{s}\iota \mathrm{x}\mathrm{p}\mathrm{p}(p),$ $s\in BR(p)$ .

LEMMA 1. For any pure $st_{\text{ノ}}rat$ (,$g\uparrow/s\in S$ that starts $n$ )$i,t.hCi.nl=1$ , let $p_{s}$ be the strategy

distribution consisting only of $s$ . Then $p_{\delta}$ is not a Nash equilibrium.

PROOF: Consider a myopic strategy $\tilde{d}$ as follows.

$t=1$ : Play $D$ and $e$ (end the partnership) for any observation.

$t\geq 2$ : Since this is off-path, any act,ion can }) $\mathrm{e}$ speeified.

Clearly. $\tilde{d}$-strategy earns $g$ as the average payoff under $p_{s}$ , which is the maxirnal possible

payoff. I.e., $\tilde{d}\in BR(p_{\mathit{8}})$ and $s\not\in BR(p_{\delta})$ . Q.E.D.

Therefore, trigger strategy used in the ordinary folk theorem of repeated prisoner’s

dilemma cannot constitute even a Nash equilibrium. There nceds to be at lea.st one period

of $(D, D)$ in any synluletric equilibrium.

By contrast, $p_{\overline{d}}$ consisting only of $\overline{d}$-strategy is a Nash equilibrium. Against $\tilde{d}$, any

strategy must play one-shot $\mathrm{P}\mathrm{D}$ . Hence, any strategy that starts with $C$ in $t=1$ earns
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strictly lower averagc payoff than that of $\tilde{d}$ , and any strategy that starts with $D$ in $t,$ $=1$

earns the same average payoff as that of $\tilde{d}$.

2.3 Neutral Stability

Recall that in an ordinary 2-person symmetric normal-form game $G=(S, u)$ , a (mixed)

strategy $p\in P(S)$ is a Neutrally Stable Strategy if for any $q\in P(S)$ , there exists $0<$

$\overline{\epsilon}_{q}<1$ such that for any $\epsilon\in(0,\overline{\epsilon}_{q}),$ $Eu(p, (1-\epsilon)p+\epsilon q)\geq Eu(q, (1-\epsilon)p+\epsilon q)$ . (Maynard

Smith, 1982.)

An extension of this concept to our $\mathrm{c}^{1}\mathrm{x}\mathrm{t}\mathrm{C}^{\backslash }\mathrm{I}\mathrm{l}\mathrm{s}\mathrm{i}\mathrm{v}\mathrm{e}$ form game is to require a stratcgy

distribution not to be invaded by a small fraction of a mutant strategy who enters the
$\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{c}\mathrm{h}\mathrm{i}\mathrm{l}\iota \mathrm{g}$ pool in a stationary manner.

DEFINITION. Given $\epsilon>0$ and a (stationary) strategy distribution $p\in \mathcal{P}(S)$ in the

matching pool, a strategy $s’\in S$ invades $p$ for $\epsilon$ if for any $s\in supp(p)$ ,

$v(s’;(1-\epsilon)p+\epsilon p_{\epsilon’})\geq v(s;(1-\epsilon)p+\epsilon p_{s’})$ , (2)

and for some $s\in supp(p)$ ,

$v(s’;(1-\epsilon)p+\epsilon p_{s’})>v(s;(1-\epsilon)p+\epsilon p_{s’})$, (3)

where $p_{s’}$ is the strategy $\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}\downarrow \mathrm{l}\mathrm{i}\mathrm{b}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{o}\iota 1$ consisting only of $s$‘.

A weaker notion of invasion that requires weak inequality only (which is used in the

notion of Evolutionary Stable Strategy) is too weak in our extensive-form model since any

strategy that is different in the ofl$\cdot$

-path actions from the incuxbent strategies can invade

under the weak inequality condition.

DEFINITION. A (stationary) strategy distribution $p\in P(S)$ in the matching pool is a

Neutrally Stable $Dist7$ ibution (NSD) if, for any $s’\in S$ , there cxists $\overline{\epsilon}\in(0,1)$ such that $s’$

cannot invade $p$ for any $\epsilon\in(0,\overline{\epsilon})$ .

If a symmetric strategy distribution consisting of a single pure strategy $s$ is a neutrally

stable distribution, then $s$ is called a Neutrally Stable Stratcgy (NSS). The condition for $s$
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to be a NSS reduces to: for any $s’\in S$ . there exists $\overline{‘}\in(0,1)$ such t,hat, for any $\xi\in(0,\overline{(,})$ .

$v(s;(1-\epsilon)p_{s}+\epsilon p_{6’})\geq v(s’;(1-c)p_{s}+\mathrm{c}p_{s’})$ .

It can be easily seen that any $.\backslash ^{-}\mathrm{S}\mathrm{D}$ is a Nash equilibrium.

Similar to the “static” notion of evolutionary stability, this dePnition is based on the

assumption that mutation takes place rarely so that only single $11\downarrow \mathrm{u}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ occurs within

the time span in which stationary strategy distribution is formed. However, unlike the

ordinary notion of neutral stability (or ESS) of one-shot games, we need to assurne the

expected length of tho life-time of a mutant strategy in order to calculate the average

payoff. We adopted a strong requirement that the incurnbents are not worse-off than

lIlut,ants even if mutants stay stationarily in the population, $1\mathrm{e}\mathrm{t}_{1}$ alone if they die out.

