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Algebraic cycles on Jacobian varieties
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1 Introduction

Let X be a projective smooth variety over C. We denote by Z;(X) the Q-vector
space freely generated by all subvarieties of dimension ! in X. The subspace
Z)(X)at C Z1(X) is generated by divisors of rational functions on subvarieties of
dimension [ + 1 in X, an.d the subspace Z)(X)ag C Z;(X) is generated by the differ-
ence of two subvarieties which are equivalent by algebraic deformation in X. Then
Z)(X)rat is contained in Z;(X)alg, and Z;(X ),y is contained in the kernel Z;(X )pom
of the topological cycle class map Z;(X) — Hy(X,Q). When! =0orl =dim X -1,
we have Zi;(X)ag = Zi1(X)hom- But, in [4], using a Hodge-theoretic invariant,
Griffiths found a nontrivial element in the quotient space Zi(X)nom/Z1(X)alg for
a quintic hypersurface X in P4. In this paper, we define descending filtration on
Z)(X) and Zj(X)ag such that Fil' Z;(X) = Z)(X)nom and Fil' Z;(X)ag = Z1(X)ag,
and we find a nontrivial element in the quotient space Fil” Z;(X)/Fil? Z;(X )a)g for a
Jacobian variety X. The space Fil? Z;(X)/ Fil’ Z;(X)aq for a hypersurface X in P"
is studied by Saito [6].

Let C be a projective smooth curve over C, and let J be the Jacobian variety of
C. When we fix a point pp € C, we have a natural morphism

Lo o o
u:Cx++xC—J= HO(C,Q};)V/Hl(C,Z); (p1y...,p1) — [w — ,-Z;/po w].
1 =
The image W, of ¢; is a subvariety of dimension [ in J for 1 <! < g. We denote by
W™ the image of W; by the multiplication by (—1) on J. Then W; and W,™ have the

same homology class in Hy(J, Z). Here we have a natural question.

Question 1.1. W; — W™ is contained in Z;(J)a)g or not?



If C is a hyperelliptic curve, then W; — W, is contained in Z;(J)alg. When C is not
a hyperelliptic curve, using a Hodge-theoretic invariant, Ceresa proved the following

result.

Theorem 1.2 (Ceresa [2]). If C is a generic curve of genus g, then W; — W™ is not
contained in Z)(J)aig for 1 <1< g-—2.

In this paper, we go to a generalization of this theorem. To explain the generaliza-
tion, we have to recall Beauville’s result about algebraic cycles on abelian varieties.
Let X be an abelian variety. We denote by n: X — X the multiplication by n € Z
on X. We set a subspace of the Q-vector space CH;(X) = Z;(X)/Z;(X)rat by

CHP (X) = {z € CH(X) | n.z = n¥*? for any n € Z}.
Theorem 1.3 (Beauville [1]). There is a natural decomposition

CHy(X) = @ CHP (X).
P

Using this decomposition for [W;] € CH;(J);

Wil =>"w!, (uf € CHP(J)),
P

the class of Ceresa’s cycle W, — W,™ is written by

W -W]= wa’ - Z(—l)m""’wf’ =2 Z wi.
p

p p:odd

We remark that w] is contained in Fil? CH;(J) = Fil” Z;(J)/Z)(J)rat. Since the
Hodge-theoretic invariant for wf(p # 1) is trivial, Ceresa’s theorem is essentially
equivalent to say that w;} € CH;(J)aig = Zi(J)alg/Zi(J )rat- Here we have a generalized
problem.

Question 1.4. w} is contained in Fil” CH;(J)alg = Fil® Z}(J)alg/Zi(J )rat or not?

