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1 Introduction

This paper considers a dynamic programming model with nondeterministic system. Dynamic
programming has been developed and applied by many authors([1], [2], [4], [8], [9]). Dynamic
programming models are classified under three transition systems. They are deterministic system,
stochastic system ([8]) and fuzzy system ([2], [5]). In this paper nondeterministic system is
introduced as a transition system of dynamic programming. Under nondeterministic system,
next state is not unique, that is, a single state yields more than one state simultaneously in
the next stage. We introduce this nondeterministic system and study on related optimization
problems. Nondeterministic dynamic programming covers traditional ones and has a strong
possibility for applying the idea of dynamic programming to more various problems.

2 Finite Stage Model

2.1 Notations and Definitions

A finite nondeterministic dynamic programming is defined by five-tuple:
N = (N, X, {T,UO)} T, {n,k.B}),

where the definitions of each component are as follows.

1. N(> 2) is an integer which means the total number of stage. The subscript n specifies the
current number of stage.

2. X is a nonempty finite set which denotes a state space. Its elements z, € X are called nth
states. zp is an initial state and z is a terminal state.

3. U is a nonempty finite set which denotes an action space. Furthermore we also denote by
U a mapping from X to 2U and U(z) is the set of all feasible actions for a state z € X,
where 2Y denotes the following power set:

2¥ = {A|ACY, A#0}.

After this, let G-(U) denote the graph of a mapping U(-) :

G (U) := {(z,u) |ueU(z), z€ X} C X x U.
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4. T : G,(U) = 2% is a nondeterministic transition law. For each pair of a state and an
action (z,u) € G,(U), T(z,u) means the set of all states appeared in the next stage. If an
action uy, is chosen for a current state zp, each zn41 € T'(z,u) will become a next state.

5 r: Gr(U) = R!is a reward function, k : X — R! is a terminal reward function and
B : G.(T) = [0,00) is a weight function. If an action uy, is chosen for a current state zy,
we get a reward r(Zn,un) and each next state 2,41 will be appeared with a corresponding
weight B(zy, Un, Tn+1) (2 0). For a terminal state zy we get a terminal reward k(zy).

A mapping f : X = U is called decision function if f(z) € U(z) for any z € X. A sequence
of decision functions:

7 = {fo, f1,-.. fN-1}
is called a Markov policy. Let II(0) denotes the set of all Markov policies, which is called
Markov policy class. If a decision-maker takes a Markov policy 7 = {fo, f1,... fv—1}, he chooses
fn(zn) (€ U) for state z, at nth stage.

" 2.2 Formulation

For an initial state zo € X and Markov Policy 7 € II(0), we introduce total weighted value is
given by

V(zgm) = r0 + 3 Borr + Y. D Bobira+

T1€X(1) (z1,72)€X(2)
ek N Y BB Boirh-r + YLD Y BB Bk
(Z1y0esZN—1)EX(N-1) (z1,.-,ZN)EX(N)

o € X, 7= {fo, f1,--- fn-1} € TI(0)
where
Tn = (T, fn(2n)), k=k(zn), Bn=B(zn, fn(zn), Tns1)
X(m) = {(z1,.,%m) € X X -+ X X |z1 € T(xy, film)) 0<I<m—1}.

Thus the nondeterministic dynamic programming problem is formulated as a maximization
problem :

Po(zo) Maximize V(zg;7) subject to = € II(0).

The problem Py(zo) means an N-stage decision process starting at Oth stage with an initial state
Zg. ,
A policy 7* is called optimal if

V(zo;©*) 2 V(zo; ) Vr € TI(0), Vo € X.