While we do not insist that the above definition is the best among we can imagine, it is

tractable and justifiable.

We Ilow show that $\tilde{d}-$stratcgy is not NSS, even t,hough it constitutes a $\mathrm{S}_{\backslash }\mathrm{v}\mathrm{m}\mathrm{m}\mathrm{c}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}$ Nash

equilibrium.

$\mathrm{L}\mathrm{F}\lrcorner \mathrm{M}\mathrm{M}\mathrm{A}2$ . Myopic $\tilde{d}$-strategy is not an $NSS$.

PROOF: Consider the following $c\mathrm{l}$ -strategy.

$t=1$ : Play $D$ and keep the partnership if and only if $(D, D)$ is observed in the current

period.

$t\geq 2$ : Play $C$ and keep the partnership if and only if $(C, C)$ is observed in the eurrent

period.

For any $\epsilon\in(0,1)$ , let $p:=(1-\epsilon)p_{\overline{d}}+\epsilon p_{1}$ . From (1),

$\uparrow’(\tilde{d};p)$ $=$ $d$ ;

$\mathrm{t}’(c_{1},;p)$ $=$ $(1- \epsilon)\frac{L(c_{1},\tilde{d})}{L(c_{1};p)}?\mathit{1}^{I}(\mathrm{r}_{1},\tilde{d})+\epsilon\frac{L(c_{1}c_{1})}{L(c_{1}’;p)}\mathrm{s}\prime^{I}((j1, c_{1}.)>d$,

since $v^{I}(c_{1},\tilde{d})=d$ , and $v^{I}(c_{1}, c_{1})=(1-\delta^{2})d+\delta^{2}c>d$ . Q.E.D.
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3 Monomorphic Equilibria

We will analyze equilibria of a certain forrn called $tr\cdot ust$-building $st\uparrow ategic^{J}s$ . Our purpose

of this paper is not to provide a folk theorem but to clarify how repeated cooperation

can be attained by boundedly rational players in anonymous society who do not play

carefully constructed punishment strategies. Needless to say, Nash equilibrium and NSD

are proved by checking all other strategies in $S$ (not just among trust-building strategies).

$\mathrm{D}\mathrm{E}1^{1^{\urcorner}}\mathrm{I}\mathrm{N}\mathrm{I}’\Gamma \mathrm{I}\mathrm{O}\mathrm{N}$ . For any $T=1,2,3,$ $\ldots$ , let a trust-building strategy with $T$ periods of trust-

building (written as $\mathrm{c}_{T}’$,-strategy hereafter) be a strategy satisfying

$t=1,$ $\ldots,$
$T$ : Play $D$ and keep the partnership if and only if $(D, D)$ is observed in the

current period.

$t\geq T+1$ : Play $C$ and keep the partnership if and only if $(C, C)$ is observed in the current,

period.

The first $T$ periods of $c_{T}$,-strategy are called $t_{7^{\vee}}usi$-building $per^{\mathrm{v}}iods$ and the periods

afterwards are called t,he cooperati.on periods. This class of strategies are of particular

interest, since if matched players use the same $C_{l’}^{r}$-strategy, the cooperation periods give

the niost efficient symmetric outcome $\mathrm{a}_{\wedge}‘$; long as they live. However, in order to sustain

the perpetual cooperation, we need at least one period of $(D, D)$ due to Lemma 1. We are

interested in the short.est trust-building periods to sustain such a cooperative long-term

relationship.

Let $p_{T}$ be the strategy distribution consisting only of $c_{T}$-strategy. The average payoff

of $C_{\mathit{1}}^{r}$ ’-strategy when $p_{\mathit{1}’}$’ is the stationary strategy distribution in the matching pool is

computed as follows. A match of $c_{T}$ against $c_{T}$ continues as long as they both live and

the payoff sequence is $d$ for the first $T$ periods and $c$ thereafter:

$L(c_{T}, c_{T})$ $=$ $1+ \delta^{2}+\cdots=\frac{1}{1-\delta^{2}}$ ,

$V^{I}(C_{l’}^{r}.C_{l’}^{r})$ $=$ $\{1+\delta^{2}+\cdots+\delta^{2(T-1)}\}d+(\delta^{2T}+\cdots)c$.

Since $v(c_{\mathit{1}’;p_{\gamma}j’}’)=v^{I}(c_{\mathit{1}’}’, c_{\mathit{1}’}’)= \frac{V^{l}(c_{T},c_{\mathit{1}}\cdot)}{L(c_{T},c_{T})}$ , the average payoff is

$v(c_{T};p\tau)=(1-\delta^{2T})d+\delta^{2T_{C}}$ . (4)
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By the logic of dynarnic prograrnrning, it is necessary and sufficient for a strategy to

be optimal that it cannot be improved by one-step deviations. Although the literal one-

step deviation is infeasible in our model (since a player cannot change strategies across

matches), it is $\mathrm{e}a\mathrm{s}\mathrm{y}$ to see that if a strategy is unimprovable by (infeasible) one-step

deviations, then it is unimprovable by any strategy within $S$ . Therefore we find a condition

that strategies which differ from $c_{T}$ in one-step (in particular during the cooperation

periods) do not givc a higher avcragc pa.yoff than $c_{T}$-strategy when the stationary strategy

distribution in the matching pool is $p_{T}$ .

