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Abstract

In this paper, I introduce the thcorems in Professor Hukukane Nikaido’s work, “Coincidence
and some systems of inequalities,” published in the Journsal of Mathematical Society of Japan,
1959, and note the significance of his mathematical methods on the history and the futurc of
mathematical economics. Nikaido (1959) may be considered a compilation of his works of the
1950’s on economic equilibrium existence problems. It also provides, however, his further devel-
opments and attempts for mathematical methods in the theory of mathematical cconomics and
an algebraic (algebraic topological) methods based on results of the Viotoris homology theory
(the earlicst kind of Cech-type homology theories). From Nikaido’s main mathematical results,
an analogue of Sperner’s lemma and a coincidence theorem, we may obtain a simple proof for
Eilenberg-Montgomery’s theorem for finite dimensional cascs. We may also utilize such homo-
logical methods for many generalizations of fixed point arguments on multivalued mappings in
relation to Lefschetz’s fixed point theorem.
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1 Introduction

In this paper, I introducc the thcorems in Professor Hukukane Nikaido’s work, “Coincidence and some systems
of inequalities,” published in the Journal of Mathematical Society of Japan, 1959, and notc the significance
of his mathematical methods on the history and the future of mathematical economics. ‘Nikaido (1959)
" may be considered a compilation of his works of the 1950’s on cconomic equilibrium existence problems. It

*The manuscript is prepared for the special session of Nikaido Conference at Hitotsubashi University on March 18 and 19,
2006. Contents in Sections 2 - 6, except for the proof of Sperner’s lemma (Lemma 4.4), arguments for class 9% (Browder type)
mappings in Section 5, and several additional figures, have been taken from Chapter 6 of my Ph.D thesis (Urai, 2005).
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also provides, however, his further developments and attempts for mathematical methods in the theory of
mathematical cconomics and an algcbraic (algebraic topological) methods based on results of the Vietoris
homology theory (the earliest kind of Cech-type homology theories). From Nikaido’s main mathematical
results, an analogue of Sperner’s lemma and a coincidence theorcm, we may obtain a simple proof for
Eilenberg-Montgomery’s theorem for finite dimensional cases. We may also utilize such homological methods
for many generalizations of fixed point arguments on multivalued mappings in relation to Lefschetz’s fixed
point theorem.

As is well-known, Professor Nikaido was a great mathematician as well as an outstanding social scientist.
He had a spccial viewpoint on mathematical methods for the social sciences that view mathematics not as
a simple tool but as a language. Therefore, for him, mathematical economics is not a simple description of
the world using mathematical concepts but a study of the world through the langusge (or methods) of the
mathematician.

With each mathematical theory is associated a different way of analyzing the world. For example, there
is an important difference between the differentiable approach (research based on dilferential calculus) and
an approach bascd merely on set theorctical and/or algebraic methods in mathematical economics. Since
the concepts and methods of differential calculus are based on the theory of sets and/or algebra, the former
includes analytic works that result from seeing the world as a differentiable object, and the latter include
synthetic attempts or mcthods to construct modcls that are more appropriate to describe our real world.
The results of the former arc always based on the concept of differentiability so that it is more desirable to
reexamine them under more primitive concepts, like finiteness, sequences, or limits under the set theoretical
and/or algebraic methods. .

In this scnse, it is always significant for the theory of mathematical economics to use more primitive
mathematical concepts together with more general or fundamental mathematical methods. Methods in
mathematical economics in the 1950’s and 1960’s bascd on rigorous set theoretical arguments and gencral

topology, c.g., Debrcu (1959), Nikaido (1968), etc., have, thercfore, important meaning for the history of’

social science as a new basic (fundamental) language for describing the society.

I introduce here some of the most gencral (and fundamental) theorems of Professor Nikaido from that era,
an analogue of Sperner’s lemma and a theorem for the coincidence of mappings (Nikaido, 1959; Lemma 1,
Theorem 3). The analogue of Sperner’s lemma may be considered to represent the essential part of fixed
point or coincidence theorems in finite dimensional vector spaces, as docs Sperner’s lemma. The lemma
may be useful as a proof of the theorem on coincidence points of mappings on general compact Hausdorff
spaces with or without vector space structurc. The result may also be directly used for economic equilibrium
problems on general compact Hausdorff spaces. Arguments arc based on an abstract homology theory of the
Coch-type that is founded on more primitive algebraic concepts than the singular homology thcory.

2 Vietoris and Cech Homology Groups

Let X be a compact Hausdorff space. Couer(X) denotes the set of all finite open coverings of X. Remember
that for each covering 90,91 € Cover(X), we write M < 9t if M is a refinement of 90T and M <* M if N
is a star refinement of 9t (Figure 1). It is also important to recall that for each covering 9t € Coer(X),
covering 9t € Coer(X) such that 9T <* 9T exists, hence relation < directs set Cover(X). Since this is a
crucial property, I will write down here a simple sketch of a direct proof for our special case, though the
result may be secn in the literature, e.g., Tukey (1940; p.47).
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Figure 1: Star Refinements

Lemma 2.1: Let X be a compact Hausdorff space. For each covering 90t € Cover(X), a star refinement
N € Caer(X) of M, M <* I, exists

PROOF : Suppose that X is covered by family 9{M;,..., M} (m > 2). First we can see under the
condition of normal space that M; and M include closed sets C) and C; respectively, together with open sets
Ui C Cy and Uz C Cq such that X C U1 UU2U| ;55 Mi. It is clear that family 9t = {UiN Mz, U2N My, My \
C2, M3\ Cy} satisfies VN € Dy, the star of N in My, St(N,M3) = | J{N'|NNN' # 0, N’ € My} is a subset
of My or M3, and My U {Ms,..., My} is a covering of X. Next assume that for covering {Mi, ..., Mn_1},
family 9%,,_1 exists such that VN € M,,_;, the star of N in My—1, St(N,M,,_1) is a subset of M; for some
i=1...,n—-1, and M,y U {Mpn, Mp41,.... My} is & covering of X. Then for M,, (agsin under the
condition of normal space,) we may chosc subscts V;, C D,, C U, C Cp, of M,, such that V,, and U,, arc
open, Dy, and Cp, are closed, and My U {Vio, Mpy1,..., M} is a covering of X (Figure 2). Define M,
as M, = {N\Cn|N € M1} U{NN M, \ D[N € D._1} U {Un}. It is casy to verify that N, satisfies

Figure 2: Construction of a Star Refinement

that VN € 91,,, the star of N in M, is a subset of M; for somei=1,...,n, and M, U{Mpn41...., M} isa
covering of X. Since the process may be continued to n = m, we may obtain a star refinement of 9. ]
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Cech Homology

The nerve of the covering 9t of X, X°(9), is an abstract complex such that the set of vertices of X ¢(90t)
is 9% and n-dimensional simplex o™ = MoM; --- M, bclongs to X°¢(9) if and only if N[_, M; # 0. We
call an n-dimensional simplex o™ in X¢(90) an n-dimensional Cech YM-simplex, (or simply, Cech simplez,
n-dimensional Cech simplex, Cech -simplez, etc., as long as there is no fear of confusion). X¢(901) is also
called the Cech Mt-complex. In the following, we assume that every Cech Ht-complex is oriented. Since
2t is a finite covering, we may identify X°(2T) with a polyhedron (a realization) in a finite dimensional
Euclidean space.

If p : M — M is a mapping such that for all N € M, N C p(N) € M, we say that p is a projection. It is
clear that if 91 is a refinement of 901, then for each Ny, Nz € 9, N1 NNz # @ implies that p(Ny) Np(Ny) # 8.
Hence, the vertex mapping, projection p, induces uniquely & simplicial map X¢(M) 3> NyNy-- - Np —
p(N1)p(Nz) -+ - p(Ni) € X¢(9T) which is also denoted by p and called a projection.

An n-dimensional Cech 9-chain, ¢*, is an entity which is represented uniquely as a finite sum of Cech
M-simplexes,

k
=Y ool (oF,...,0F € X°(M)),
i=1

where coefficients oy, ..., o are taken in a field F. The set of all n-dimensional Cech 9-chains, C& (M),
may be identificd, therefore, with the vector space over F spanned by elements of the form 1o™, where o™
runs through the set of all n-dimensional Cech 90%-simplexcs.

Let us consider thc boundary opcrator among chains, 8, : CS(9R) — CS_, (IN), for each n, as usual, i.c.,
the linear mapping, . :

On: MoMy -+ Mn — Y (=1)'MoMy -+ Mi- - M,
i=0

where the serics of vertices with a cireumflex over a vertex means the ordered array obtained from the
original array by deleting the vertex with the circumflex and for all n < 0, it is supposed that CZ(91) =
0. Then, the set of all n-dimensional Cech M-cycles, Z5(9M), and the set of n-dimensional Cech M-
boundaries, BE(MT), may be defined as usual, so that we obtain the n-th Cech 9R-homology group, HS (1),
for each n. For cach M <M and dimension n, simplicial map p induces chain homomorphism p2** so
that (C3(91), P3"™ ). mecaer(x)> (23 (D), 7™ )on . meCoer(x)s 80d (B (D), P )an meCaner(x), form inverse
systems.

Note that if 919, and if p : M — Pt and p’ : M — M are projections, two simplicial maps,
p and p’, are contiguous, i.c., for cach Cech M-simplex, NyN; - -- N, images p(No)p(N1)---p(Ni) and
p'(No)p'(N1) - - - p'(Nx) are faces of a single simplex.! Since two contiguous simplicial maps are chain homo-
topic,? p and p’ induce the same homomorphism, pJi™ : HZ(D) — HE (M) for each n. The limit for the
inverse system, (HE(9), p3»), on the preordered family, (Cover(X), %),

HE(X) = Jim HE(M).

is the n-dimensional Cech Homology group.

lIndeed, it is clear that the intersection (nf___o p(N:)) N (nLop’(N{)) o) ﬂ:;l N; # 0. Hence, the array obtained by
deleting all of the second occurence for the same vertex from the series, p(No)p(N1) - - - p(Ng)p'(No)p' (N1) - - - p'(Ni), is a Cech
M-simplex.

28ee for example Eilenberg and N.Steenrod (1952; p.164). If we are allowed to define piecewise linear extensions 5 and 7’ of
p and p/, respectively, it may also easy to find a homotopy bridge among p and p’.
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Under the definitions of the homology group and the inverse limit, an clement of HE(X) may be considered,
intuitively, as an equivalence class of a sequence of Cech cycles, {z™(9) € Z5(M) : M € Coer(X)},
such that for each 9, M € Cower(X) satisfying that Mg M, we have z"(IM) ~ pT"(z"(M)), where the
equivalence relation is defined relative to the class of Cech boundaries, i.c., z™(90t) —pZ*™ (z*(M)) € BS(IM).2

Vietoris Homology

An n-dimensional Vietoris simplez is a collection of n + 1 points of X, zoz;1---z,. A Vietoris simplex,
0 = oIy Tn, is said to be an IM-simplez if the set of vertices, {zo,=1,....2n}, is a subset of an element
of 9. The set of all Victoris DM-simplexes forms a simplicial (infinite) complex (Vietoris 9%-complex) and
is denoted by X¥(9). An orientation for n-dimensional Vietoris simplex zoz1 - - -, is a total ordering on
{z0,%1,....Zn} up to even permutations. In thc following wc supposc that cvery Vietoris 91-complex is
oriented.

