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Geometric Characterization of Quantum Oracle Identification

Akinori Kawachi * Shigeru Yamashita *
(A 7EA) (T %)

Abstract— We geometrically characterize the query complexity of the oracle identification prob-
lem in this paper. By defining an inner product between two oracles, we construct a quantum algo-
rithm, which generalizes Bemstein-Vazirani and Grover algorithms, for a certain class of the oracle
identification problem characterized by the inner product. We also show the optimality of this quan-
tum algorithm.
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1 Introduction

The oracle identification problem (OIP) introduced by Ambainis et al. [1] is a general framework for the quan-
tum oracle computation, which generalizes many important instances such as the equivalence problem (EQ) [4],
and the inner product problem (IP) [3). The formal definition of OIP is given as follows.

Oracle Identification Problem (OIP)
Input: asetS ={fj|f;:10,..,N-1} —1{0,1},i =0, ..., M — 1} of oracles and a black-box oracle f; € S.
Output: k.

The general upper bounds for an arbitrary OIP are given in [1, 2]. However, actual query complexity of OIP
depends on a special structure of instances. For example, the query complexities of IP and EQ are respectively
1 and O(YN), as shown in [3, 4]. As seen in EQ and IP, we have a large gap among OIPs on their query
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Figure 1: EQ oracle Figure 2: IP oracle

complexities. What causes such a large gap of their query complexities? Let us see Figs. 1 and 2. One can guess
that an EQ oracle is so “close” to each other that we need to many queries to distinguish them, and an IP oracle is
the contrary. Now, we translate their values 0 and 1 into +1 and —1. We can then formulate the “closeness” as the
inner product between every two rows (i.e., two oracles). One can see easily that the inner product of two distinct
row vectors is orthogonal in IP and that takes a large value in EQ. This “closeness” seems to characterize their
query complexities. More formally, we now introduce a notion of the oracle state.
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Definition 1.1 For an oracle f : {0, 1}* — {0, 1}, an oracle state of f is defined as

= Z(—l)f iy,
1—0
By this notion, we also define an inner product (f|g) between two oracles fandg.

In this paper, we geometrically characterize the query complexities of a certain class including the important
instances using the notion of the oracle state. Our first result is to characterize the upper bounds of the query
complexities by the inner product between oracles for a special case of OIP including IP and EQ. More precisely,
we give a quantum algorithm for any OIP § = {fy, ..., fy-1)} satisfying co < (filfi) € o for any distinct k and / and
any constant 0 < ¢ < 1 using O((1 - |o])~!/2) queries with a constant probability.

It is straightforward that o = | — (4/N) in the case of the EQ oracles and o = 0 in the case of the IP oracles.
Substituting these values to the above statement, their query complexities correspond to the original ones up to a
constant. ,

We also present the optimality of our quantum algorithms, i.e., we show that there exists an OIP that needs

Q(1/ VT = T mas) Where T max = maxiy; [(filfj).

2 Upper Bounds

To show the upper bounds for OIP, we will construct quantum algorithms whose query complexity depends on

the orthogonality of oracle states.

First, we describe our idea for their constructions based on geometrical intuitions. Suppose that we are given
an oracle state |f;) in {{fo), ..., |fv-1)} rather than an oracle f,. We then try to identify |f;) by applying a unitary
operator U = (Jup) - - [un—1 )T, where {|u;)}; is an N-dimensional orthonormal basis. Then, the probability obtain-
ing |k) by measuring Ulfi), i.e., the success probability, is |{u] fi)l>. Hence, our task is to construct the optimal
orthonormal basis maximizing the success probability for all k.

Actually, since we are given an oracle f;, we might be able to amplify the success probability by approaching
the original oracle state |f;) to a quantum state |f;) close to |u) via queries to f;. We can then find |k) with high
probability, [(uxlf; )|, by measuring U|f}).

Therefore, we consider the following two steps to construct quantum algorithms for OIP: (i) We find the N-
dimensional orthonormal basis {1;}; and (ii) construct quantum operations that approaches |f}) to |f;).