Consider a strategy that plays $D$ at some point during the cooperation periods. It

receives $g$ as the immediate payoff but returns to the matching pool immediately if the

player does not die. The payoff is $g+\delta V(c_{T};p_{T})$ , On the other hand, the expected
$\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{u}\mathrm{a}\mathrm{t}_{1}\mathrm{i}\mathrm{o}\mathrm{n}$ payoff of $c_{T}$-strategy during thc coopcration pcriods is $T_{J}(\mathrm{r}_{T}, c_{T})\mathrm{c}j+\delta(1-$

$\delta)(1+\delta^{2}+\cdots)V(c_{T};p_{T})=L(c_{\vee T}, c_{T})c+\delta(1-\delta)L(c_{T}, c_{T})V(c_{\tau;}p_{T})$ . Thus, one-step deviant

strategy does not earn a higher payoff than $C_{\mathit{1}’}^{r}$-strategy if and only if

$\mathit{9}+\delta V(c_{\mathit{1}’}’;p_{\mathit{1}’}’)\leq L(c_{T}, \mathrm{c}_{T})c+\delta(1-\delta)L(\mathrm{r}_{\mathrm{z}},,, c_{T})V(c_{T};p_{T})$ ,

$\Leftrightarrow$ $v(c_{T};p_{T})=(1- \delta)V(c_{T};p_{T})\leq\frac{1}{\delta^{2}}[c-(1-\delta^{2})g]=:v^{DR}$ , (5)

which we call the Best Reply Condition. SiIlce\uparrow $)^{}$ is indepcndent of the length $T$ of

trust-building periods and $v(c_{\tau;}p_{T})$ decreases as $T$ increases, (5) implies a lower bound

to $T$ .

It is straightforward to see that the Best Reply Condition (5) is the only condition that

is required for $p_{\mathit{1}’}$’ to be a Nash equilibrium. In the explicit expression of the parameters,

the Best Reply Condition is
$\frac{gc}{cd}=\leq\frac{\delta^{2}(1-\delta^{2T})}{1-\delta^{2}}$ .

Given4 T. define $\underline{\delta}(T)$ as the solution to

$\frac{gc}{cd}==\frac{\delta^{2}(1-\delta^{2T})}{1-\delta^{2}}$ .

Then the Best Reply Condition (5) is satisfied if and only if $\delta\geq\underline{\delta}(T)$ . It is easy to see

4We have $\mathrm{i}\mathrm{l}\mathrm{l}\downarrow \mathrm{p}\mathrm{l}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{t}\mathrm{l}\mathrm{y}$ fixed a $G$ .
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that
$\underline{\delta}(1)=\sqrt{\frac{gc}{c_{J}d}=}>\cdots>\underline{\delta}(\infty)=\sqrt{\frac{gc}{qd}=}$.

Although $\underline{\delta}(1)\ln a\mathrm{y}$ exceed 1,. $\underline{\delta}(\infty)<1$ . Hence for any $\delta>\underline{\delta}(\infty)$ , there exists the

minimurn length of trust }) $\iota 1\mathrm{i}1(1\mathrm{i}_{\mathrm{I}\mathrm{l}}\mathrm{g}$ periods that warrants (5):

$\underline{\tau}(\delta):=arg\min_{\tau\in \mathrm{R}_{++}}\{\underline{\delta}(\tau)|\delta\geq\underline{\delta}(\tau)\}$.

It is easy to see that $\underline{\tau}$ is a decreasing function of 6.

PROPOSITION 1. For any $\delta\in(\underline{\delta}(\infty), 1)$ , the monomorphic strategy distribution $p\tau$ con-

sisting only of $c_{T}$ -strategy is a Nash equilibrium if and only if $T\geq\underline{\tau}(\delta)$ .

PROOF: No strategy which differ on the play path from $C_{l’}^{r}$-strategy is better off if and

only if $T$ is sufficiently long so that $T\geq\underline{\tau}(\delta)$ . Strategies that differ $\mathrm{f}\mathrm{r}\mathrm{o}\ln C_{\mathit{1}’}^{r}$,-strategy off

the play path do not givea higher payoff. Q.E.D.

Note that the lower bound to the discount factor (as $\delta^{2}$ ) that sustains the trigger-

strat,egy equilibrium of the ordinary repeated $\mathrm{p}\mathrm{r}\mathrm{i}\mathrm{s}\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{r}^{:}\mathrm{s}$ dilemma is $\sqrt{L\mathit{9}=\frac{c}{(i}}=\underline{\delta}(\infty)$ . This

means that, eooperation in VSPD requires more pat,ienee.

Next we investigate when a Nash equilibrium $p’\iota$’ is neutrally stable. In general, in

order to check whether a Nash equilibrium distribution is a NSD, we only need to consider

mutants that are best replies to the Nash equilibrium distribution. There are only two

kinds of strategies that may become alternative best replies to $p_{T}$ . $\mathrm{T}1\iota \mathrm{e}$ obvious ones are

those that differ froin $\mathrm{r}_{JT^{-}}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{c}^{\backslash }\mathrm{g}\mathrm{y}$ off the play path. Thcsc will give the samc payoff as

$c_{T}$-strategy and therefore cannot invade $p\tau$ . The other kind is the strategies that play $D$

at some point in the cooperation periods. When $T>\underline{\tau}(\delta)$ , however, such strategies are

not alternative best reply. Therefore $c_{T}$-strategy is NSS for this case.