The set of all n-dimensional Vietoris 9R-chain, C¥(901), is the vector space whose clements arc uniquely
represented as a finite sum of n-dimensional Vietoris 90%-simplexes,

k
=3 ol (oF,...,0F € X"(M)),
i=1
where coefficients ay,...,ax arc taken in a field F. We may also consider the boundary opcrator among
chains, 9, : CL(IM) — CF_,(9N), for each n, as the linear map satisfying,

n
On : ToZ1 " Zn — Z(—l)iwgwl RN "RER 9
i=0 ‘
where the circumflex over a vertex means the climination as before, and it is supposed that C2(90t) = 0 for
all n < 0. The set of all n-dimensional Vietoris 9M-cycles, Z2 (M), and the set of n-dimensional Vietoris
M-boundaries, BL(9T), may also be defined as usual, so that we obtain the n-th Vietoris 90t-homology
group, HY (), for each n.

For coverings 9, M € Cover(X), it is clear that (M M) = (X¥(M) C X¥(M1)). Denote by k™ :
27U () — CE(M) the chain homomorphism induced by the above inclusion. Then, for cach n, the system
of vector spaces with mappings, (Cp(9), A2 )an mecaer(x)» their cycles, (Za(9), A3 )on, meCanr(x), 80d
boundaries, (B3 (D), hY'™ ). mecaer(x), form inversc systems. The inverse limit of thc inverse system,
(Z3(t)/ B (D), hii™) an, me Caer( X)

HY(X) = fim H3(o),
0

is the n-dimensional (n-th) Vietoris Homology group.

An element of JIZ(X) may be identified with an equivalence class of a sequence of n-dimensional Vietoris
M-cycles, PV € Caer(X), (an n-dimensional Victoris cycle), {z™ (M) € Z2(M)|M € Cover(X)}, such that
for each M, M € Cover(X) satisfying that M g M, we have 2™(M) ~ AT"(2"(M)), where the equivalence
class is taken with respect to Victoris 9t-boundarics, i.c., z*(9) — AP (2™(M)) € BL(MI1).*

3For more details of the Cech homology theory, see Eilenberg and N.Steenrod (1952). For more introductory arguments,
Hocking and Young (1961; Chapter 8) is also recommended.

1The concept of Vietoris homology group was originally introduced by Vietoris (1927) as the first homology theory of the
Cech type for metric spaces. Though the theory has been used in many researches, e.g., Eilenberg and Montgomery (1946), it
has not been frequently discussed as has the more general Cech theory. The theory was extended to be applicable for cases of
compact IIausdor(l spaces by Begle (1950), and the result was used in Nikaido (1959) to prove an analogue of Sperner’s lemima.
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Vietoris and Cech Cycles

The Cech homology theory is a powerful tool to approximate the space with groups of a finite complex.
The Vietoris homology theory, on the other hand, has an intuitional advantage that we may characterize the
space directly by its elements (points). Fortunately, we may utilize both merits sincc the two homological
concepts give the same homology groups (see Theorem 2.3 below).

Before proving this, let us see the following facts on equivalences of two cycles on a simplicial complex. Since
a homology group is nothing but a set of equivalence classes of cycles, it is not surprising that homological
arguments often depend on this type of equivalence results. Let K be a simplicial complex. Supposc that
the set of vertices of K, Vert(K), is simply ordered in an arbitrary way, and let o™ = (ap, a1, ...,2,) be an
n-simplex (oriented by the simple order) in K. The product simplicial complez of K and the unit interval
denoted by K x {0, 1} is the family of simplexes of the form {(ao,0), (a1,0),...,(ai,0), (as,1),...,(an, 1)) for
each (ap,a1,...,an) € K together with all their faces (Figure 3). The subcomplex of K x {0, 1} constructed

Figure 3: Prism K x {0,1}

by all simplexes of the form ({ag,0),...,(an,0)) may clearly be identified with K and is called the base of
K x {0,1}. There also cxists an isomorphism between K and the subcomplex of all simplexes of the form
{{ag, 1), ..., (an,1)), which is called the top of K x {0,1}. For each n-simplex (¢c") = (ag,....an) of K,
define an n + 1-chain, $,(¢™), on product simplicial complex K x {0,1} as

n

(1) (Dn(dn) = Z(—l)j <(a0’0)> ey ((1_7‘,0), (ﬂj, 1)7 ey (aﬂ) 1))

j=0

Extend each @, to a homomorphism on Cn(K) to Cp(K x {0,1}). Then we can verify through direct

calculations that for cach n-chain ¢® € K,
(2) Ons1®n(c™) 4+ 8,10, (c™) =" x 1 — " x 0 € Cr_1 (K % {0,1}),

where ¢ x 1 (resp., ¢ x 0) is the chain on the top (resp. base) of K x {0, 1} formed by replacing each vertex
of each simplex of ¢ by the vertex of the ordered pair with 0 (resp., 1). Hence, if 2™ is a cycle on K,

(3) On18n(z?) = 2" x 1 - 2" x 0 € B,(K x {0.1}),

i.e., we have z" x 0 ~ 2™ x 1 on K x {0, 1}. Thercfore, if there cxists a simplicial mapping 4 on K x {0,1}
to a certain simplicial complex L, the next lemma holds.
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Lemma 2.2: Assume that there is a simplicial mapping 9 on K x {0, 1} to a simplicial complex L. For
two images tg+1(29 x 0) and %441 (2?9 X 1) in the ¢-th chain group Cy(L) of ¢g-cycle 29 € C,(K) (through the
induced homomorphism g41 : Cgi1 (K x {0,1}) — Cy(L)), we have thgy1(29 x 0) ~ 9fg41(27 x 1) on L.

We now sec the following fundamental result.

Theorem 2.3: (Begle 1950a) Let X be a compact Hausdorff space. The g-th Vietoris homology group,
HJ(X), is isomorphic to the corresponding Cech homology group, H{(X), for each q.

To show the above result, usc the following two simplicial mappings.5 Given covering 9t in Cover(X), chose
refinement D1 <* 9T, which is always possible for a compact Hansdorff space by Lemma 2.1. It is convenient
for the discussion below to denote one of such selections for each 9% by a fixed operator on Cover(X) as
9t = *M.% For each M € Cover(X) and for each z € X, there are N, € * and M, € Mt such that z € N,
and St(N,;*9) C M,. Moreover, for each N € *00t there is an element ty € N. Define functions ¢%, and

pha 8s
(4) ¢ Vel(XU(Ot) = X 3z — M, € M = Vat(X(M))
(5) W5 ¢ Vet(Xe("DN)) ="Mt > N - zy € X = Vet(X(IM))

Under the definition of star refinement, it is easy to see that ¢8, and b, are simplicial mappings. Hence,
we obtain chain homomorphisms (3, : C¥(9) — C5(9M) and ¢, : C(W) — C;(P). As we see below,
these mappings play essential roles in characterizing relations between Victoris and Cech homology groups.
Especially, mappings (%,, and ¢%,, induces, respectively, isomorphisms ¢2, : HY(X) — Hg(X) and o}, :
H§(X) — HZ(X) (Theorem 2.3), and @b;,0¢%, (9 = *MN) assures the finite dimensional character of acyclic
spaces (Theorem 3.2) or locally connected spaces (Theorem 3.4).

PROOF OF THEOREM 2.3 : Let 47 = {y9(M){M € Cover(X)}, (or simply, {¥?(MN)}) be an g-dimensional
Vietoris cycle. For each 9t € Cover(X) and 9% = *9N, define 29(W) as 29(M) = (5,,(vI(IT)). We sce (1)
that 29 = {29(91)} is & Cech cycle and (2) that the mapping qu : 49+ 27 is an isomorphism on HJ (X) to
Hi(X).

(1) Since ¢4, : C2(M) — CS(AM) is & chain homomorphism, all 27(MT) (M € Cover(X)) are cycles in
C¢(Mt). Hence, by definition of inverse limit, all we have to show is 29(9t,) ~ p7"™2(29(M,)) for each
Py < M;. Let Ny and My be refinements of My and M3, respectively, to define mappings C._’{,uq and
C;’,‘zq. By Lemma 2.1, we can take B as P <* 91 and P <* M. Note that since {y9(M)} is a Vietoris
cycle, we have hZ® (y9(38)) ~ 79() and A% (y()) ~ 19(Mz). Hence, 29(90%1) = (g (79(OL1) ~
Gy, (RE® (79())) and pEh 53 (29(T3)) = P (Ch, (19(90a) ~ 2 (Cha, (BF® (v9())).7 Tt follows
that all we have to show is (5, ,(Y9(B)) ~ pF**2((5,, (Y (B)). Let K = K(y?(P)) be the complex consists
of all simplexes in cycle y?() together with their faces. Then by Lemma 2.2, it is sufficient to show the
existence of simplicial map 3 on K x {0, 1} to L = X °(0%;) such that ¢%, ,(v7(9B)) and p3"*™* (¢, (77 (B))
are images through the induced map v4+1 : Co1(K x {0,1}) — X(90%;) of 7(P) x 0 and ~I(P) x
1, respectively. For each a € Vet(K), define ¢ as ¥((a,0)) = (&, (a) and ¥((a,1)) = p‘”‘”"*(&,a(a).
For any simplex ((ao,0),...,(a:,0),{ai,1),...,(ax, 1)) in K x {0,1}, we have a simplex ap---ar of K =

5These mappings are defined by Begle (1950a).

SFor this, Axiom of Choice is needed.

7In the above, inclusion mappings h]*® and h3'?® might be abbreviated. Since including relation CZ (') C Cg (M) for
each 9t' < 91 is obvious, these operators will be omitted henceforth as long as there is no fear of confusions.
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K(v7(B)), so that there exists P € P, ao,...,ax € P. We have to show that (¢5, (ao),...,¢h, (ai),
p™¥2(l (ai), ..., p™™2(8, (ax)) forms a simplex in X (9 ). Foreach j, 0 < j < 4, since B <* 9y <* My,
each (%, (a;) = Mi,; (0 < j < 1) includes St(Niq;, D) for a certain Nig, 3 a;. Hence, P which has
a; and satisfies St(P,P) C N; for a certain Ny € Dy must be a subset of St(Nyg;,My) C My,,. For
each j, 4 < j < k, since P <* My <* M < My, each p“’”‘m’g’;?(aj) = p™™IMy,, (i £ j < k) includes
St(Nag,, M) for a certain Npq; > a;. Hence, P which has ¢; and satisfies St(P, ) C Nj for a certain
Ny € My must be a subset of St(Nag;,Maz) C Ma,; so that the corresponding element under projection
po ™ of M. Therefore, we have ¢4 (a0) N ... N ¢4, (ai) Np™™2¢h, (a;) Np™™2¢Y (ax) D P # 0
and (¢4, (ao), .. ,C.f,’,,l(a,;),p“"’°"3Cf,’n2 (ai),...,p™®2¢h, (ax)) € X°(9My), Le., ¢ is a simplicial map. By the
construction of induced map g, it is also clear that g1 (Y7 X 0) = ¢5,,(7?) and theq1(v? x 1) = pF*7¢h, (¥9).