We will find a curve such that w? ¢ Fil? CH;(J)alg. To show this, we use an algebraic
invariant which is defined by using algebraic differential forms. When p = 1, the
algebraic invariant is equal to the Griffiths’ infinitesimal invariant, which is defined
by the Hodge-theoretic invariant. The Griffiths’ infinitesimal invariant for Ceresa’s
cycle W, — W)™ is computed by Collino-Pirola [3].
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This paper proceeds as follows. In Section 2, for any projective smooth variety X,
we introduce the filtration on CH,;(X), and define the algebraic invariant for elements
in Fil? CH;(X). In Section 3, we prove a formula to compute the algebraic invariant
for w}, and give examples satisfying wf ¢ Fil® CH;(J)alg.

Some results in this paper is essentially same as [5], but the definition of filtration
and the formulation of infinitesimal invariants are different from [5], and we give a
new example.

2 Algebraic cycles and differential forms
2.1 Filtration

Let X be a projective smooth variety over C. There exists a subfield K C C of
finite transcendental degree over Q, and a projective smooth variety X ¢ over K such

that X ~ Xk Xgpec k Spec C. We have an exact sequence

of locally free Ox,-modules of finite ranks. We define filtration on 0%
/\ QXK/Q

Fil* %, /q = Image (Q’,’{/Q ® Q;-_:/Q — Wy Qs NOWH—NAW),

x/Q =

and define filtration on the cohomology group by

Fil” H'(Xk, 0%, /q) = Image (H'( Xk, Fil? 0%, q) — H'(Xk,%%, /q))-

Then we have Gr” Q% ©/Q = or Q® QY / k» and there is a spectral sequence of
K-vector spaces
EP = H™9( Xy, G O, 1q) = H™(Xx, Uy, /q)-

Proposition 2.1. The spectral sequence degenerates at the Eo-term.

Proof. This is proved by the same way as Lemma 2.3. in [5]. O

Let Z be a subvariety of dimension ! in Xk, and let Z — Z be a resolution of
singularity. We set m = dimg Q} /q- Then the pull-back

q)z . HI(X QH—WJ

/Q) —_ Hl(Z QMY A ?;/Q

zZ/Q
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does not depend on the choice of the resolution Z , and this induces a bilinear form

® . CH;(Xk) x HI(XKan;:)Q) - Q%/C)

by ®([Z],w) = ®z(w). We define filtration on CH;(Xg) by

Fil” CH)(Xk) = {z € CHi(Xk) | ®(z,w) = 0 for any w € Fil™*'"? H!(Q}F™ )},

and define filtration on CH;(X) by
Fil* CHy(X) = | J Fil? CH,(Xk) C CHi(X),
Xk

where the sum runs for all models Xk with Tr.degq K < oo.
Remark 2.2. Fil' CH;(X) = CH;(X )hom-

Remark 2.3. If we assume the existence of Beilinson’s conjectural filtration Fa a4 on
Chow group, which comes form the theory of mixed motives, we have F}, ,, CH;(X) C
Fil? CH;(X), but these are not equal in general.

We define a subspace of Fil? CH;(X) by
Fil® CH;(X )alg = Z Image (Fil”’ CHp(Y) Lo, pil? CH;(X)),
Y,
where the sum runs for all projective smooth varieties Y and I' € CHgimy (Y x X),
and I, is the algebraic correspondence; I'i(z) = px«(I'. p}2), where px and py
denote the projections from Y X X to each component.

Remark 2.4. Fil' CH;(X)alg = CHi(X)alg-

2.2 Infinitesimal invariants

Let X be a projective smooth variety over C. For z € Fil? CH;(X), there exists
a subfield K C C of finite transcendental degree over Q, and a projective smooth
variety Xk over K such that X ~ Xk Xgpec k Spec C and z € Fil” CH;(Xk). By the

definition of filtration, we have a K-linear map
% o(2): I[P (Xk) = Gr™ P H' Xk, Q5 Tq) — OF/qs [w]— @(z,w),

that is called infinitesimal invariant for z. By Proposition 2.1, the K-vector space
IF(Xk) is isomorphic to the homology of the complex

m—p— | — 1 - l - A l4+p~
2J09%4 o H! l(n;ﬁ}( ﬁnp/(g@fﬂ(n;}fm)—>ng/5+1®ﬂ’+1(n;}f/;).
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We set a subspace of H I(Ql)}"}f /x) by the image of the differential;

- ] é ]
HYQ4? 1) = Image (R q)¥ ® HH(QFP54) 50 HUQYEP ).
Then we have a complex

0%7& " ® HTHOQTETK) — QR 8 © HHQY? 1 )o — QR 2T @ HH(QFF %),

and we denote its homology by I} (X )o, which is a subspace of I (Xk).