It remains to consider the case when $\underline{\tau}(\delta)$ is an integer so $\mathrm{t}1_{1}\mathrm{a}\mathrm{t}_{t}p_{\mathrm{L}}$ is a Nash $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{b}\mathrm{r}\mathrm{i}\mathrm{u}\ln$

( $\underline{\tau}$ is aii abbreviation of $\underline{\tau}(\delta)$ hereafter). For this $\mathrm{c}a\mathrm{s}\mathrm{e}$ , we have alternative best replies to

$p_{\underline{\tau}},$
$r‘\iota \mathrm{m}\mathrm{o}\mathrm{n}\mathrm{g}$ which $c_{\underline{\tau}+1}$ earns the highest payoff when meeting itself. It suffices to check if

$c_{I+1}$ -strategy $\mathrm{c}\mathrm{a}\iota \mathrm{m}\mathrm{o}\mathrm{t}$ invade $p_{\underline{\tau}}$ .
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FIGURE 1. –Parametric summary of monomorphic NSS

Let us define $\hat{\tau}(\delta)$ implicitly as the solution to

$[1-\delta^{2(’l’+1)}](g-\ell)=c-d$ ,

then $c_{\underline{\tau}+1}$-strategy cannot invade $p_{\underline{\tau}}$ if and only if $\underline{\tau}(\delta)<\hat{\tau}(\delta)$ .

Figure 1 shows that there exists a unique $\delta’\in(\underline{\delta}(\infty), 1)$ that, satisfies

$\delta_{<}^{\geq}\delta^{*}\Leftrightarrow\hat{\tau}(\delta)_{<}^{\geq}\underline{\tau}(\delta)$ .

PROPOSITION ‘2. $(a)$ For any 6 such that $\delta^{*}<\delta<1,$ $C_{\mathit{1}’}^{r}$,-strategy is $NSS$ if and only if
$T\geq\underline{\tau}(\delta)$ .

$(b)$ For any $\delta$ such that $\underline{\delta}(\infty)<\delta\leq\delta^{*},$ $c_{T}$ -strategy is $NSS$ if and only if $T>\underline{\tau}(\delta)$ .

4 Bimorphic Equilibria

The literature on voluntarily separable repeated $\mathrm{g}$alnes has concentrated on monomor-
phic equilibria so that no volunt $a\mathrm{r}\mathrm{y}$ break-up occurs, except for sorting out inherent

defectors under incomplete information $(^{\tau}\mathrm{a}\mathrm{s}\mathrm{t}^{\backslash },$. We now investigate equilibria consisting of
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$c_{T},$-strategies with different length of trust-building pcriods, $\mathrm{h}\mathrm{c}^{\backslash }\mathrm{n}\mathrm{c}\mathrm{e}$ voluntary break-ups

occur on the play path. Recall that our model is of complete information and with homo-

geneous players. Therefore this section can be interpreted as an evolutionary foundation

to the incomplete information models of diverse types of behaviors.

4.1 Existence

We investigate the shortest $T$ for a two-strategy distribution (called bimorphic distribu-

tion) of $p_{T}^{T+1}(\alpha)=\alpha p_{T}+(1-\alpha)p_{T+1}$ to be a NSD for solne $\alpha\in(0,1)$ . For a bimorphic

distribution to bc a NSD, all strategies in the support Inust earn the sarne average payoff

for some a $\in(0,1)$ . Moreover, if $\alpha$ inerea.ses, $c_{T}$-strategy should be worse than $c_{T+1^{-}}$

strategy and vice versa. Then the strategy distribution cannot be invaded by strategies

that have the same play path as $c_{\mathcal{T}’}$ or $C_{\mathit{1}’+1}^{r}$ -strategy.

Payoff Equalization: there exists $\alpha_{T}^{T+1}\in(0,1)$ such that

cv $<\geq_{\alpha_{T}^{T+1}}\Leftrightarrow v(c_{T+1}; p_{T}^{T+1}(\alpha))_{<}^{\geq}v(c_{T};p_{T}^{T+1}(\alpha))$ . (6)

To derive the Best Reply Condition, note that there are two kinds of one-step devi-

ations under a bimorphic distribution. First, a strategy can play $D$ and keep the part-

nership until the partner ends the rnatch. This strategy earns the same average payoff

as $c_{T+k}$,-strategy with $k\geq 2$ . Second. a strategy can $\mathrm{i}\mathrm{I}\mathrm{n}\mathrm{i}\mathrm{t},\mathrm{a}\mathrm{t}\mathrm{e}c_{T}$ -strategy and play $D$ for

$T$ periods and $C$ at$\downarrow T+1$-th period. Regardless of the $\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{t}_{\mathfrak{l}}\mathrm{n}\mathrm{e}\mathrm{r}’ \mathrm{H}\mathrm{a}(^{\backslash },\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$, it can kcep the

partnership and play $D$ in $T+2$ to earn $g$ . (Later deviation does not $\mathrm{e}a\mathrm{r}\mathrm{n}$ a higher payoff

due to discounting.)