(2) We have to show that mapping C,’,’q 1 23(X) 3 49— 29 € Z3(X) is one to one and onto. We shall
usc three steps: (2-1) define mapping ¢, : ZS(X) — Z¥(X), (2-2) show that the composite ¢®, o (%, is the
identity, and (2-3) show that the composite (f;, o wz, is the identity.

(2-1) Let us define a function which gives for each 9t and 27 = {29(IM)} € ZZ(X), the element
©h4(29(9N)) € ZT(9M), where 9T = *IN. Denote the relation by @b, : ZS(X) 3 29— {h;,(29(*IN)) 19N €
Coer(X)} € HmeCaua-(X) Z}I’(M). We see that for each 9, M with DMy = "My and Ny = *My,
P o (21(O)) ~ AP Tab (29(M3)), so that the sequence {15, (27(*OM))|M € Caver(X)} is & Vietoris
cycle. We may assume o <* My <™ WDy without loss of generality since the cxistence of a common star
refinement 93 of DMy and M; combined with assertions for M3 <* NNy <* M and M3 <™ N2 <™ 9N, assures
the results for 9y < 93 through h("}’““"stp';,mq(z"("ﬂﬁa),). Take a common star refinement P of N; and N.
Since 27 = {29(M)} is a Cech cycle, all we have to show is @b, (PT¥29(P)) ~ TP L, (pT3¥27(P)).
Let K = K(29(%B)) be the complex formed by all simplexes in cycle z9(9B) € XJ(*B) together with their
faces. By Lemma 2.2, it is sufficient for our purpose to show the existence of simplicial map 4 on K % {0, 1}
to L = X?(901;) such that cp‘;mq(p';'l"’zq(m)) and h;"‘“’"cpg,,zq(ps‘“’zq(‘x.?)) are images through the in-
duced map to41 @ Co1(K X {0,1}) — XY(9Y) of z9(P) x 0 and 29(P) x 1, respectively. For each
a € Vat(K) C B, define ¢ as 9((a,0)) = »b, (p™1®(a)) and ¥((a,1)) = &%, (p™?®(a)). For any sim-
plex {(a0,0),...,(a:,0), (@i, 1),...,{ax 1)) in K x {0,1}, we havc a simplex ag - - - ax of K = K(29(P)), so
that ap N -+~ Nax # @. We have to show that (o, (™% (aq)), ..., Wb, @™ (a1)), o, P™*®(ai)).. ..,
@5, (P™2® (ax))) forms a simplex in XU(9%;). Note that for each j, 0 < j < 4, P <* 9y <* My, and for
each j,1 <j <k, P Mo P <* DM x* MWy Since ag N -+ Nag # 0, there are Ny € Ny and Np € Ny
such that agU---Uax C Ny and apU---Uag C Na. By definitions of ¢ and p, St(Ny; D) and St(Ng; Mz)
contain all points of the form %, (™% (a;)), (0 £ j < i) and ¥4, (P™2®(a;)), (i < j < k). There are
M € 9y and M9, such that St(N1; M) C M) and St(N2; M) C My. The fact Mz <* M) means,
however, that My C N for some Ny in 9. Since N{ NNy D apU---Uak, Ni C St(Ny;9), so that M’
includes both St(Ny;9%;) and St(Ng; Ma). Henee, (vh,, (0™1%(a0)), - - - ¥hy, (™% (a4)), 05, @™2® (a)): - -,
b, (P™2% (ax))) forms a simplex in X(91;) is a simplex in X¥(90,).

(2-2) We see for each 2, M = "M, P = *N, and 77 € C¥(X), ¢, 0 (5, (Y (P)) ~ 79(P), which is
sufficient for the assertion gfq ) cpﬁq(’y") = 49. Lot K = K(v9(PB)) be the subcomplex of X*(P) formed by
simplexes of v9(P) and their faces. By Lemma 2.2, we may reducc the problem to show the cxistence of
simplicial map ¢ on K x {0,1} to L = X*(9) such that ©§, o (5, (v7(P)) and v7(P) are images under
the induced map Y41 @ Cor1(K x {0,1}) — XV (9M) of v9(P) x 0 and v¢(P) x 1, respectively. For cach
a € Vat(K) C X, define ¥ as ¥((a,0)) = ¢%, 0 (% (a) and 4((a, 1)) = a. For any simplex ({ag,0),..., (a;,0),
(@i, 1), .., (ak, 1)) in K x{0, 1}, we have a simplex ao - - - ax of K = K(y7(P)), so that there is a member P of
P such that ag, ...,ax € P. We have to show that (98, 0¢% (ag), - .« ¥% 05 (i), aiy . . ., ax) forms a simplex
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in X¥(M1). Since P <* M <™ M, there are N € M and M € M such that St(P,P) C N and St(N,MN) C M.
Hence, by definitions of %, and ¢5,, M includes all vertices of (¢5, o ¢4 (ao), ..., 9% o ¢4 (ai),ai,. .., ak).
(2-3) For each 2, 91 =*001, P = *N, and 27 € C°(X), we see (5, 00%,(29(P)) ~ 29(P). This is cxactly
shows (%, 0 8 (29) = 29. Let K = K(2%(%)) be the subcomplex of X°(B) formed by simplexes of z7(%B)
and their faces. By Lemma 2.2, to show the existence of simplicial map ¢ on K x {0, 1} to L = X¢(91) such
that (5;, 0 ¢';1q(zq(23)) and z7(P) are images under the induced map ¥g41 : Cyy1(K x {0,1}) — X (M)
of 29(P) x 0 and 27("P) x 1, respectively. For each a € Vert(K) C B, define ¢ as ¥((a,0)) = (5, o ¢4 (a)
and ¥((a, 1)) = a. For any simplex {(ao,0),...,(a;,0),(a;,1),...,(ak, 1)) in K x {0,1}, we have a simplex
ap---ax of K = K(29(P)), so that sets ag,....ar € P satisfy ag N -+ Nar # @. We have to show that
(€% o vbi(ao), ..., ¢b o hi(ai),ai,. .., ax) forms a simplex in X¢(9N). By definition of % and ¢3;, vertex
o o wb(a;) (0 < j < 4)isasetin My € Mt such that for a certain z; € a; and its neighbourhood
N; € M, M; D St(N;;D) holds. Since apN-+-Nag # @, there is a set N € D such that agU---Uag C
St(ao; P) C N. Since (N;; M) includes N for eachj =0,....1, M; includes N for cach j =0,...,4. Hence
Min---NM;Na;N---ak D agN---Nak # 0, so that (¢4 o ¢l (ag), ..., ¢ 0 @4 (a:),ai,. ... ak) is a simplex
in X(M). n

3 Vietoris-Begle’s Theorem and Local Connectedness
Vietoris-Begle Mapping

It is sometimes convenient to use the notion of reduced sct of 0-cycles and reduced 0-th homology groups.
Reduced 0-th homology group is obtained by considering only cycles in which the sum of coefficients is
0. For 0-th homology group Ho(X) = Zo(X)/Bo(X), the reduced homology group will be denoted by
ITo(X) = Zo(X)/Bo(X), where Zo(X) = {z € Zo(X)|(z = 3. ov0i) == (3 o = 0)}. Topological space X
is called acyclic under a certain homology theory, if (1) X is non-empty, (2) the homology groups H,(X)
are 0 for all ¢ > 0, and (3) the 0-th homology group Ho(X) equals to the cocfficient group F' (or the 0-th
reduced homology group Ho(X) cquals to 0).

Let X and Y be compact Hausdorff spaces. For Vietoris 9%-complex X V(1) and subset W of X, the sct
of all Vietoris 9M-simplexes whose vertices arc points in W forms a subcomplex of X ¥(90t) and is denoted
by XV(9t) N W. Then continuous function f of X onto Y is called a Vietoris-Begle mapping of order n if
for each covering 9t of X and for each y € Y, there is a covering P = P(MT, y) of X with P <M such
that each g-dimensional (0 < ¢ < n) Vietoris $P-cycle 22() € X*(P) N f~!(y) bounds a ¢ + 1-dimensional
Vietoris 9-chain c?t1(9T) € X(9) N f~1(y), where all 0-dimensional cycles are chosen in the reduced
sense (Figure 4). Continuous function f : X — Y is said to be a Vietoris mapping if the compact set f~1(y)
is acyclic for all y € Y, i.c., HY(f~1(y)) = 0 for all n > 0 and HY(f~(y)) = 0. If f is a Vietoris-Begle
mapping of order n for all n, by definition of the inverse limit, f is clearly a Vietoris mapping. Converse
is also true in our special settings. In this subscction, we see the following two important theorems: (1) if
the coefficient group F is a field, Victoris mapping is a Vietoris-Begle mapping of order n for all n, and (2)
if f: X =Y is a Vietoris-Begle mapping of order n, there are isomorphisms between Hy(X) and HZ(Y)
(0 £ g £ n). In this scction, we see (1). Assertion (2) is treated in the next soction after the concept of
Victoris-Begle barycentric subdivision is defined.

Since coefficient group F is supposed to be a field, inverse systems of Vietoris and Cech type chains,
cycles, boundaries, and homology groups are systcms of vector spaces. Especially, all n-dimensional chain,
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Figure 4: Vietoris-Begle Mapping of order n

cycle, and boundary groups of nerves (defining Cech homology groups) are finite dimensional. For an inverse
system of finite dimensional vector spaccs, we know the following result on essential elements.®

Lemma 3.1: (Essential Elements for an Inverse System of Finite Dimensional Vector Spaces) Let
(Ei, mi5)i jer,j>i over directed set (I,>) be an inverse system of finite dimensional vector spaces. Then for
every i therc is an element jo > i such that for all j > jo, every clement x; of m;;(E;) C E; is an essential
clement of E;, i.e., ©; € m(Ex) for all k 2 1.

PROOF : The sct of essential elements of E; is the subspace H; = [);5;mi;(E;). Since E; is finite
dimensional, the dimension of H; is also finite, say n. Then there arc finite eclements k;y,...,k, of I such
that H; = (;_, Tk, (Ex,). Let jo be an element of I such that jo > ji for each k = 1,...,n. Then for all
j 2 jo, we have mi;(E;) = mijo (mjo;(E5)) C mijo(Ejo) = mijy (wjuso (Ejo)) C miji (€5,) for each k = 1,...,7n.
Hence, for each 7 > jo, ng(Ej) CH;= n?:l Tiky (Ekj). [ ]

Since the inverse system for Cech homology group (for compact Hausdorff space X) is a system of finite
dimensional vector spaces, it follows from Lemma 3.1 that for cach covering 90t of X, there is a refinement
N <MY = *M such that if 29(N) € Z{(M) is a g-dimensional N-cycle of X, then p*™(z9(N)) is the
9My-coordinate of a Cech cycle. By taking the finest 91 for ¢ = 0,1,...,k and taking P = *I, we have the
following theorem.? ‘

Theorem 3.2: (Vietoris-Begle Mapping Theorem I) Let 9T be a covering of compact Hausdorff space
X and W be a compact subsct of X such that every g-dimensional Cech reduced cycle in W (0 < ¢ < k)
bounds a g + 1-dimensional Cech chain in W (H¢(W) = 0).1° Then there is a refinement 9 of 9t such that
every g-dimensional Victoris P-cycle on W (0 < ¢ < k) bounds a ¢ + 1-dimensional Vietoris 9%-chain on
W. Hence, Vietoris mapping is a Vietoris-Begle mapping of order n for all n.