2.1 Equiangular Case

For simplicity, we now consider a case of every pair of oracle states having an identical value o > 0 of the inner
product, i.e., for any distinct two oracles fi, fi, (filf) = o 2 0.

Equiangular Oracle Identification Problem (EOIP)

Input: asetS = {f,.... fy-1} of N oracles, a black-box oracle f; € S.
Promise: (filf;) = o = O for any distinct i and j.*

Output: k.

We define the query complexity of EOIP as the number of queries to identify oracles in the worst-case with at
least a constant probability. We stress that this special case already includes significant instances such as OIPs for
the EQ oracle and the IP oracle.

First, we find the N-dimensional orthonormal basis {4;};, equivalently a unitary operator U, to maximize the
success probability that every oracle state | f;) can be identified, as stated above. The intuition of our construction
for U is simple in this case. If oracle states are orthonormal, we directly define a unitary operator U as enumeration
of oracle states: U = (Ifp)- - |fv-1))T. Otherwise, we need to adjust the oracle states {|f;)}; to othonormal states

* We can assume o 2 0 without loss of generality by fliping all outputs of an oracle if o < 0.
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{lu:)};. To maximize the success probability that we identify every oracle state, we open up the oracle states around

the mean state |c) among {|f;)}; as preserving the equiangularity among the oracle states. (Fig. 3.) Then, we can
* obtain the orthonormal states {{u;}}; such that u; is on the plane spanned by |f;) and |c) for every i. Here, the mean
state is formally given as follows.

Definition 2.1 The mean state |c) for OIP § = ([, ..., fv-1) is defined as

o) = n>:.,,o1 ol & Z'f >

Now let
(fxle) = cos 8, (uelfie) = cos ¢

foranyk € {0,...,N - 1}.

Figure 3: Construction of U

In the case of EOIP, we can represent the inner products (u]f;) and ( fklc) with o, which are used for analysis
of our algorithm.

Lemma 2.2 For the orthonomal states |ug), ..., [uy_; ) we have

iy = o3 = VG- ¥ 1+(1- 1) T=o =0V =0)

{file) = cos@ = \/l#-]—) = O(Vo)

Proof. For any distinct two oracles fi, fi, if (filfi) =20,

and

foranyk € {0,..,.N -~ 1}

) =

YN + 0‘(N2 N,Z_(;‘f'

since

N~1
D 0=
i=0

D fify = N+ o=
Lj

[1 +o(N-1)
cosf = N

cos(@+¢) =

We therefore obtain

(fele)

]

(uele)

-
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Note that 8, ¢ > 0 and 6 + ¢ < 7/2. We have

cos(¢ + 6 - 6)
= cosfcos(¢ + ) + sinfsin(¢ + )

cos ¢

= cosfcos(d +6) + V1 —cos20+4/1 — cos2(¢ + 6)

_ [ixov=D 1 1) 1
ol B - A (1 N)(l 1 5

- %m%l-%)m

Now, we give the upper bounds of any EOIP in the following theorem.

Theorem 2.3 There exists a quantum algorithm that solves any EOIP using at most O ((l -o)Y 2) queries with
probability at least Q(max{c, 1 = o}).

Proof,  As stated in the previous section, we have to construct a procedure for approaching the oracle state |fi)
to the base state {u;) by queries to f;. For this purpose, we incorporate a geometrical implication of the Grover
search [4, 5] into our algorithm and generalize it for our problem. More specifically, we make use of the following
two reflection operators:

Rc=2IcXcl -1, Ry =2lfi)fil -

One can easily see that a reflection operator with respect to a state i) “reflects” any state across |y). Note that we
can construct R, with no queries to f; and Ry with two queries since

Ry, = 0421001 - DO,

where Oy, is a unitary operator satisfying
1
0410) = —= ) (-1 V%)
I ~ Z( )

which can be constructed with a single query to f;.
Recall that cos 8 = (fiIc) and cos(¢ + 6) = (ulc). Since we have 0 < 6@ < 8 + ¢ < n/2 and | fy), Iuk) and |c) are
on the same plane, we can approach |f) to lus) by repeating applications of R. and Ry, to ), as shown Fig. 4.