Both kinds of one-step deviation do not earn higher average payoff than the incumbent

$c_{T}$ and $c_{T+1}$-strategies if and only if a similax condition to (5) &s follows holds.

$v(c_{T};p_{l}^{T+1},,(\alpha_{\mathit{1}’}^{\mathit{1}’+1}’))\leq v^{BR}’$ . (7)
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FIGURE 2. –The existence of a bimorphic NSD as $T$ is slightly below $\underline{\tau}(\delta)$ .
(Parameter values: $g=10,$ $c=6.1,$ $d=2.1,\ell=2,$ $\delta=0.96,T=1,\underline{\tau}(\delta)\approx 1.06.$ )

As before, the boundary case of $v(c_{T\backslash }p_{T}^{T+\mathrm{J}}(\alpha_{T}^{T+1}))=v^{B\prime\dagger}$ may not warrant a NSD but

the interior case is sufficient.

Let us describe the intuition of the existence of a biinorphic NSD using Figure 2.

Clearly, there is no $\}_{)}\mathrm{i}\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{p}\mathrm{h}\mathrm{i}(^{\backslash }$ NSD with the support $\{c_{\underline{\tau}}, c_{\underline{\tau}+1}\}(\mathrm{w}\mathrm{h}(\},\mathrm{r}\mathrm{e}\underline{\tau}=\underline{\tau}(\delta))$ . For $T$

slightly below $\underline{\tau}$ , the average value functions $v(c_{\Gamma},’;p_{T}^{T+1}(\alpha))$ arld $v(C_{I+\iota;p_{T}^{T+1}(\alpha))\mathrm{i}_{11}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{t}}’$.
at $\alpha<1$ and the value at the intersection is below $v^{\Pi R}$ . The latter holds when the slope

of $v(c\prime r’;p_{T^{+1}}^{\prime r\prime}(1))$ is slnaller than the slope of $v(c_{\mathit{1}’+1}’;p_{T}^{7’+1}(1))$ , that is, when $T<\hat{\tau}(\delta)$ .

PROPOSITION 3. For any $\delta\geq\delta^{\mathrm{n}}$ , there $e$ vists $\tau^{*}(\delta)$ such that $\tau^{*}(\delta)\leq\underline{\tau}(\delta)$ , and, for any
$\delta>\delta^{*}$ and any $T$ such that $\tau^{*}(\delta)<T<\underline{\tau}(\delta)$ , th $\mathrm{e}r\cdot e$ exists a bimoprhic $NSD$ of the form
$p_{T}^{T+1}(\alpha_{T}^{T+1}(\delta))$ , where $\alpha_{T}^{T+1}(\delta)\in(0,1)$ .

PROOF: See Appendix.

Therefore, cooperation and exploitation can $\mathrm{c}\mathrm{o}$-exist. The minimal trust-building

periods $\tau^{*}(\delta)$ warraiits that the payoff-equalizing $\alpha_{T}^{T+1}(\delta)$ exists. Then one can prove
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FIGURE 3. –Bimorphic NSD.

that the Best Reply Condition is satisfied for that $\alpha_{T}^{T+1}(\delta)$ . Unlike monomorphic NSDs,

however, we need $\delta$ to be sufficiently large, i.e., $\delta>\delta^{*}$ . To warrant an integer $T$ , we need

to restrict $G$ so that $(\tau^{*}(\delta), \underline{\tau}(\delta))$ contains an $\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{c}^{\backslash }\mathrm{g}\mathrm{e}\mathrm{r}$ . Figure 2 is a numcrical example of

such $G$ .

4.2 Higher Efficiency of Bimorphic NSD

For a given $\delta>\delta^{*}$ , the shortest trust-building periods in the support of a bimorphic NSD

is at least one period less than any of monomorphic NSS. Let the shortest trust-building

periods of NSS be $T+1$ and consider a bimorphic NSD with the support $\{C_{j’}^{r}, C_{\mathit{1}’+1}^{r}\}$ . The

average payoff of $c_{T+1}$ strategy as a NSS is

$v(c_{T+1}; p_{T+1})=v(c_{T+1}; p_{\mathit{1}’}^{T+1}’(0))$ .

Since $\uparrow$) $(\mathrm{r}_{T+1},; p_{T}^{\mathrm{z}+1}’(\alpha))$ is an incrcasing function of $\alpha$ ,

$?’(C_{T+1;p^{\mathit{1}}’(0))<\eta j(c_{T+1}}.\tau^{+\iota\prime}\prime\prime ; p_{T}^{\mathit{1}’+1}(\mathrm{r}\ell_{\mathit{1}’}^{\mathit{1}’+1},))’$ ,
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wherc the latter is thc average payoff of $c_{JT}$ and $\mathrm{r}_{T+1}$ -stratcgy undcr the bimorphic NSD.
(See Figure 2.) Hence bimorphic NSDs. if they exist. are more efficient than any monomor-

phic NSS.

5 Concluding Remarks

Several papers (Datta, 1996, Kranton, $1996\mathrm{a}$ , Ghosh and Ray, 1996, and Carrnichael and
$\mathrm{M}\mathrm{a}\mathrm{c}\mathrm{L}\mathrm{e}\mathrm{o}\mathrm{d}$ , 1997) have previously analyzed the voluntarily separable games. though not

as fully as this paper does. Thcsc litcrature has point,ed out, two factors $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}_{1}$ facilitate

cooperation under the VSPD type games.