PROOF : Take refinements B = *Ot and N of MYy = *MT as stated in the previous paragraph. Let 73 be a
¢-dimensional Vietoris P-cycle on W (0 < ¢ < k). Denote by ¢3, : X¥() — X (1) the simplicial mapping

8This concept of importance in the homology theory of system of groups is due to Cech (1932). See also Lefschetz (1942;
p.79) and Steenrod (1936) for elementary compact coefficient groups.

9The assertion may be considered as a part of Vietoris-Begle's Theorem. We can see the same (though more abbreviated)
argument in the proof of Theorem 2 in Begle (1950a). .

10For notational convenience, let us define here HG(W) as HG(W) = HE(W) for all ¢ > 0.
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Figure 5: Cycles on Acyclic Set W

defined in the proof of Theorem 2.3. Then C.‘;xq('fg,) is a g-dimensional Cech M-cycle (0 < ¢ < k). By definition
of 9T, pro™ (%, (v%) is the Mg-coordinate of a Cech cycle, 29, on W. Since H(W) = 0, this Cech cycle bounds
so that "¢t (v§) ~ 0 on CE(MWo). It follows that b pT o™k (v) ~ 0 on W (M) = XV (M) NW, where
b, is the simplicial mapping defined in the proof of Theorem 2.3 and X *(90t)NW denotes the subcomplex of
Victoris 9-simplexes on W. Hence, the first assertion of this thcorem follows if we sce 8,p™0%¢% (v8) ~ 1%
on XV(MWt)NW. We can see it, however, by repeating completely the same argument with (2-2) in the proof
of Theorem 2.3. The second assertion follows immediately from the first if we set W = f~(y) for Vietoris
“ mapping f: X =Y and point y€ Y. [ ]

Locally Connected Spaces

Besides the Vietoris-Begle mapping, there is another important concept for fixed point arguments under
the Cech type homology, the local connectedness. In the Cech type homology theory, the family of open
coverings, Cover(X ), on space X is used in describing two fundamental features of topological arguments: (i)
the measure of connectivity (represented by the intersection property among open sets), and (ii) the measure
‘of convergence or approximation (as a net of refinements of coverings). All analytic concepts are changed
into algabraic oncs through above two channels. In the following, it is especially important to notice about
the second feature, so that each covering 9% € Cover(X) is used as a sort of metric or a norm, and Coer(X)
is used as if it were the uniformity in describing the total convergenee propertics for space X . To emphasize
that we arc choosing a covering or a refinement for the second purpose, we call it norm covering or norm
refinement instead of saying a covering or refinement.

The local connectedness is defined as a purely homological notion to generalize the concept of absolute
neighborhood retracts frequently used under the framework of metrizable spaces. Let us consider a compact
Hausdorff space Y and 90t € Cover(Y). A realization of simplicial complex K in Y¥(91) is a chain map 7.
Partial realization 7' of K is a chain map defined on a subcomplex I of K such that Vet(L) = Vet(K).
For & norm covering M € Caver(X) and realization T of K, write norm(r) < 91 if for each simplex o of K,

there is a sct N € D which contains the underlying space |7o] of the chain ro.1!

11For a value under & homomorphism, parenthesis are abbreviated as 7o = 7(c). Note also that the underlying space of chain
ro is the underlying space of the corresponding complex defined by all simplexes of 7o (appeared with non-zero coordinates in
the formal summation).
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DEFINITION 3.3: (Locally Connected Space) Topological space X is said to be locally connected (ab-
breviated by Ic) if for cach norm covering € € Cover(X) there is & norm refinement J < € satisfying the
following condition: for cach covering 9, there is a refinement 91 such that every partial rcalization 7/ of
finite complex K into XY(M) with norm(7') < J may bec extended to a realization 7 into X*(9) with
norm(t) < €.

It is clear from the definition that if X is lc, then X x X is also le. If X is a compact Hausdorff and lc,
then every closed subset of X is also lc. Moreover, compact Hausdorft lc spaces has the following strong
properties.

Theorem 3.4: (Begle 1950b) If X is compact Hausdorff lc space, following (a) (b) (c) hold.

(&) There is & covering Mp of X such that if z is a Vietoris cycle such that () ~ 0 on X¥(D) for some
M < Do, then z ~ 0. '

(b) The homology groups of X arc isomorphic to the corresponding groups of a finite complex.

(c) Each covering 0% of X has a normal refinement MU', i.c., a refinement such that for cach cycle zg on
XP(9) C XV (M), there is a Vietoris cycle z such that z2(9N) = zgy.

Proofs arc not so difficult. Scc Begle (1950b).

4 Nikaido’s Analogue of Sperner’s Lemma

In this section we sec the important second half of the Vietoris-Begle mapping theorem, (2) if f: X =Y
is a Vietoris-Begle mapping of order n, therc arc isomorphisms between Hy(X) and HJ(Y) (0 < g < n).
For this proof, we need the concept of barycentric subdivision under the framework of Victoris complexes.
After the proof of Vietoris-Begle mapping theorem, we also see an extension of Sperner’s lemma which was
originally given by Nikaido (1959) as the first application.

Vietoris-Begle Barycentric Subdivision

Let Y be a compact Hausdorff topological space. Consider coverings M € Cover(Y) and R € Caer(Y)
of Y. In the following, for Vietoris 9t-chain c(90%) € C7 (M), let us denote by K(c(N)) the complex
of all simplexes appeared with positive coefficients in ¢(9t) and by diam |e(9)| < M the fact that there
is an element N € M in which all vertices of K(c(9)) belong. Morcover, for cach g-dimensional chain
9 € Cy(D) and y € Y, we denote by y * ¢ the (g + 1)-dimensional {Y }-chain defined as the extension of the
operation y * (ug - - - ax) = (yag - - - ax) for cach oriented k-dimensional simplex (ag - - - ux).}? |M-barycentric
subdivision of k-dimensional Vietoris R-simplex o* € XV(9R) is chain map Sd,, : Cy(R) — CF (M), satisfying
the following conditions.

(SD1) For each 0-dimensional simplex yo of K (%), Sdo(y0) = vo.

(SD2) For cach q-dimensional simplex (yg - - %4} (0 < ¢ < k) in K (c*), there exists y € Y such that y*
Sdg_1((yo -~ -7 -+ wg)) € CF (D) for each i and Sdy((yo - yq)) = Lo (~1)'y*Sdg—1((yo -5+ ¥a))-
(SD3) diam |Sdxo®| < .

12Note that in the above {Y'} € Caer(Y) is taken as a covering of Y.,

36



Note that as long as the existence of y for each ¢-dimensional JR-simplex (yo - - - y,) stated in (SD2) is assured,
condition (SD1) and (SD2) may be considered as a process to construct Sdg, ¢ = 0,1, - --. By mathematical
induction, we can verify for ecach ¢ > 0 that 8,Sd,({(yo - - - ¥g)) = Sdq—-104({¥o - - - yq)), s0 that Sd, constructed
is indeed a chain map.

Let us consider n-skeleton Y;?(R) ¢ Y?(R) of Y?(R), the subcomplex of all k-dimensional (0 < k < n)
Vietoris 9R-simplexes on Y. An n-dimensional RON-barycentric subdivision of Y is a chain map {Sd7™ :
C(Y2(R)) — CY(M)} such that for each k-dimensional simplex o* (0 < k < n), the restriction of {Sd3™}
on the chain of subcomplex of Y;?(R) defined by o* is an RM-barycentric subdivision of *.

Next, assume that there is a continuous onto map f on compact Hausdorff space X to Y. For each pair
of coverings 9t € Cover(X) and M € Cover(Y) such that MM <{f~1(N)|N € 9N}, f induces simplicial map
X(Dt) 3 ao---ax = f(ao) - f(ax) € Y(M) so that chain map {f; : CZ(9M) — C7(DN)}. Then as we
can sec in the next theorem, if f is Vietoris-Begle mapping of order n, there is a chain map 7 = {73} on
(n+1)-skeleton of YV () to X (9M) such that {f,o07,} is an n+ 1-dimensional (:RDT)-barycentric subdivision
of Y. Morcover, given 9, such refinement S may be taken arbitrarily small and corresponding 7's may be
defined as (Vietoris homologically) unique.

Theorem 4.1: Let X and Y be compact Hausdorff spaces and let f : X — Y be a Victoris-Begle
mapping of order n. For each MM € Cover(X) and 9 € Cover(Y) such that M <{f~1(N)|N € 91}, there
exist a cover ;R = R(M,MN) € Caer(Y) and & chain map 7 = {7,;} on (n + 1)-skeleton of Y*(R) to X*(IM)
such that chain map {f; o 74} is an n-dimensional (I)-barycentric subdivision of Y. Moreover, for any
& € Caer(Y), there arc R’ and 7/ satisfying the same condition with 98 and 7 such that R’ < & and
7o(2) ~ 74(2%) in Cy (9M) for all 29 € ZY(R').

Above theorem shows an essential feature of the Vietoris-Begle mapping and plays crucial roles in the
proof of the Vietoris-Begle mapping theorem. Before proving it, I introduce one technical lemma. In Lemma
2.2, we have seen one of the simplest kind of prismatical relation that may be utilized to show the equivalence
between two cycles. There exists another convenient (though a little bit more complicated) method in forming
prisms. Denote by {0,1, I} the one dimensional abstract complex formed by two 0-dimensional simplices 0
and 1 together with 1-dimensional simplex I whose boundaries are 0 and 1 under relation 8;(J) = 1-0.
For simplicial complex K, the product complez of K and {0,1,/} denoted by K x {0,1,/} is the family of
simplexes of the form ¢ x 0, ¢ x 1, and ¢ x I, where ¢ runs through all simplexes in K. Boundary relations on
K x {0,1,I} are defined as 8(0 x0) = (o) x 0, 8(c x 1) = (¥o) x 1, and (o x I) = (o) x I+ (o x 1) — (o x0).
(Sec Figure 6.) It should be noted that K x {0,1,1} is no longer a simplicial complex. The subcomplex
of K x {0,1,I} constructed by all simplexes of the form o x 0 may clearly be identified with K and is
called the base of K x {0,1,I}. There also exists an isomorphism between K and the subcomplex of all
simplexes of the form o x 1, which is called the top of K x {0,1,I}. Then for each cycle z on K, we have
9z x I) = (z x 1) — (z x 0), immediately, so that z x 1 ~ z x 0 in K x {0,1,1}. Therefore, as before
(Lemma 2.2) if there exists a chain mapping 6 on K x {0,1,1} to a certain simplicial complex L, we have
the following.

Lemma 4.2: Assume that there is a chain mapping 8 on K x {0,1, I} to simplicial complex L. For two
images 0g41(29 % 0) and fg41(27 X 1) in the g-th chain group Cq(L) of g-cycle 29 € C¢(K) (through the
induced homomorphism 641 : Coy1 (K % {0,1,1}) — Cy(L)), we have 0441(29 x 0) ~ 0g41(27 x 1) on L.
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Figure 6: Prism K x {0,1, )}

PROOF OF THEOREM 4.1 : We shall use four steps. Step 1 is devoted to prepare for basic tools. In Step
2, we construct 2R. Step 3 is used to define 7. Step 4 is assigned for constructions of R’ and 7.