2.3 Recursive Equation

Let vo(xo) be the maximum value of Po(zg). Similarly, we consider the (N — n)-stage process
with a starting state z,(€ X) on nth stage. The Markov policy class for this process is

H(’I’L) = {ﬂ': {fmfn-%—h---fN—l}[ fl:X — U7 fl(x) € U($), n<lI<N- 1}

Thus weighted value is given by

Va(@nsm) = rn+ Z BnTn+1 + Z Z BnbBrtiTny1 + -+

zn€X(n) (Zn,Zr41)EX (n+1)

+ ZZ"Zﬁnﬁn+1"‘ﬁN—lk, zn € X, m € II(n)

(zﬂ 7,zN)E'X(N)

where
X(m) = {(@ny.--,Zm) € XX X X|z131 € T(21, fi(zy)), n<I<m~1}.
Then for n =1,2,...,N — 1 the imbedded problem is defined by
Pn(zn) Maximize V(zn;m) subject to = € II(n),

and let v, (zy,) be the maximum value of Pp(zy). For n = N let vy (zn) := k(zn).
Then we have the following recursive equation.

Theorem 2.1 (nondeterministic)

vn(z) = k() zeX
me) = max [rew+ ¥ fuun@) seX 0<n<N-1
uweU(z) yeT (@)

Let f(z) € U(z) be a point which attains v,(z). Then we get the optimal Markov policy
™ = {f§, f{y... fi—1} in Markov class II(0).
The following results are for other transition systems.

Collorary 2.1 (stochastic) In case B(z,u,y) = 8- p(ylz,u), B8 = 0 and p = p(ylz,u) is a
Markov transition law, Po(zo) is a stochastic dynamic programming problem. Then we have the
following recursive equation:

on(z) = k() zeX
vp(z) = max [r(:c, u)+ 6 Z vnt1(W)PYlz,0w)] z€X,0<n<N-1.
uel(z) yeT(zu)

Collorary 2.2 (deterministic) In case T(x,u) is a singleton, Po(xo) is a deterministic dy-
namic programming problem. Then we have the following recursive equation:

vn(z) = k(z) zeX
vp(z) = uxenl?é)[r(x,u) + B(z,u, T(z,u))vp+1(T(z,u))] z€X,0<n<N-L

where B(z,u, {y}), vn({y}) are equated with B(z,u,y),vn(y), respectively.



3 Chained Matrix Products Problem

We consider the problem on chained matrix products (see tutOR, http://www.tutor.ms.unimelb.
edu.au/). When we compute the product of three matrices A, B and C, the result is independent
of the product order, that is A(BC) = (AB)C. Ou the other hand the number of scalar products
required for computing the product depends on the product order. The purpose is to minimize
the number of scalar products. We call this problem the chained matrix products problem.

Suppose that we have M matrices Ay, Ag,..., Ay to multiply and each matrix A; has m;
rows and m;4; columns. Then chained matrix products problem is formulated as the following
nondeterministic dynamic programming problem :

N = (M-1, X, {U,U"}, T, {r,k,B})

where
X = {{i,i+1,...,5}|1<i<j<M+1}
U = {2,3,...,M} |
Ul) = {i+1,i+2,...,5-1}, 2={i,i+1,...,5} X
T(z,u) = {{i,...,uh{u,...,j}}, z={s,i+1,...,5} e X, ueU(z)
0 z={i,i+1}
Blz,u,y) = , ,  (zu,y) €Gr(T)
1 otherwise
0 i+l=3j
r(z,u) = _ oy (zyw)y=({4,...,5}u) € Gr(U)
MMy M5 i+1<j
k(z) = 0, =z={i,i+1}€X,
and the problem we must solve is the minimizing problem for the initial state zo = {1,2,..., M+
1}.

In this case, we need not differentiate among value functions v,. Therfore we have the
following recursive equation by Theprem 2.1.

v(iz) = 0O z={i, i+1} € X
v(z) = ug%c) [m,-mumj+ye§;:;(y)] z={i,...,5}€X (GF+1<y),

where we suppose that for U(z) = ¢ the result of minimizig on U(z) is equal to 0.

Numerical Example
Let M = 4,m; = 3,ma = 10,m3 = 5, my = 4 and ms = 16. Then we find the optimal product
order for chained matrix products:

A1AzA3A,.