RIf) 19 1£)

.......

fk‘le">

Figure 4: Reflection operators

We now describe our quantum algorithm for any EOIP as follows.

Quantum Algorithm for EOIP
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(1) Create the oracle state |f;) = # T (=191 by 0.

(2) If cos® ¢ > cos? 6, perform Steps from (3) to (5). Otherwise, measure U|f;;) and output the result, where U is
the unitary operator given in Lemma 2.2.

(3) Perform Step (4) lp = [&"s&;’—@ - %J times. Let | f,fo’) = |f}) be the initial state and | j,f‘)) be the state
obtained after the /-th repetition.

(4) Apply the reflection operators R, and Ry, to | f:”). Then, we obtain | ff,'“)) = R;R.| f,f')).

(5) Measure the state U| le‘”) and output the result.

It is easy to analyze the number ly of queries in this algorithm. Since sinf < 6, arccos(1/ VN) < /2 and
sing = V1-(dfi? = VT=(I/M)(I - 0), this algorithm needs at most [—preefier=1 = O((1 ~ 0)"1/2)
queries.

Now, we consider the success probability of the above algorithm. In the case that cos? ¢ > cos® 6, the success
probability is cos’¢ = Q(l - o) by Lemma 2.2. In the other case, the angle between |c) and | f,f'”) becomes
(2lp + 1) by the reflection operators after Iy repetitions of (4). We then have |2 + 1)6 — arccos(1/ YN)| < 6,
which implies that the angle between | £{") and |u;) is at most 8. We therefore obtain [(f{”u)? > cos? 8 = Q(cr)
by Lemma 2.2. a

2.2 Approximated Equianguler Case

We extend the equiangular case to a slightly general case according to the same geometric intuition with an
argument called “pretty good measurement” of the quantum information theory for designing orthonormal basis
{uiki.

Theorem 2.4 There exists a quantum algorithm that solves any OIP satisfying rank((lfo) - - |fv-1))) = N, cor <
(filfi < o for any distinct k and ! and any constant 0 < ¢ < 1 using O((1 - o)1/?) queries with a constant
probability.’

Proof. In the previous equiangular case, we can easily obtain the optimal unitary operator U for maximizing the
success probability by the exact equiangularity, On the other hand, we have to need to design “good” orthonormal
basis {1;}; and analyze the success probability in more general case. The following technical lemma gives the
good orthonormal basis to construct the desired unitary operator based on the argument of the so-called pretty
good measurement.

Lemma 2.5 Assume that the rank of F = (|fp) --+ |fy-1)) is equal to N. There exists a unitary operator U =
(Iug) -+ lun-1))" such that the success probability of obtaining k by measuring U|f;) in the computational basis
is at least 1 — o'max, Where max;e; Kfilf), ie., KRR = 1 = Oax.

Proof. LetG = F'F be the N x N Gram matrix for F and let U = (jup) - luy_1)) be any N-dimensional
unitary matrix. Note that the (i, j) entry of the matrix UF is (u;|f;) The success probability by measuring U|f;)
in the computational basis is then [(KIU|fi)l? = (il i) = [(k{UFk)]2. By the singular-value decomposition, the
matrix F' can be described as the form of F = P'T(Q, where P and Q are unitary matrices and T is the diagonal
matrix of diag( Vo - -+ VAn-1), where 4; is the eigenvalue of the Gram matrix G = F'F. Note that every 4; is
a non-zero real number since G is a real symmetric matrix and rank(G) = N. Therefore the success probability
is KKlUP'TQFP?. By setting U = Q'P, the success probability is [(x|Q'TQF* > min;{|4}, i.e., the success
probability is lower bounded by the minimum singular value |Ays| = min{|4;|} of the Gram matrix G.
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We now evaluate a lower bound of {An,|. By the property of the minimum singular value of a real symmetric

matrix, we have |Admin| = e rg;i"x;)"_l [(¢|G|¢)). Now letting I¢) = ¥, ail®) (a; € R, 3;lail* = 1),