(Stepl) By the definition of Vietoris-Begle mapping, there is a covering JB(9,y) for each y € Y
and 9. Consider closed (compact) subset X \ St(f~*(y); *PB(WT.y)). Then the image under f of X \
St(f~(y); *P(M, y)) is also closed (compact) subset of the normal space Y disjointed from {y}. Given
1 € Cover(Y'), chose @(DT,MN,y) 3 y as an element of *N and Q(H,MN) as a finite subcovering of the cov-
ering {Q(M,M, y)|y € Y}. Then covering Q(M,M) satisfies that if B is a subset of Y such that B C Q for
some Q € Q(9,M), there is a point y € Y such that St(y; *N) D B and St(f~1(y);*BPON,v)) D f~YB).
In this proof we call this y the corresponding point of Y to B and use it as if it were the barycenter of points
in B.

(Step 2) Hence, for each 9t € Cover(X) and M € Cover(Y), Q(IM,MN) € Caer (Y ) satisfies that for every
g-dimensional Q(9t,M)-simplex (yo---¥q), (0 < ¢ < n), therc is a point y € Y such that y * {(yo---y,)
is a *Ol-simplex and St(f~*(y); * PN, y)) O F~({wo,...,¥q})- This suggests the possibility to obtain a
sequence of refinements 9y < - - - < Mn 41 = ML together with refincments Mo -+ < Moy = DN such that
M <{f~H(N)|N € 9} for each k = 1,...,n + 1, and for each ¢-dimensional MN,-simplex (g = 0,...,n)
(o - Yq), there exists y € Y such that y * (yo---yq) is a *Ngy1-simplex and St(F~2(y); “P(Mg+1,9)) D
F*({o,-.-,¥q})- (As we see in the next step, under the definition of barycentric subdivision (SD1)-(SD3),
this property shows that for each n + 1-dimensional Mo-simplex we are possible to define an DMeMyy1-
barycentric subdivision.) Indeed, given 9,11 = 9 and Mpy1 = ML, set N = QM *MNi1) < *Nyr.
Note that with Q(2,, ,,, "0,+1) associates finite yn+1,:’s such that Q(IM,, 5, *MNy41) consists of Q(Mny1,
“Nys1.Yn+1,4)’s. Let M, be & common refinement of coverings *P(Mp 41, Yn+1,i)’s and {f~1(N)|N € N, }.
Set M,—1 = Q(M,,,*IN,.). Repeat the process until we obtain Dg. Define M as | = R(WL,N) = Ny.

(Step 3) Let us define 7, (0 € g < n) on chains of YY(R) = Y (Mg) to X*(MWt). Consider a 0-
dimensional Vietoris JR-simplex, ¢, of Y?(MR). ¢° may be identificd with a point yy in Y. Define 7(c?)
as O-dimensional Vietoris 9%-simplex &% of X¥(Mty) which may be identified with an arbitrary point
xo € f~Y(yo) C X. Then we have fy o 70(0°%) = ¢© = Sdp(0?), so that we obtain 7y by linearly extending
it. Next, consider k-dimensional Vietoris SR-simplex, o*, of YY(:R) (0 < k < n + 1). Supposc that for each
(k — 1)-dimensional R-simplex 0%, 7x_1(0*~1) is already defined and satisfies that fx; o Tx—1(c*~1) is a
R *Ot;._;-barycentric subdivision of o*~! together with the relation of chain map, 8x—2 0 Ts—1 = Tk_2 08k—1,
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where 7x_3 for k = 1 is defined to be 0-map. In the following, we see that we may define 7x(c*) so
as to satisfy that Ox_1 o 7k = Tx_1 0 9% and [yTro® is a DR *My-barycentric subdivision of ¢® for each
k-dimensional Vietoris MR-simplex ¢*. Then by the mathematical induction, we may extend the defini-
tion of 7 until it is finally defined on all of the (n + 1)-skcleton of Y(SR). Since Hxo* is an M-chain,
Te—10k0* is already defined and is a Dix-cycle since Jx_17k—10k0% = T—20k-10k0* = 0. By assump-
tion fk_1Tk_1ak0k = fl—1Tk-1 Z:;D(—l)idik_l = Zfo(-l)ifk—l'rk—laf_l belongs to Cﬁ_l("mk_]_), where
of‘l’s are k + 1 (k — 1)-dimensional face of ¥, and fk_lrk_laf'l is a R *Ny_1-barycentric subdivision of
of~! for each i. It follows that all vertices of the **9%_;-chain, fr—17k-10k0% = frm1Tkm1 Soro(~1)io¥ =
Yo o(=1)% fr_1mk_10%, belongs to St(Ro; *Mi—1) C St(**Ni—1; *Di_1) for an Ry € R having all vertices
of o as its elements and **Nx_; € *_; such that Ry C **Ni_;. Since there exists *Nig_1 € *Mi_1 such
that St("‘Nk_l;“‘th_l) C *Ni.1, we have diam!fk_l'rk_laka”[ < *MNk-1. Then My—1 = Q(mk,'ﬂ‘tk)
implies that there is corresponding point y = yk ¢ € Y, Q(Dk, *Mi, yk.i) € (D, *N), t0 | fe-176-10k0*|
satisfying the following two relations.!? ‘

(6). St(y; *M) D | fe-17k-10k0"|
(M St~ W) *BO, 1) D £ fre-17k-10k0%]) D |Te-10k0*]

Denote by z*~1 the cycle 7x—10k0* € Z}_,(Mk—1) and let z1, . ..,z¢ be vertices of K (z*~1). Note that by
(7), there are finite z},...,z) € f~1(y) and *Py,...,*"P; € *9B(My, y) such that z} € *Py,...,z} € *Py and
z1 € *Py,...,z¢ € *P;. By deﬁ'ning mapping p on Vert(K(z*¥~1) x {0,1}) to X as u(zi,0) = z; for each
vertex (z;,0) in the base of K (z5~1) x {0,1} and u(z;, 1) = z! for each vertex (z;, 1) in the top of K(zF~1) x
{0,1}. Tt is easy to check that u is a simplicial map. Indeed, if ((¢o,0),...,(a:,0),(ai,1),. .., (@m,1))
is a simplex in K(z*~!) x {0,1}, then ((ao,0), ..., (am,1)) is & simplex in K(zF~1), so that there exists
element M., € M, such that ag,...,0m € Mg_;. Since a; is equal to some z;, and both (z;,0)
and (x;,1) are in *P;, all vertices in (ao, . ... ai, (ai, 1)y, pt{@m, 1)) belong to St(Mg_1, *P(Mk,y)). By
considering the fact that 2tx_; < *P(9Mk,y), they belong to an element of PB(M,y), so that u maps
K(2*1) simplicially to X*(98(Mk,y)). Let us use x to define 7(c*) as follows: Set &F = u(®i(2*"1)),
where @ is the prismatic chain homotopy defined in equations (1)--(3). By (3), we have 8 (u®rz*~1) =
(2Pt x 1) — pu(zF"1 x 0) = p(2*~t x 1) — 2*-1, Since u(z*~1! x 1) is a cycle on X(P(Mtx,v)) N f~(v),
there is a chain €§ on XV (P (D, y))Nf 1 (y) such that 8iés = u(z*~! x 1). Then if we set 7x(c*) = €5 — ¢k,
we have Ox7ro* = 2F~1 = 7,_10k_10%, so that 7) satisfies the condition for chain map. Moreover, since
Se(mia®) = fr(€5 — €8) = fr(€5) - fr(u(®x(z*71))), we may also rewrite it as fi(€§) — A(Pr(fr-12F71)) =
Fr(€5) = B(®k(fr-17k-10k0%)) = fi(€5) — 4(®k(Sdk—10k0*)), where & is the prismatic chain homotopy on
complex K(fr—1(zF71)) to K(fr-1(zF"1)) x {0,1} and i is defined on K(fx-1(z*"1)) in exactly the same
way s p, ie., B([(2:),0) = f(z:) and (f(:).1) = f(z}) = y. Since St(y; * M) D |fe-17k-10k0"|, p is
a simplicial map on K(fi_1(z*"1)) x {0,1} to YY(*D). Morcover, fr(mxo*) is clearly the join of y with
Sdk-1 Oko* with diam | Sd; o*| < *My.

(Step 4) Take 9 -+ <MW, and M- <M, in the same way as M < -+ < Mnqg and
Mo <+ < M1 except for the process to define Dy (k < n). Let us define D}, as a common refinement
of Q(MWy .1, My1), D, and & for each k < n. Define R’ as DN and 74 (0 < k < n + 1) in cxactly
the same way as 7,. We now check for each 2'-cycle 2™, 7,,(2") = 7.(2"). For this purpose, it is sufficient
by Lemma 4.2 to show mapping 6 to X*(9t) such that for cach o* x 0, 8(c* x 0) = 7x(c*), and for cach
o* x 1, (c* x 1) = 7{(0*), (0 < k < n), may be extended as & chain mapping on K(z") x {0,1,I}. On the

13For Vietoris PB-chain ¢, |c| denotes the set of all vertices of simplexes appeared in ¢ with positive coefficients.
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base and top of K(z") x {0,1,1}, 6 clearly defines chain maps sincc we have 9 (6xa* x 0) = 8k (7x(c*)) =
'rk..l(akak) = Gk_;[((')ko’k x 0) and Bk (Bo® x 1) = é)k(r,’c(ak)) = 'r,'c_l(akak) = Gk_l(akcrk x 1).

Let us consider a O-dimensional simplex ¢® in K(2") and 0° x I € K(2") x {0,1,I}. By definition
(in Step 3) forgo? = foro® = o and both 75(c°) and 7(¢°) are points in f~1(0®) = f~1(|foro0?|) =
(1 for40°l) D |100°| U |7§0®|. Then it is automatically satisfied that there cxists y (y = ¢©) such that

St(y;9) > |0 and
SUI™ W) PO, ) > 7e°).