To start with
v(r) =0, z={i,i+1}eX.
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Then we get
v({1,2,3}) = r({1,2,3},2) + (v({1,2}) +v({2,3}))
= mymams + (04 0) = 150, f1({1,2,3}) =2,
v({2,3,4}) = r({2,3,4},3) + (v({2,3}) + v({3,4}))
= mgomgmy + (0 4+ 0) = 200, f*({2,3,4}) =3,
v({3,4,5}) = r({3,4,5},4) + (v({3,4}) +v({4,5}))
= mgmams + (0 + 0) = 320, *({3,4,5}) = 4.

Similarly,

v({1,2,3,4}) = min{r({1,2,3,4},2) + (v({1,2}) + v({2,3,4})),
r({1,2,3,4},3) + (v({1,2,3}) + v({3,4}))}
= min{mymamy + (0 + 200), mymzms + (150 + 0)}
= min{120 + 200,60 + 150} = min{320,210}
= 210, f*({1,2,3,4}) =3,

v({2,3,4,5}) = min{r({2,3,4,5},3) + (v({2,3}) +v({3,4,5})),
r({2,3,4,5},4) + (v({2,3,4}) +v({4,5}))}
= min{1120,840} = 840, 7*({2,3,4,5}) = 4.

Finally, for o = {1,2, 3,4, 5},

v({1,2,3,4,5}) = min{r({1,2,3,4,5},2) + (v({1,2}) +v({2,3,4,5})),
r({1,2,3,4,5},3) + (v({1,2,3}) + v({3,4,5})),
r({1,2,3,4,5},4) + (v({1,2,3,4}) +v({4,5}))}

= min{1320,710,402} = 402, f({1,2,3,4,5}) =4.

As a result, the minimum of the number of scalar products is
v({1,2,3,4,5}) = 402,

and the optimal decision sequence {u},u3,u}} is given by

ul = f'({1,2,3,4,5}) =4, u3 = /*({1,2,3,4}) =3, w3 = f*({1,2,3}) = 2.

This means that ((A;A2)A3)A4 is the optimal product order .

4 Infinite Stage Model
An infinite nondeterministic dynamic programming is defined by four-tuple:

N® = (X, {U,UOYL T, {n6}),
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where definition of each component is given in section 2.
We note that an infinite sequence of decision functions:

7= {fo, 1y fu- -}

is called a Markov policy and let II denotes the set of all Markov policies defined above.
In this case, total weighted value is given by

V(zoim) = mo + Y Bori + D Y Bobirz+

r1€X(1) (z1,22)€X(2)

+ NN BB Bparn + 0, o €X, weE,

(%15 sZn)EX(N)
where
Tn = 1(Tn, f(zn)),  Bn = B(@n, fn(Zn), Tn+1)
={(z1,...,%n) EX X -+ X X |ZTmt1 € T(Tm, fm(zTm)) 0<m<n-1}
Thus the infinite nondeterministic dynamic programming problem is formulated as
P(zo) Maximize V(zo;m) subjectto =7 €ll
Let v(xg) be the maximum value of P(2¢) and the norm of 3 is defind by

Br=18lli= max > |Blzuy)l

(z,u)eGr(U) yeT (@)
Then we have the following result.

Theorem 4.1 Under the assumption
,31 < 1,

value function v(-) satisfies the following optimal equation :

o() = ugl,%)[r(w,u)+yﬂ%’uz)3(m,u,y)v(y)] zeX.

Note that the solution of this equation is unique.

Let f*(z) € U(z) be a point which attains v(z). Then we get the optimal stationaly Markov
policy m* = {f*, f*,..., f* ...} €IL.

5 Maximum Linear Equations

In this section, we use the following notations. For two real values a, b, their maxima and minima
are denoted by
a Vb = max{a, b}, a A b = min{a, b},
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respectively, and for the set of real values {ai,as,...,an}, their maxima and minima by
n
\/ a; = max{ai, ag,...,an},
=1
n
/\ a; = min{ai,ag,...,a,}.
=1 :
For the set A= {af; e R|1 <k < K;, 1<4,j <N}, we use
N