KeIGle)

min min |1 - oy + Z Tmax@ + 2G; il + Trpx@?
I6)ERN Jg)=1 1¢>ek~‘1¢>u=x‘ e (Omux; + 212 + Tmn))

i<jG; ;20

+ Z (a',,,,,xar,2 - 2|G; jlaia; + O'm“d})
i<]Gi <0

min
IBYeRN J@)li=1

= Oamt D, (Gijl@i+a)* + (e = 1Gi)a} +})
i<jGi 20 ,

+ D (Gl - @) + (s - 1Gi e} + )
l'<j,G,'J<0

2 . l - am“.
This completes the proof of the lemma. a]

Now, we describe the quantum algorithm for the general case. This algorithm has the almost same structure as
the previous one. We also make use of the following two reflection operators Ry, = 2|fi){fil -1 and R = 2|c)(c|-1
in this algorithm, where |c) is the mean state among |fo). ..., | fiv-1). Recall that omax = maxie; [(fil ;).

Quantum Algorithm for Approximated EOQIP with rank(N)

(1) Create the oracle state |f;) = 711\'!' T (=1Y"9x) by Oy,

(2) If omax < co for a fixed constant ¢g > 0, perform Steps from (3) to (§). Otherwise, measure U|f;) and output
the result, where U is the unitary operator given in Lemma 2.5.

(3) Perform Step (4) lp = [ ggeriem— . _\ times. Let | ff”) = {fi) be the initial state and | j,f')) be the state obtained
after the I-th repetition. '

(4) Apply the reflection operators R, and R, to | f‘ ). Then, we obtain | j‘“’”) RiR.| f( ).

(5) Measure the state U|f') and output the result.

One can easily see that the query complexity of this algorithm is at most O( V1 — o'max). We can also show that
this algorithm has a constant success probability by the property of the orthogonal basis {u;};. (u]

3 Lower Bounds

The upper bounds given by the previous algorithms are actually optimal. We show a matching lower bound of
a specific OIP parametrized by the inner product. Let o'may be the maximum inner product of two oracle states in
S = {fo.' - , f,} for a specific OIP. Then the following can be seen easily.

Theorem 3.1 There exists a specific OIP that needs 9(71-:}:) queries.

Proof. We show that Q(m) queries are necessary to solve OIP for the so-called hybrid oracles [1]. Consider
the function with two parameters k and i, fi; : {0, 1}* — {0, 1} as follows: let i = (i, i2,...,dn<k, In-k+1v. -2 in)
and x = (X1, X2, .. « s Xneks Xnokals - - - » Xn). then fii(x) = Viff () Gy ooy in-i) = (61, 000y Xpog) and (i) (poge1s vons i) -
(x,,_k+1, ey x,,) = 0 (mod 2).

Then OIPy: s = {feo,++* + fen) needs Q(4/N/2) queries by Theorem 7 in [1], where N = 2" since the values of
fii(x) and fi ;(x) differ from each other for at least 2/2 different x, " max can be written as }17(N - %‘- - %) =1- %-
Therefore, the above lower bound can be rewritten as Q( VN/2%) = Q(TIF,.T,) queries as desired. o
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4 Open Problems

We gave upper and lower bounds of OIPs in which every distinct pair of oracle state has the almost same
inner product. An open problem is to find a simple quantity for characterization of the query complexity of an
arbitrary N x N OIP (more generally, M x N OIP for M > N), which might not be the inner product. Also, we
might able to characterize classical query complexities, which is related with the exact learning in computational
learning theory, by our geometrical intuition. It would be interesting if we can obtain a unified geometrical view
of classical and quantum query complexities for general OIPs.
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