Note that 68(c® x I) = 7(00) — 7/(6°). Hence, we have St(f~1(y);*PB) D |06(c° x I)| (Figure 7). Let

Figure 7: y and 88(c* x I)

us consider simplicial complex K = K(7(0%) ~ 7/(0®)) and mapping w : Vet(K x {0,1}) to X such that
w(a,0) = a and w(a.1) = y*, where ¥° is an element of f~1(y) satisfying {a,y*} C *P for some *P € *P.
Such y° exists since St(f~1(y); "B) D |#8(s° x 1)|. Then w is a simplicial map on K x {0,1} to X*(P). As
before, let us define ¢} as ¢} = w(®(ro® — 740°)), where & denotes the prismatic chain homotopy. Note that
€} = w((m0® — 750°) x 1) — (100° — 750°). Now w((r00° — 1§0°) x 1) is a 0-cycle (by the previous equation)
on X¥(P)N f~1(y), there is a 1-chain £} on X ¥ (M) N f~1(y) such that 8¢} = w((1o0® — 740%) x 1). Define
6(c® x I) to be £} —¢}. Then 6 satisfies the condition of chain map 8¢ =.68 for ¢° x I for each 0-dimensional
9. Clearly, f|¢3 — ¢}| is the join of y and ¢ = y, so that diam f|¢] — £}| < D

Next assume that §(c™ x I) is defined for each m < k in such a way that 98 = 86, 8(c™ x I) € My,
and diam f|0(c™ x I)] < ™Mm41. Let o* be a k-dimensional simplex of K(z"). Then 6(d(c* x I)) is
already defined. Since 8(8(c* x I)) = 6((8c*) x I) + 8(c* x 1) ~ 8(c* x 0), we have f|8(8(c* x I))| C
f18(8a*)| U flmk(o®)| U flrfo®|. By considering facts, diam f|7x(c*)| < "Dt and diam fir.(c*)| < 0T, <™,
we have St(R';My) contains f|7k(0*)| and f|ri(o¥)], where R’ denotes an element of 2R’ to which all
vertices of o belong. It is also true by assumption that for each (k — 1)-dimensional facc o*~! of o*,
diam f|8(c*~! x 1)| < "Ny, so that we have diam [}08(c* x I)| < My = Q(Myt1, *Mk+1). Hence, we have
a point y such that Q(Mey1. Me41,y) € Q(Met1, " Mir1),

St(y; "Me+1) D £168(c* x I)] and



St(f 71 (y); "B(Mer1,v)) O F71£160(c* x 1)

Hence, we have St(f =1 (y); *B(OMi+1,y)) D |68(c* x I)|. (See Figure 7.) Consider again simplicial complex
K = K(#9(c* x I)) and mapping w : Vert(K x I) to X, we may define §(c* x I) in exactly the same way as
before until k¥ = n in such a way that 96(c* x I) = 09(c* x I), 8(c* x I) € M41, and diam f|6(c* x I)| <
*Met1. a

Vietoris-Begle Mapping Theorem

Let X and Y be two compact Hausdorff spaces and f : X — Y a continuous mapping. For each covering
N € Coer(Y), D(M) = {f~1(N)|N € D} is a covering of X. It is clear that f maps each 90%(DN)-simplex to
MN-simplex so that induces a simplicial mapping on X¥(9(N)) to Y¥(N) and chain mapping {f;'}. Given
g-dimensional Vietoris cycle 47 = {¥7(91)|2t € Cover(X)} of X, define fo(7?) as the g-dimensional Vietoris
cycle of Y, {f7(v3(9M(D1)))|M € Cover(Y)}. The mapping of 7 to fa(?) clearly induces & homomorphism.
The next theorcm shows that f; indeed induces an isomorphism (Figure 8).

X Y
>

=A

‘2
)

Figure 8: Isomorphism under Vietoris Begle Mapping of order n

Theorem 4.3: (Vietoris Begle Mapping Theorem II: Begle 1950a) Let X and Y be compact Hausdorff
spaces. If f : X — Y is a Vietoris-Begle mapping of order n, there is an isomorphisms between HY(X) and
HZ(Y) for each ¢ = 0,1,...,n.

PrROOF : We shall use three steps to prove the assertion. In Step 1, we construct n-dimensional Vietoris
cycle {y™(91)} of X from {z*(M)} of Y. By using it, we see in Step 2, the homomorphism induced by f
between HY(X) and HY(Y') for each ¢ =0,1,...,n is onto. The homomorphism is seen to be one to one in
Step 3.

(Step 1) With each 9t € Caer(X) associate covering 9t(9t) € Caer(Y) such that M <{f1(N)|N €

N(OM)}. M = {f~HN)|N € 9} for some N, it is always assumed that (M) is equal to one of such N.

Let 2 = {z"(M)|MN € Cover(X)} (or simply {z"(D1)}) be an n-dimensional Vietoris cycle of Y. For each
covering I € Cover(X), define y™(9M) as y™(IM) = 7, (2™(R(DT,MN(M)))), where 7 = {7} and R(W,N)
are the chain mapping and the covering defined in Theorem 4.1.

We sec that y™ = {y™(9)} is an n-dimensional Vietoris cycle. Since cvery 4™(90) that is an image of
the cycle, 7, (2™(PR(901,M(M)))), is obviously an n-dimensional Victoris D-cycle, all we have to show is
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YH(O0T) ~ AT (4™(M")) for cach pair M < OM. That is,
Ta (2" (R(D,91(MN)))) ~ BT (7, (2™ (R(M", DUM")))))

for each D" <9, where 7" is the chain mapping associated with SR(t" DY(M")). For a while, de-
note R(PT",M(IM")) by R" and RKR(WVL,N(IM)) by MR. If we omit inclusion map h,,, we have to show
Ta(2™(R)) ~ 7/ (2"(R")).

In Step 4 of the proof of sccond essertion in Theorem 4.1, we may chose

W <Dy and Mo My,

as common refinements not only of serieses {9} and {M} constructing 7 (in Step 3) for Pt and O but
also of another streams {91"x} and {M";} combined with chain map 7 for D" and M satisfying the same
condition with 9 and 9. Since the construction of 7' is independent of 7 and 7", by repeating the same
argument (to construct 8’ instead of 6), we can sce 7,(z") ~ (") and 7, (z") ~ 7(2") in CZ(9M) for all
z" e Z2(R').

That is, there exists common refinement SR’ of | = R (PT,MN(M)) and K" = KR(WT",D(IN")) together
with chain map 7’ such that 7/(z*(R')) ~ r(z"(R')) and 7'(2"(N')) ~ 7"(z"(R")), where 7 and 7 are
the chain map associated respectively with 2R and R". Hence we have 7(z"(R')) ~ 7(z*(R')). Since
2" is a Vietoris cycle, we know Ag™ (z™(R')) ~ 2™(R) and AZ"* (2" (R')) ~ z"(R"), so that we have
7(z*(R)) ~ 7" (2"(R")).

(Step 2) We sce that f induces an onto mapping. Let z™ be an n-dimensional Vietoris cycle of X and
T = {Ta(z"(R(D1,91(9M))))} the n-dimensional Vietoris cycle of ¥ corresponding to z”. Let us verify
that fo(v*) ~ 2™ Given M € Cover(Y), let M be the covering {f~}(N)|N € Dt}. Then v*(M) =
7(2™(R)), where | = R(I,N(IM)). It follows that the MN-th coordinate of fr(y"), FT(v™(MM)), is equal
to fl7nz™(SR(,MN(MN))). Note that M(MT) may not equal to MN. Since fI7,z"(R(WT,I(M))) is an
(RIT(MN))-barycentric subdivision of 2™ (R(T,M(M))), 2" (M) ~ Sdy, 2*(R) = [7 (Tn 2™ (R(IM,N(M))))
= fR(¥*(9)) on Y (M) (as well as on YV (D(IM))). Moreover, since z" is a Vietoris cycle, we have
2"(R) ~ z*(MN). It follows that z"(N) ~ fI(y™(9M)) on Y(M).

(Step 3) Let us confirm the mapping induced by f is one to one. Since f clearly induces a homomorphism,
it is sufficient to show that fn(y™) ~ 0 means y" ~ 0 for each n-dimensional Vietoris cycle ¥* of X. Given
9 € Cover(X), chose 91 = DY(MT) and R = R(MWL,IN(IM)) as before. Let 4 = {f~(R)|R € R}. Morcover
let us recall sequence {90} of refinements of Mt defined in the proof of Theorem 4.1 and 23 a common
refinement of &1 and all DTy ’s.

Since 4™ is an n-dimensional Vietoris cycle, y*(0) ~ 4™(i) on X¥(4). Then we have fIy™(W) ~
I2y™(4) on YY(R). But if fa(y™) ~ 0, R-th coordinate of f,(y*), fIy™(M(R)) = fIy™(U), satisfies
2™ (&1) ~ 0 on YY(R). Hence, we have f3(y™(23)) ~ 0, so that 7 (f2(v"(2))) ~ 0, where 7 = {r,}
~ is the chain map associated with R = JR(9,9). Now it is possible to show ([ (y™ (D)) ~ v™(V) on
X*(9). Indeed, let us consider K = K (y"(0)) and the product cell-complex K x {0,1,I} together with
chain map @ defined on the base and top of K x {0, 1,1} to X?(9M) as 6(o* x 0) = * and 0(c* x 1) = 7 fro*
for cach simplex o* of K. We may extend # as a chain map on X x {0,1,I} in exactly the same way with
the process stated in the proof of Theorem 4.1. (In Step 4, substitute 7 fxo® for 7ko* and o* for 7{(c*).)
Then we have 7,(f(v*(2))) ~ 7" () on XV (M), so that y*(W) ~ 0 since 7, fay™* (W) ~ 0 on X*(M).
Since 4" is a Vietoris cycle, y*(20) ~ 4™(9t). Thus y"(M) ~ 0 on X (M), so 4™ ~ 0. ' ]
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Analogue of Sperner’s Lemma

Nikaido (1959) treats a theorem which may be considered as an extension of Sperner’s lemma based
on Vietoris-Begle mapping theorem. Let X and Y be compact Hausdorff spaces. Suppose that ¥ may be
identified (under homeomorphism) with n-dimensional simplex {(a%a’ - - - @) in Euclidean (n+1)-space R™*1.
Moreover, assume that there is continuous onto function f : X — Y. For each k-dimensional facc a® - - g’
of a--.a™, denote by [a% - - - a*] the sct of all convex combination of points of {a°,...,a*}. In this section,
we call f~1([a% ... a%*]) a k-face of X. For point z of X, there exists the smalicst dimensional face g% - - - ai*
such that f(z) € [a% - - - a'), the carrier of f(z). We also call such f~*([a® - - - a*]) the carrier of z (Figure

X

F41a @)

Figurc 9: Faces and Carriers

Let us consider a covering 9t € Caver(X) of X and Vietoris 9-complex X v(91). Denote by K(Y) the
simplicial complex K ((a%’---a™)). Suppose that there cxists a chain map 7 = {7,} on chains of K(Y) to
chains of X*(9M), 74 : C4(K(Y)) — Cy (M), satisfying the following two conditions:

(T1) mi(a®---a*) C f-2([a’% .- a%*]) for any k-facc a® - --a'* of Y.
(T2) 7o(a?) is a single point for each vertex a* of Y.

We can always construct such 7 when f is a Vietoris-Begle mapping. (The same process with the construction
of Vietoris-Begle barycentric subdivision in Theorem 4.1 may be utilized.) Operator 7 may be considered
as & generalization of the usual barycentric subdivision. If X =Y and f is the identity mapping, it is clear
that chain map Sd satisfies conditions (T1) and (T2).

A vertez assignment v is a mapping on X = Vet(XV(M)) to {0, al,...,a™} = Vert(K(Y)) such that for
each x € X, v(x) is a vertex of the carrier of f(x). Obviously, v is a simplicial mapping on X ?(9) to K(Y),
s0 that induces a chain homomorphism which we also denoted by v or {vg}, v, : CF(9%) — Cy(K(Y)).
Given vertex assignment v, we call n-dimensional simplex o™ in X*(9M) regular if v,(0™) = (a%!---a™)
or va(o™) = ~(a%'---a™). It is also convenient to define & sign e(c™) of an m-simplex of X¥(9M) for
easch m = 0,1,...,n, 88 €(0™) = 1 if vm(0™) = (a%’---a™), e(e™) = -1 if vm(c™) = —(a%!.--a™),

and €(¢™) = 0 otherwise. In the next lemma, we use J as an index sct for all n-dimensional simplexes in

43



Xv(m).m
Lemma 4.4: (Nikaido 1959: Sperner’s Lemma) Let 7,((a%!---a™) = ¥, , ajo}, where 7 denotes

the chain map defined above. Then Eje 7 @j¢(07) # 0. Especially, there exists at lcast onc regular simplex
for an arbitrary vertex assignment.