Proposition 2.5. If z € Fil® CH;(X)a\g, then the infinitesimal invariant %, /Q(z) is
trivial on IF (Xk )o.

Proof. This is proved by the same way as Proposition 2.13. in [5]. O

3 Jacobian varieties
3.1 Computation for invariants

Let K C C be a subfield of finite transcendental degree over Q, and let C be a

projective smooth curve over K. We have an exact sequence
p+1 p+1 € P 1

We denote by o : AP+ HO(QL, /@) = Vi/q ® H° (/i) the composition of natural

map A" HO(Qg,q) — HO(Q%g) and e: HO(QBL) — 0% o ® HO(QL ). Let V

be a subspace of
U(C) = Image (o°) = Ker (H° (/) — Qk/q ® H'(Oc)).-
We define a subspace of H°(Q2 k) by .

p+1
-~ v
VP = Image ((Q’;{/Q)V ® /\ V= HO(QIC/K)),

where V = (a®)~1(V) C H(Q%,q)-

Remark3.1. V=V0CV!C..-C V™, (m=dimg Q}(/Q)'



Then the K-linear map a? induces a map ﬂ{”, in the following commutative diagram;

~ a?
ANV S b @ HOOL k)
l N
p+1 Ay 2 0 -1
The composition of 3}, and the natural quotient map to H°(QL x)[(VP~L+U(0))
is denoted by
P+l
B NV — Q% q® HO(Qpx)/ (VP! + U(C))

Let J be the Jacobian variety of C, and let w{ € CH;(J) be the algebraic cycle

defined in Section 1.

Remark 3.2. wi € FilP CH;(J).

Let ¢? be the infinitesimal invariant for w}’;
¢} = % /qwl) : I7(J) — Q% q.

By the identification H7(Q} ) = N HO(Q &/x) ® N HY(O¢), we can compute ¢F
by using 3,. We denote by

(, ): HYQE k) x HY(Oc) — H' (/) = K

the natural pairing.

m—p

Theorem 3.3. For § € Qi /8, v1,...,u4, €V and 0y,...,01 € HY(O¢), if o1 €
(VP~1)L) then :

FEONAAvp®o1 A Aor) =Y (15,01)(EA (B (v5),01)) € WR)q,
j

where the sum runs for all subset j = {j1,...,4p+1} C{1,...,l +p}, and

(Uky,02) o (%ﬂ’l))

<vkl—1702> (vkt—nal)

iy dpr} IRy, sk} = {1, U+ p}).

('Uj,O'i) = Sgn(jl,-- '7jp+1a kl:“' ’kl-—l) - det (

Proof. This is proved by the same way as Theorem 3.9. in [5]. O
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Corollary 3.4. If there exists a subspace V C U(C) such that B{} # 0 and dimg V >
L +p, then w] ¢ Fil? CH;(J Xgpec k Spec C)ag.

Proof. By the assumption, there exist £ € Q}?;}g, V1,...,Vpt1 € V and 07 € (VP~1 +
U(C))* € HY(Oc) such that EA(BY (v1 A+ - -Avpi1), 01) # 0. Since 01 € U(C)*, there
exists ¥ € (Ry/q)¥ ®HO(Q, /) such that o1 = §(7), where d is the differential map
6: (Q,q)Y ® H(Q%, /x) = HY(Oc). We take vpi2,...,v4+p €V and 03,...,01 €
(Zf:ll Qu;)* C HY(Oc) such that vy A+ - Avpyp # 0 and (Vpy144,0541) = d;5. Then

VA AUpp® A Aoy =8(YAvL A Avlpp ® 02 A--- Aay)
is contained in H ’(ﬂlj;’;()o, and by Theorem 3.3,
HEQUA A ®a A ANoy) =EABL(v1 A Avpy),01) #0.