First, they identify our symmetric trust-buidling NSD, i.e., $‘ {}^{\mathrm{t}}\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}\mathrm{u}\mathrm{a}1$ cooperation” or

“starting small” is the mechanism for sanction against defection because it makes the

initial value of a new partnership small.

Our paper has rnore primitive structure than thc $\mathrm{p}\mathrm{a}\iota$) $\mathrm{c}^{\backslash }\mathrm{r}\mathrm{s}$ citcd abovc; the game is of

complete information, the component game is an ordinary PD $\mathrm{g}a\mathrm{m}\mathrm{e}$ with two actions, and

there is no gift exchange stage prior to the partnership. In excharige, we develop various

new concepts and a much richer set of analytical tools that enable us $\mathrm{t},0$ investigate

VSPD more fully. Furthermore. we consider evolution of behaviors within a society as
a whole, rather than restricting attention to behaviors within a single partneship given

(symmetric) strategy distribution in a society. As byproducts, we are able to provide

fuller Characterizations of symmetric trust-building strategy NSD, such as indentifying

the condition (in terms of death rate and payoff values of stage ganle) for the existence

of NSD with a particular length of trust-building periods, etc.

Second, “heterogeneity” may help cooperation. With incolnplete information model,

Rob and Yang (2005), independently written frorn ours, shows that repeated cooperation

from the outset of a partnership can be an equilibrium among heterogeneous players. In

their model, there are three types of players; bad type who always plays $D$ , good type

who always plays $C$ , and rationanl type who tries to maxilllize their payoff. Existence of

bad type players makes it valuable to (1) keep and $\mathrm{c}\mathrm{o}\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}_{1}\mathrm{e}$ with either good or rational

type partners, and (2) to find out $\mathrm{b}a\mathrm{d}$ type partners as soon as possible. Thus, a rational
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player should coopcratc from the $\mathrm{b}_{\mathrm{C}^{\backslash }}\mathrm{g}\mathrm{i}\mathrm{n}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{g}$ to bc distinguishcd froIn the bad-typc.

Our result is much starker than Rob and Yang. Our model does not rely on heterogeous

“type” and incolnplete information. Instead, bad (longer trust-buidling) strategy emerges

endogenously as a bimorphic NSD.

Appendix: Proof of Proposition 3

We prove some useful lemma.$\mathrm{s}$ first. For any $T,$ $T’\in \mathrm{N}$ , define

$\Gamma(c_{T}, c_{T’}):=L(c_{T}, c_{T’})\{v^{I}(c_{T}.c_{T’})-v^{BR}\}$ .

Then the following leulrna is immediate.

LEMMA 3. For any $T,$ $T’\in \mathrm{N}_{f}$ if T. $T’$
,

$\geq 1$ , then:

$\Gamma(c\tau, c_{\mathit{1}’}")=d-v^{BR}+\delta^{2}\Gamma(C_{\mathit{1}’-1)}’C_{\mathit{1}’’-1}^{r})$ . (8)

Proof of Lemma 3: By definitions of $\Gamma,$ $L$ and $V^{I}$ :

$\Gamma(c_{TT’}, \mathrm{r}_{d})=L(c_{T}, c_{T’})v^{I}(c_{T}, c_{T’})-L(_{C_{T},(,T’}’)v^{\mathit{1}t\mathit{1}1}$

$=V^{I}(c_{T}.c_{T’})-L(c_{T}, c_{T’})v^{BR}$

$=d+\delta^{2}V^{I}(c_{T-1,\prime}c_{\mathrm{T}’-1}’)-\{1+\delta^{2}L(C_{\mathit{1}’-1}’, C_{\mathit{1}’-1}^{r}’)\}v^{BR}$

$=d-v^{BR}+\delta^{2}\Gamma(c_{T-1}, c_{T’-1})$ . $\square$

LEMMA 4. For any $T\in \mathrm{N}$ and for any $v\in \mathbb{R}$ :

$I,(c_{\tau+1}., c_{\tau})\{?\prime^{\mathrm{J}}(\mathrm{r}\prime T+1, \mathrm{r}_{J}T)-\mathrm{t}[]\}_{<}^{\geq}L((:\tau, (j\tau)\{\uparrow;^{\mathit{1}}(\mathrm{r}_{T}., c_{T})-\tau’\}\Leftrightarrow?)\geq_{\tau^{BR}}<’.$ (9)

Proof of Lemma 4: We prove this by induction. The definition of $v^{BR}$ is equivalent to

$v^{BR}[ \frac{1}{1-\delta^{2}}-1]=\frac{c}{1-\delta^{2}}-g$ .

Hence we have t,hat

$[L(c_{0}, c_{0})-L(c_{1}, c_{0})]v^{BR}=L(c_{4}, c_{0})v^{J}(c_{0}, c_{0})-v^{\mathit{1}}(c_{1}, c_{0})L(c_{1}, c_{0})$ .
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It can $\mathrm{f}$) $\mathrm{e}$ rewritten as

$L(c_{1}, c_{0})\{v^{I}(c_{1}, c_{0})-?J^{BR}\}=L(\mathrm{q}^{\backslash }, (\grave{\phi})\{?J^{I}(c_{0}., \mathrm{q}. )-v^{BR}\}$ .