PROOF : Note that in the above expression, ,({a%!---a™)) = Y jes @0}, the value of 7, 3=, ; a0,
is a finite sum by definition of the chain map, so that a; = 0 except for ﬁmtely many j € J. By condition
(T2), the lemma is clearly true for n = 0. In the following we show the lemma by using the mathematical
induction over n. Let K be an index set for all (n — 1)-dimensional simplexes in X ¥(9t). We call (n — 1)-
dimensional simplex o™~ in X¥(9M) regular if v,(c™!) = (a®---a") or vq(a":i) = —{al---a™). Assume
that the lemma is truc for n — 1, ie., for f restricted on f~*([a!---a™]) to K({al---a™)), T restricted on
chains of K((a!---a™)), and an arbitrary vertex assignment v on X to {a!:--a"},

Ta-1((al-a™) = D Bre(of ™) #0,
keK

where the summation is taken over all k € K for the sake of notational simplicity. (There is no problem since
€(07}) =0 for all o771 ¢ X*(M) N f~2([a® - --a™]) by the definition of €.) For our purpose, it is sufficient

to show that
Zaje(a;‘) = Z ﬂkc(ag !
jed keK

(Step 1) First, let us see that
D_ase(e}) =D a5 Y [op™) - oPlelop ™),
i€t j€J  kek

where [- : -] denotes the incidence number. Indeed, when o7 is regular, there is one and only onc regular
(n—1)-face of " of . Let (oYY = (uy - un). IF[(oP 1) (07)] = 1, then by using a certain point up € X,

we may write (07) = = (ugu; - --up). Hence, va(0}) = (v(uo)n(u1) - v(un)) = £(a%?’---a") if and only if
tp-1(0p 1) = (v(ug) - v(vn)) = £(a! - a"). Therefore, ¢(o7) = e(o}~ D If [(op (o")} = -1, then we
may write (07) = —(ugu1---un). Hence, vn(a )= -—(v(uo)v(ul) ‘v(up)) = £{a%?!---a™) if and only if
Un-1(0k 1) = ( (ul) 'v(v,.)) = F(al-a™). Therefore, e(o]) = —e(afc"l). In each cases, we have ¢(07) =
Srexliop™) : (oM)]e(or™). When cr;‘ is not regular, we must show that 3 ,ex[(or ™) : (dM)]e(or ™) =0
even if of has regular faces. Supposc that oP~! is a regular face of o7 and let (oYY = (u1--up).
There is a point ug of X such that Vert(o}) = {uo,u1,...,un}. Since o} is not rcgular, there is an m
such that v(uo) = v(um). Let of ' be the face of o} whose vertices are {uo,u1,...,un} \ {um} Let
(or 1) = (wy - --wy). Clearly, 67 has exactly two regular faces, o ~* and of 1. Then, if [(6771) : (o)) = 1
and [(op™1) : (0])] = %1, we have (67) = (uou1---un) and (¢F) = £(umw: ---wy). Since <u0u1 Up) =

~ (U] - - U~ 1U0UMH1 * * * Un), We have (Umwy - Wn) = £(uoUs - Un) = F(UmU1 - Um—1U0Um+1 " " Un),
so that (w(w1)v(ws) - v(wa)) = FW(w1) - V(Um-1)0(Uo)v(Ums1) - ¥(un)) = Flo(u1)v(uz) - --v(ug)). It
follows that e(of ") = Fe(oF?). In exactly the same way, if [(o7~?) : (oM)] = —1and [(6p~") : (o)) = £1,
we obtain that €(0f ™) = +¢(o]™"). Therefore, we have [(a77%) : (eP)e(o] 1) + (™) : (o) ]e(or ™) =0
in all cases, so that 3, l{og =1y (e)e(a 1=1) = 0.

(Step 2) Next, we see that

Sy Y liop ) ople(p™) = 3 uelof™).

JjeJ k€K kEK

M4Recall that we treat only finite chains, so that in the formal summation all but a finite number of coefficients are 0.
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Note that since 74((a°---a™)) = 3 ¢ @07, we have

On(ma((@®---a™)) = 8n(d_a07) =Y 00n(0f) = a; O [(or™") : (oP]op .

jeJ jeJ Jj€J  keK

Moreover, since 81 = 78, we also have

n

On(({a®+a™) = Ta18n((@+-a™)) = 3 (~Diras((@®- -8 -a)),

i=0

where the circumflex accent denotes the omission of vertex af. It follows that

Yoo Y Lo ™) s oPopt = Y (1) (@@t a™)).

jeJ  kek i=0

Since 7n—1({a®---at---a™) < f~1([a%,---,a%,---,a")) (Condition (T1)), by considering the fact that each

o7~1 appearing in the formal summation 7,_;({(a®---a*.-a™)) except for i = O cannot bc regular, the

1.

cocfficient of each regular o~ (k € K) must cqual to its coefficient in Th—1({a!---a™)), so that we must

have
3 agllopt) : (o)) = Br
j€J

for each regular of~* (k € K). Since €(of ') = 0 for cach oF~! that is not regular, we have

S Yo ler Ty s oPelor ) = Y Bre(op ™).

jeJ  keK keK

5 Eilenberg-Montgomery’s Theorem

By combining Lemma 4.4 with Vietoris-Begle mapping theorem, we obtain the following coincidence
theorem. Though the result may be considered as a special casc of Eilenberg-Montgomery-Begle's fixed
point theorem, we prove it directly and use to show a simple version of Eilenberg-Montgomery’s theorem.

Theorem 5.1: (Nikaido 1959) Let X be a compact Hausdorff space and Y a sct homeomorphic to
finite-dimensional simplex a%a! - - -a™. Suppose that there are two continuous mappings f and # on X to Y,
one of which, say f, is a Vietoris mapping. Then there is a point = € X such that f(z) = 8(z).

PROOF : Let us identify Y with [a%a’..-a"]. Then every point y € Y may be uniquely represented as
Y = Yo yia*, where y; > 0 for all i, and 37 % = 1. In the same way, we may represent f(z) and 6(z)
as (fo(z),..., fa(z)) and (6g(x), ..., On(z)), respectively. Denote by F; the set {x € X|fi(z) = 0:(z)}. It is
easy to check that for each k-face a® ...a% of Y, f~1([a% ---a%]) C U;;o F;;. Then we may define vortex
assignment v as v(z) = a® for a vertex ¢’ of the carrier of x such that v(x) € F;. Since for Vietoris mapping
we may construct chain map 7 in Lemma 4.4, we may obtain regular n-simplex o™ in X¥9t. Therefore,
there is at least one M € 9 such that M NF; # @ for all i = 0,...,n. Now, assume that (i, F; = 0. Then
the family {F¢ = X \ F;|i =0,...,n} may be considered as a covering of X. If we apply the same argument
for M to {Ff = X\ Fli = 0,...,n}, wec obtain an element of {Ff = X \ F;li = 0,...,n} that intersects
with all Fi’s, which is impossible since Ff N F; = @ for all i. Hence, we have N[, F; # 0. Now, it is easy to
check that any element z € (;_, F; satisfies f(z) = 6(z). L
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By using Theorem 5.1, we can easily obtain the following simple version of Eilenberg-Montgomery fixed
point theorem.

Theorem 5.2: (Eilenberg-Montgomery Fixed Point Theorem: Finite Dimensional) Let Y be a sct

1 .

homeomorphic to finite-dimensional simplex a%a®---a™ If ¢ : Y — Y is an acyclic valued correspondence

having closed graph, then ¢ has a fixed point.

ProOOF : Let X be the graph of ¢, G, CY x Y. Since ¢ has closed graph, G, is a compact Hausdorff
space. Consider two projections f: X =Gy 3 (#,y)—rv €Y and0: X =G, 3> (x,y) —»y €Y. Since p is
acyclic valued, f is a Vietoris mapping. Therefore, by Theorem 5.1, there is a point 2* € X =G, CY xY
such that f(z*) = 6(z*). This means, however, the first coordinate and the second coordinate of z* arc
identical, i.c., z* may be represcnted as (z,z). Hence, we have (z,z) € Gy, so that z € ¢(z). ]

Of course, the above theorem includes Brouwer’s fixed point theorem.

6 Lefschetz’s Fixed Point Theorem and It’s Extensions

In this section we treat compact Hausdorff lc spacc X. The homology groups of X are isomorphic to
the corresponding groups of a finite complex (Theorem 3.4), and classical results of Lefschetz (1937) and
Eilenberg and Montgomery (1946) may be shown to be extended (Begle, 1950) in such cases.

Lefschetz number of continuous mapping f : X — X is the summation of trace of homomorphisms,
trace (f;) : HY(X) — HY(X), .

(8) Z(—l)‘ trace (f;)

i-0
which is well defined since all HY(X) are finite dimensional and HP(X) = 0 for all ¢ sufficiently large.
Intuitively, for every dimension 4, the basis of C?(90%)’s (hence, of HP(90t)’s) are given by ¢-dimensional
simplexes in XV(9M), so that if f maps all points in a certain simplex completely to other simplexes, the
trace of linear mapping f; should necessarily be 0 (Figure 10). The Lefschetz’s fixed point theorem is

Figure 10: Lefschetz Number 0

nothing but a restatement of this intuitive observation, i.e., if there is no fixed point, the trace of all such
linear functions should be equal to 0.
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The purposc of this scction is to relate this profound algebraic features of fixed point arguments with our
fixed point theorems and methods for the general Kakutani typc mappings.

Convex Structures and Mappings of the Browder Type

Before we relate Kakutani typc mappings with arguments for Lefschetz’s fixed point theorcm, we see how
methods for Browder type mappings may be recaptured through the framework of Cech type homology
theory.

Let E be a Hausdorff space on which a convex strucrure, (a concept of combination among finite points
with real coefficients), is defined, and let X be a non-empty compact subset which may not necessarily
convex. We say that mapping ¢ : X — 2X is of class @ if o has a fixed point frce convex extension having
local intersection property on X \ Fiz (). Figure 11 represents a typical situation for mapping ¢ : X — 2%

Figure 11: Mapping of class £

of type %, where x and z’ are not in Fixz(p). If X is convex, then a class & mapping is nothing but a
mapping of the Browder type.

The local intersection property on X \ Fix(yp) for a convex extension of mapping ¢ of class & enable
us to replace the relation among open coverings of X \ Fix(yp) with convex combination of points. Sec
Figure 12, where y and 3’ are points in convex extensions of ¢(z) and ¢(z'), respectively, satisfying the local
intersection property near z and z’. If neighbourhoods of z and z’ have an intersection point in X \ Fiz(p),
then the convex conbination of y and y’ belongs to X since there is a point z € X \ Fixz(yp) such that both
y and ¢’ belong to a convex extension of ¢(z).