Al = k.
140 = | B 2 1

A>0 < af;>0 for 1<k<K; 1<i,j<N
Then let us consider the system of maximized linear equations,
K; N
T; = \/ afj:r] + b:c i=1,2, -"’N’ (1)
k=1 \j=1

where bf €ER (1<k<K,; 1<i<N). We call the system (1) mazimum linear equation.
The maximum linear equation is equivalent to the optimal equation for the following infinite
nondeterministic dynamic programming problem :

N® = (X7 {UaU()}i T’ {7‘7.3})

where
X = {1,2,...,N}
U = {1,2,...,\/Kz}
TeX

Uz) = {1,2,..., K}, zeX
T(z,u) = X, (z,u)€Gr(U)
r(z,u) = bz, (z,u) € GHU)
Blz,u,y) = a3y (3,u,y) € G(T).

In fact, for the optimal equation :
wo) = max [rmw+ X Aauyel)| ceX,
uelU(z) yeT(zu)
let T(z,u) = X, r(z,u) = b; and ((z,u,y) = af,, then
= by b € X.
v(z) ugl[?(’;)[ e + g{axyv(y)] z

Since X = {1,2,...,N}, U(z) = {1, 2, ..., Kz},

Ky v N
v(z) = Zagyv(y)+b’z‘] z=12,...,N.

u=1"y=1

This is the maximum linear equation (1).



Theorem 5.1 (existence, uniqueness) Under the assumption
Al <1
there exists a unique solution of Eq.(1).

Further under the additional assumption
A>0

we have the following algorithm for finding the unique solution.

Algorithm

Step 1 (initial selection)
Let n = 0. Take any feasible selection (decision function) fj.

Step 2 (value determination)
Calculate 2" = z(fn) = (z1(fn), z2(fn), - .-, 2N (fn)) satisfying

N I3 I3
P=Y oW 16l i=19,. N
j=1
Step 3 (optimality test)
If z,, satisfies
\/ (Za{;m;‘+b’°) i=1,2,...,N,
k=1
then go to step 6. Otherwise, go to step 4.

Step 4 (selection improvement)
Choose a feasible selection fr4+1 satisfying

afz"-&-bk oz'f"+1 z} +bf"+1() i=1,2,..
1A

k1,7

Step 5 (next step)
Let n = n+ 1. Go to step 2.

Step 6 (optimal solution)

The selection f,, is optimal and z" is the desired solution.

Numerical Example
We consider the following maximum linear equation

1 1 1 2 3 1
z = (§x+§y—12) v (4m+3y+24) \Y (Zx+gy—20>

<
|

( k=1 k=2 k=3

Algorithm solves the equation as follows (z1 := 2, z2:=1y).

2 1 1 1 1 2
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et

10.

stepl n=0, fo=(,1).
(fn = (i,7) means fn(1) =i and fn(2) =j.)

step 2  The linear equation
1 1
2 1
1
has the solution (z°,7°) = (——;—1, —90) .
step 3
1 1 1 2 3 1
0 1.0, 1 0 10,20 202,09
¥ # (3:1: +2y 12) \Y (4m +3y +24) \% (4:1; +5y 0)
2 1 1 1 1 2
0 20, 10 Yo, 10 104200
Yy # (31‘ +5y 15) V (2:1: +3y +12) \Y; (2z +5y+0)
= step 4.
step4  f1=(2,2).
step 5 = step 2.
step 2 The linear equation
' 1 2
1 1
= —~r+-y+12
] 2m+3y+
has the solution (z!,y!) = (144, 126).
step 3
1 1 1 2 3 1
1 ey | vy | a1 by | i S
r # (sz +2y 12) \% (4.1: +3y +24) \% (4w +5y 20)
2 1 1 1 1 2
1 “1, 11 11,11 L I
yt # (3.7: +5y 15) \Y% (2.7: +3y +12) \% (2.’1: +5y +10>
= step 4.

step4d  fo=(2,3).
step 5 = step 2.

step 2 The linear equation

1 2

1 2

1264 1164)

has the solution (z2,y?) = ( =
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11. step 3 This solution (z?,y?) satisfies the original equation. = step 6.

12. step 6 Thus f, = (2,3) is the optimal selection, and (z*,y*) = (z2,9?) = (

1264 1164)
is the desired unique solution.
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