By Proposition 2.5, w? is not contained in Fil” CH,;(J )alg- O

3.2 Example

Let f(z) = apz® + a1241"1 + -+ +q,, € C[z] be a separable polynomial of degree
€1, and let C be the smooth compactification of the affine curve Spec C|z,y]/(y*? —
J(z)). Then the genus of C is g = {(e; — 1)(e2 — 1) — (ep — 1)}/2, where ¢y =
ged {e1, e2}. We set K = Q(ao,...,a,) C C. We can consider C as a hypersurface
in weighted projective space P = Pk (1,e3/ep,€1/ep) over K defined by the weighted
homogeneous polynomial

F(zo,21,22) = 0025 + 1252 25070 - 4 0y 25 — 282 € K20, 21, 22),
where deg zg = 1, deg 2y = ey/ey, deg zo = e;/eg. There is a natural identification
HO(QéK/K) ot HO(P,Op((eleg — €y —¢€1 — 62)/60));

i3
x yjdm - z(eleg—cn—-(j+l)e1-—(i+1)e2)/eo ~1:zj
egy°r 1 0 e

For wy,...,wp4) € V C U(Ck), we compute 5, (wy A -+ Awpy1), using this identifi-
cation. Let B; € HO(P,Op((e1e2 — eg — €; — €3)/ep)) be the weighted homogeneous

polynomial corresponding to w;. Since w; € U(Ck), there exist weighted homogeneous

185



186

polynomials H; j » such that

oF iea/Co Gimir OF oF oF
Bi% = ZBCZ/COZ;‘I B; = Hi,j,oa—zo + Hi’j’lai + Hi’j’25;; mod (F)
We set weighted homogeneous polynomials by

€2 €1 0

Gijo = g a1 Hig2 = o 2Hiin € H(P,Op((e1e2 — e0)/e0)),
e

Gi 1= éQHi,j,O — 20H; ;2 € H°(P,Op((e1e2 — e2)/e0)),

e
Gij2 = 20Hij1 — izlﬂi,j,o € H(P, Op((e1e2 — e1)/e0)).

For j = {j1,---,Jp} C {0,...,e1}, there is a weighted homogeneous polynomials
Aj € H'(P,Op((e1e2 — €9 — €1 — €2)/€g)) such that

B tet Bp+1
OF \P - Giak - Gpt11k
Aj(ka) = det mod (F),
Gl,p,k v Gp+l,p,k

and 7; denotes the element in H°(Qg, /i) corresponding to A;.
Theorem 3.5.

ﬂ“'}(wl ARER /\w,,_,,l) = Zda,-, Ao A dajp ® ['flj] € Q’;(/Q ® HO(QICK/K)/VP_I.
J

Proof. This is proved by the same way as Theorem 4.1. in [5]. a
Theorem 3.6. In the following cases, w} is not contained in Fil® CHy(J)ayg;

l.eg=e;,1<p< Tr. degQ Q(a2a .. '7061—2)} l+p <e —2’ and f(x) is geneml;
2. e3> e1, 1 < p < max{Tr. degq Q(az, - - -, @e,-1), Tr. degq Q(a1, - - -, @, ~2)},
l+p<e —1, and f(z) is general.

Proof. By Corollary 3.4, we find a subspace V such that ,B{’, #0and dimg V > [ +p,
We set

ridx
V= &b Ko C H°(Q%,./x)-

0<i<(e1e2—eo—e1—ez)/ea

If e; > e), then V is contained in U(Ck) for general f(z). By using Theorem 3.5, we



can show that

) jd
VP cur = D K- ZYZ c poy, ),

ycz—l

ieg +je; L ejes —epg—e; —eg
i120,0<j5<p

and VP € UP~! for general f(z). This means that 5%, is not trivial. O
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