For mapping ¢ such that Fix(p) = @, then, such neighbourhoods form a covering of X and convex
combination of points (y, ¥/, ctc.,) constructs a complex which may be considcred as an approximation of
X (See Figure 13). Clearly, the complex may also be characterized as the nerves of the covering formed by
neighbourhoods of x, z’, etc. Note that the partition of unity for the covering formed by neighbourhoods of
points, x,z’,...,say a: X — [0,1}, &’ : X — [0,1], ..., gives a continuous mapping on X to the complex,
say K, formed by points y,v/,.. ., as

f?: X3z~ az)+d(z)+ - €|K|

The continuous mapping restricted on [K]| to itself, however, never has a fixed point since by the property of
class % mapping p, z* € U(z), z* € U(z'), .. ., (neighbourhoods of z, ', . . ., resp.), means y, ', ..., belong
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Figure 12: Intersections and Convex Combinations

Figurc 13: Realization of Cech Complex
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to the fixed point free convex extension of ¢(z*), so that z* cannot be any convex combination among points
¥, ¥, .... As we can see below, for such continuous mapping f¥, the Lefschetz’s fixed point arguments may be
applicable, hence, for mapping ¢ of class sernath.B, the trace of homology mapping f¢ : HY(|K|) — HZ(|K1)
for each ¢ = 0,1,2,..., of f*?, (say, a certain kind of lincar approximation of ¢), is 0 for sufficiently finc K
as long as ¢ has no fixed point. ‘

Convex Structures and Mappings of Class J¢

In the last part of Chapter 2 in Urai (2005), the author treated a wide class of mappings, the Kakutani
type, to which we have seen that (1) the fixed point property holds, and (2) a dircctional structure on which
the dual spacc representation of ¢ has local interseetion property as long as ¢ has no fixed points may be
definable.

Assume that on space X there is & convex structure (P x,hx,{fa]A € £(X)}). We say that a mapping,
@ X — 2%\ {8}, is of class ) if for cach x € X, there is a closed convex sct K such that (1) (z ¢
©(z)) => (z ¢ K;), and (2) there is an open neighborhood U, of z satisfying that Vz € U, ¢(z) C K15
Note that for mapping ¢ of class J cach ncighborhood U, of £ may be chosen arbitrarily small. Of coursc,

class ¥ mapping is nothing but the Kakutani type mappings since for cach mapping of the Kakutani type,

for all z € Fizx(yp), we may set Kz as Ky = X.

For mapping ¢ : X — X of class ¥, let us define the Lefschetz number of ¢ in a generalized sensc. Since
X is compact and Hausdorff, for cach mapping ¢ : X — 2% of class J# there is at least one covering
M = {Mi,...,M,;} of X such that for cach i = 1,...,m, there is a convex sct K; satisfying that (z €
M,;) = ¢(z) C K;. As stated above, 9% may be chosen arbitrarily small, so that we may supposc that
MW < *Ny, where My € Caver(X) is the covering for lc space X stated in Theorem 3.4, (a). It is known
that the nerve of any covering Dt < *MT < *Mg gives the finite dimensional (ordinary simplicial) homology
group which is isomorphic to H¥(X) for any dimension n. The isomorphism is induced by the composite
of mappings, ¢4, ,, : CS(*Mo) ~ CL(Mo), the projection p, 0, ¢4 : CL(*M) — C; (M), and the inclusion
hy#™ to define the mapping between cycles as 8,(z) = 9% 0 pr 0 (& 0 hy(2(DT)). (Sce the proof of lemma 2
in Begle (1950b).)

Let 9t = {N1,...,N,} be *9N. Take ay € Ny,...,an € Ny, and by € p(a1), ..., bn € p(as) arbitrarily
and denote by A and B respectively the set {aj,...,a,} and {b1,...,b,}. Denote by K(A) the complex
with vertices in .4 such that a ---a;, € K(4) ifl (]5:1 Ni, # 9. Clearly, K(A) is isomorphic to the nerve
of covering M, so that for an arbitrarily small refinement P of *N, there exists homomorphism 6, between
cycles defining isomorphism between homology groups,

9 On 1 Z2(X) = Za(K(A))

for any dimension n, where Z?(X) denotes the sct of all n-dimensional Vietoris cycles on X and 8,(z) =
ghopno (BRI (2(B).

Since M is a star refinement of M, the complex, K (A), may be considered as a subcomplex of X*(90T).
Define an abstract complex, K (B), with the set of vertices, B, as by, - --b;, € K(B) iffco{bi; : j =0,....4} C
X. Then, we may obtain a simplicial mapping 7 : K(A) — K(B) such that 7(a;) = b; foreachi=1,...,n.
Moreover, under convex structure on X, by taking B’ > B sufficiently large, the restriction of fp on
K(B), we may obtain & continuous mapping r on standard recalization of K(3) into X. Hence, we have
homomorphism rp, 0 7, 0 O, : HE(X) — HY(X) whose trace is well defined for each dimension n. Note that

18Since K, is closed, we may suppose Uz N Kz = @ without loss of generality as long as = ¢ K.
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these mappings depend on how we chose 90, B, A, B. For mapping ¢ of class J¢, define Lefschetz number
A(yp) as the minimum of natural numbers given by such traces as,

o0
(10) Alp) = m,ngﬁ,B ;(—1)' trace (r; o m; 0 68;).

We can verify that this number also characterize the existence of fixed points in exactly the same way as
the ordinary Lefschetz number even for the wide class of mappings, . All we have to show is that if ¢ of
class J¢ has no fixed point, there is at least one sct of 9, A, and B under which trace (r; o ;0 6;) = 0 for
any dimension i. It would be a routine task, however, if we recognize the definition of ¢, (i.e., all we have
to consider is §8-simplexes which may be taken as small as possible.)

Acyclic Valued Directional Structures and Mappings of Class 2

Arguments in the previous subsection for a gencralization of Lefschetz’s fixed point theorem may also be
applicable to cases such that each K characterizing the mapping of class ¥ is not convex but acyclic.

Let X be a compact Hausdorff lc space. We say that a mapping, ¢ : X — 2%\ {8}, is of class 2 if for each
z € X, there exists closed acyclic set K, such that (1) (z ¢ ¢(z)) => (z ¢ K:), and (2) there is an open
neighborhood U, of x satisfying that Vz € Uy, p(z) C K,. As before, since K is closed, we may suppose
U, N K, = @ without loss of generality as long as z ¢ K. Notc also that for mapping ¢ of class ¥ cach
neighborhood U, of z may be chosen arbitrarily small. In standard cascs, non-empty convex sets are acyclic,
so that the discussion for class 2 mapping below may also be considered as a generalization of the previous
argument for class ¥ mappings (Figure 14).

Figure 14: Meppings of Class £ 'and 2

Since X is compact and Hausdorff, for mapping ¢ : X — 2% of class 9, there is at least one covering
M = {My,...,Mn} of X such that for each i = 1,...,m, therc exists acyclic sct K; satisfying that
(z € M) = (p(2) C K;). Since 9% may be chosen arbitrarily small, we may suppose that 9t < 9%, where
My € Covar(X) is the covering for lc space X stated in Theorem 3.4 (a) as before. The nerve of any covering
N < ™Mt < Dy provides finite dimensional simplicial homology group which is isomorphic to H3(X) for each
dimension n. The isomorphism is induced by composite of mappings, ¢%,,, : CS(*®T) — CE (M), projection
pEm Ch CU (™) — CS(*ON), and inclusion hp™™ s 6,(2) = b 0 pn 0 (8 0 hn(2(M)).

Let k be the dimension of the nerve of . We shall define a sequence of refinements of M

(11) W My < S Doy S D S Dy SN WM MMM

50



as follows: Let Mg = DT For ¢ such that 0 < £ < k, define 9, as a refinement of *Ppyy such that
for cach compact acyclic K; € {K1,...,Kn}, any ¢-dimensional Victoris 9,-cycle of K; bounds a chain
in 9,1 of K;. (This is always possible by Theorem 3.2.) Note that for cach pair of 9, and 9T, and
dimension n, homomorphism #4t1¢ = b o p, 0 (2 o h,, between C¥(IM41) and CY(MWT,) which induces the
isomorphism among homology groups exists.

Let us define a chain homomorphism 7 = {7} on the k-skeleton of X*($%) to X(M). At first, denote by
£ ={Lo,Ly,..., Ls} the cover *M. By definition of %, Y2, (1s) = zL, € L; and there exists an M; € M
such that St(L;; £) C M;. Define a; as a; = 21, and K, as the corresponding K; for cach i = 0,...,s.
Then we have for each z € L;, @(z) C K,, for all . With respect to a;, fix a point b; € ¢(a;) C K,, for each
i .

For 0-dimensional simplex 0 = (z°) of X”(9%), the image 6 0 05" o - - 0 63°(z°) is by definition one
of points ay, . ..,as, say a;. Define 75(c°) as 19(0®) = b; and extend it linearly on C§ (M) to CF (M) C
Cy (). '

Next, for 1-dimensional simplex o! = (z°z') of X?(Mo), we may write 700(a!) = 7o(z0 — x!) a8 b; — b;,
where b; = 79(z°) and b; = 7o(2!). Of course, b; — b; may also be considercd as an Mp-cycle (in the reduced
sense).'® Hence, by definition of 9% relative to DNy, we have a 9;-chain ¢* such that &(c!) = b; — b;

Figure 15: Class 2 mapping and 901;-chain

(Figure 15). Define 71(c!) as 71(0!) = ¢! and extend it linearly on C?(90,) to CP(MNy) € C7(9M). Clearly,
O = 790 holds.

Now, assume that for all dimension ¢ < ¢, (2 < £ < k), 7, is defined on C3(90) to C3 (M) C C7 (M)
and 87, = 7,19 holds. Then for ¢-dimensional simplex o of X?(9%,), chain ¢ = 7o—19(0?) is well defined.
Since 9(c) = 8714—10(0%) = 74-200(c%) = 0, ¢ is indeed DM,_1-cycle. Hence, by definition of Me_; relative
to M, we have a My-chain ¢f such that d(c?) = c. Define 7p(0?) as 7(0*) = ¢ and extend it linearly on
C; (M) to CF (L) C CY(9M). Clearly, 87 = 718 holds.

Hence, by induction, we have successfully obtained the chain map 7 = {74} on the k-skeleton of XV(9o)
to XU (M41) = X¥(DM) C X¥(M), i.e., we have

(12) 7q + C3 (M) — C7 (M) C Cg (M)

18Every point of X may be considered as a O-dimensional $p-simplex. Note also that in Theorem 3.2, O-dimensional cycles
should be taken in the reduced sense.
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for all ¢ = 0,1,...,k. The homology groups of X"(90%,) and XV(IM) are isomorphic under the isomorphism
induced by §"*t*"o- .00, Since both of them are isomorphic to the corresponding group of a finite complex,
trace (7,) is well defined for all ¢ and Y g0, (—1)% trace (r;) is finite. Though definition of 7 depends on D,
N, and, especially, set A of all ¢;’s and B of all b;’s, we may define as before the minimum of such values,

(19 Mp) = min 31 e ()
T =0

as an extended Lefschetz number for mapping ¢ of class 2. By considering the definition of 65+, we
obtain the following cxtension of Lefschetz’s fixed point theorem.

Theorem 6.1: (Extcnsion of Lefschetz’s Fixed Point Theorem) Let X be a compact Hausdorff lc space.
Mapping ¢ of class 2 has a fixed point if A(p) # 0.
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