Because $L(c_{1}, c_{()})=1<L(c_{0}, c_{0})= \frac{1}{1-\delta^{2}}$ ,

$L(c_{1}, c_{0})\{v^{I}(c_{1}, c_{0})-v\}_{<}^{\geq}L(c_{0}, c_{0})\{v^{I}(c_{0}, c_{0})-v\}=v_{<}^{\geq}v^{BR}$,

and the assertion holds when $T=0$ .

Next suppose that the assertion holds for $T-1$ . We rewrite LHS inequalities for $T$ as

$L(c_{T+1}, c_{T})\{v^{l}(c_{T+1}, c_{T})-v\}_{<}^{\geq}L(c_{T},c_{T})\{v^{\mathit{1}}(c_{T}, c_{T})-v\}$ ,

$\Leftrightarrow$ $L(c_{T+1}, c_{T})\{v^{I}(c_{T+1}, c_{T})-v^{BR}-(v-v^{BR})\}$

$<\geq_{L(C_{\mathit{1}’}’,C_{j’}’)\{v^{I}(c_{\mathit{1}’},C_{\mathit{1}’}^{r})-v^{BR}-(v-v^{BR})\}}$ ,

$\Leftrightarrow$ $\Gamma(c_{T+1},, c_{\vee T})-L(c_{T+1},, c_{T}.)\{\mathrm{t}’-\tau^{BR}’\}_{<}^{\geq}\Gamma(c.T, c,T)-L(c_{T},, c_{T})\{\tau’-\tau\prime^{BR}\}$ .

By Lemma 3,

$\Leftrightarrow$ $d-v^{BR}+\delta^{2}\Gamma(Cq’, C_{\mathit{1}’-1}^{r})-\{1+\delta^{2}L(C_{l}’" c_{?-1}’)\}\{v-v^{BR}\}$

$<\geq_{d-v^{BR}+\delta^{2}\Gamma(\mathrm{c}_{T-1},c_{T-1})-\{1+\delta^{2}L(\mathrm{r}_{T-1,}.c_{T-1})\}\{v-v^{BR}\}}$.
$\Leftrightarrow$ $L(c_{T}, c_{T-1})\{v^{I}(c_{T_{!}}c_{T-1})-v\}_{<}^{\geq}L(c_{T-1}, c_{T-1})\{v^{J}(c_{T-1}, c_{T-1})-v\}$,

and the last inequalities hold by the induction assumption. $\square$

COROLLARY 1. For any $T,$ $T’\in \mathrm{N}$ ,

$\Gamma(c\tau, \mathrm{r}.\tau)=\Gamma(c..T+1, \mathrm{r}_{d}T)$ .

COROLLARY 2. $v^{I}(c_{T+1}, c_{T})-v^{I}(c_{T}, c_{T})$ is strictly de($j7’e,asing$ in $T$ .

Proof of Corollary 2: In view of Corollary 1,

$v^{I}(\mathrm{c}_{T+1}, c_{T})-v^{I}(cx" c_{T})$ $=$ $\frac{\Gamma(C_{\mathit{1}’+1}^{r},c_{T})}{L(c_{T+1},c_{T})}-\frac{\Gamma(c_{T},C_{J}^{r}’)}{L(c_{T},c_{T})}$

$=$ $\frac{\Gamma(c,,\mathrm{r}_{T})}{L(c_{\mathit{1}^{\urcorner}+1},c_{\mathit{1}})},,,\{1-\frac{L(\mathrm{r}_{T+1},\mathrm{r},)}{L(C_{\mathit{1}}’}\}$

$=$ $[v^{I}(c_{T+1}, c_{T})-v^{BR}] \frac{L(c_{\mathit{1}’}\prime,\mathit{0}_{l’})-L(C_{I’+1}^{r},\sigma_{\mathit{1}}\cdot)}{L(c_{T\backslash }c_{T})}$

$=$ $[v^{J}(c_{T+1}, c_{T})-v^{BR}]\delta^{2(T+1)}$ ,
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which is strictly decreasing in T. $\square$

Because of the concavity of $v(c_{l’}’;p_{T}^{T+1}(\alpha))$ and convexity of $v(c_{T+1}; p_{T}^{T+1}(\alpha))$ , and

continuity of average values with respect to T. the next lemma is immediate.

LEMMA 5. For any $\delta>\delta^{*}$ , there exists $0\leq\tau^{*}(\delta)<\underline{\tau}(\delta)$ such that, if $\tau^{*}(\delta)<T<\underline{\tau}(\delta)$ ,

$(a)$ there enist $\underline{\alpha}_{T}^{T+1}(\delta)\in(0,1)$ and $\alpha_{T^{+1}}^{q}’(\delta)\in(0,1)$ with $\underline{\alpha}_{T}^{T+1}(\delta)<\alpha_{T}^{\mathit{1}’+1}(\delta)’$ ,

$(b)v(c_{T};p_{T}^{T+1}(\alpha))>v(C_{\mathit{1}’+1;p_{T}^{T+1}(\alpha))}’\Leftrightarrow\alpha\in(\underline{\alpha}_{T}^{T+1}(\delta), \alpha_{T}^{T+1}(\delta))$.

Therefore, for sufficiently large $T$ such that $\tau^{*}(\delta)<T<\underline{\tau}(\delta)$ , there is a unique

payoff-equalizing $\alpha_{T}^{\mathit{1}’+1}(\delta)’$ . Let $\alpha_{T}^{*}(v^{BR})$ and $\alpha_{T+1}^{*}(v^{BR})$ be the fractions of $c_{T}$-strategy

which solve $?\mathit{1}(c,\tau;\prime p_{?}^{\tau_{1}+1}(\alpha))=\tau)BR$ and $?$ ) $(c,\tau+1;p_{\mathit{1}}^{\mathit{1}’+1},,(\alpha))’=\uparrow$ ’ respectively. To show that

the Best Reply Condition is satisfied at $\alpha_{T}^{T+1}(\delta)$ , it suffiees $\mathrm{t}_{}\mathrm{o}$ prove

$\alpha_{T+1}^{*}(v^{BR})<\alpha_{T}^{*}(v^{BR})$ .

By computation, $v(c_{T};p_{T}^{T+1}(\alpha))=v^{BR}$ is equivalent to

$v^{I}(c_{\mathit{1}’}, c_{T})-, \frac{\{1-\alpha_{T}^{*}(v^{BR})\}L(c_{T},c_{T+1})}{\alpha_{T}^{*}(v^{BR})L(\mathrm{r}_{T}^{\backslash },c_{T})+\{1-\alpha_{2^{}}^{*}(v^{BR})\}L(c_{T},c_{T+1})}\{v^{I}(c_{T},,c_{T})-v^{I}(\mathrm{r}_{2’},, c_{a+1},,)\}=v^{BR}$

$\Leftrightarrow$ $[\alpha_{T}’(v^{BR})L(\mathit{0}_{l’}, c_{T})+\{1-\alpha_{\mathit{1}’}^{*}’(v^{BR}’)\}L(C_{\mathit{1}’,\mathit{1}’+1}’c’)]\{v^{I}(c_{\tau\prime}, c_{?}’)-v^{BR}\}$

$=\{1-\alpha_{T}^{*}(v^{BR})\}L((i_{T\prime}.\mathrm{C}i_{T+1})\{\prime v^{I}(ti_{T}, c_{T})-v^{I}(c_{T}’, c_{T+1})\}$

$\Leftrightarrow$ $\alpha_{T}^{*}(v^{BR})=-\frac{\Gamma(c_{T},c_{T+1})}{\Gamma(_{C_{I}^{r}},c_{T})-\Gamma(C_{\mathit{1}’}’,C_{\mathit{1}’+1)}^{r}}$ .

Similarly, $v(c_{T+1}; p_{T}^{T+1}(\alpha))=v^{lk\mathfrak{i}}$’ is equivalent to

$\alpha_{T+1}^{*}(v^{BR})=-\frac{\Gamma(\mathrm{r}_{T+1}\prime’ c_{T+1},)}{\Gamma(c_{q+1}\prime,c_{\mathit{1}^{1}})-\Gamma(C_{\mathit{1}’+1,?+1}^{t}c,\prime)},\cdot$

Corollary 1 implies that

$\{\alpha_{\mathit{1}’}^{*}’(v^{BR})-\alpha_{T+1}^{*}(v^{BR})\}\{\Gamma(c_{T}, c_{T})-\Gamma(c_{T}, c_{T+1})\}\{\Gamma(c_{T}, c_{T})-\Gamma(c_{T+1}, c_{T+1})\}$

$=\Gamma(c_{T}, c_{T})\{\Gamma(c_{T+1}, c_{T+1})-\Gamma(c_{T}, c_{T+1})\}$ .
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Since $\Gamma(c_{T}., \mathrm{r}_{T})>0$ for $T<\underline{\tau}(\delta)$ , it suffices to provc $\mathrm{t}1_{1}\mathrm{a}\mathrm{t}\Gamma(c_{T+1},, c_{T+1}.)>\Gamma(c_{T)}c_{T+1}.)$ . In

parameters,

$\Gamma(C_{\mathit{1}+1,\mathit{1}’+1}’\urcorner c,’)$ $=$ $\frac{1}{1-\delta^{2}}\{(1-\tilde{\delta}^{2(T+1)})d+\delta^{2(T+1)}c-v^{BR}\}$

$\Gamma(_{C_{j’}^{r}}, c_{T+1})$ $=$ $\frac{1-\delta^{2T}}{1-\delta^{2}}d+\delta^{2T}\ell-\frac{1-\delta^{2(’\mathit{1}’+1)}}{1-\delta^{2}}v^{BR}$ .

Hence by computation,

$\{\Gamma(c_{T+1}, c_{T+1})-\Gamma(C_{\mathit{1}’}^{r}, C_{\mathit{1}’+1})\}(1-\delta^{2})$

$=$ $\delta^{2T}(1-\delta^{2})(d-\ell)+\delta^{2(?+1)}(c-v^{B\mathit{1}1})’>0$ ,

because $(c-v^{BR})\delta^{2}=(1-\delta^{2})(g-c)>0$ . Therefore the Best Reply Condition is satisfied.

Q.E.D.
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