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1. Introduction

Let Xy be a closed oriented suface of genus g and let M, be the mapping class group
of genus g, namely the group of all isotopy classes of orientation-preserving diffeomorphisms
of ¥y. Meyer introduced a cocycle 7, : MyxMy—Z, called the signature cocycle or the
Meyer cocycle, and he gave a signature fomula for the signature of surface bundles over sur-
faces ([21]). Let [rg)e H?*(M,,Z) denotes the cohomology class of 7. When g = 1, since
M = SLy(Z), H}(SL2(Z),Z) =0 and 3[r] = 0, there exists a unique 1-cocycle ¢; : SLgZ—)lz
such that cobounds ;. The function ¢, is called the Meyer function of genus one, which has the
following property: Let 7 : Z—X be a £;-bindle over a compact oriented surface with boundary
0Z = c U -Icg. Let Ay,- -+, Ax be the monodromies around each component of the boundary.
Since the Picard-Lefschetz transformation along c; is an automorphism of H1(X,, Z) preserving
the intersection form, one has A; € SLy(Z) by fixing a symplectic basis of H'(X1,Z). Then the
signature of Z, which is defined as the signature of the cup-product pairing on H?(Z,8Z,R),
satisfies

k
(1) Sign(Z) =) ¢1(4:).

i=1

The explicite formula of ¢; was obtained by Meyer ([21]).

When g = 2, since 5[72] 0 €H%(M,,Z) = Z/10Z and H'(Ma,Z) = 0, there exists a unique
1-cocycle ¢5 : .M2~+ Z satisfying (1), for every 3-bundles over compact orienred surfaces. The
function ¢ is called the Meyer function of genus two.

In [1], Atiyah investigated the Meyer function ¢; from the several view points. For an odd
dimensional closed oriented Riemannian manifold M, let n(M) be the n-invariant of M with
respect to the signature operator of M [2]. For o €SL2Z, let 7 : M,—S! be the mapping



torus associated with o, i.e., £;-bundle over S' with monodromy ¢. Then Atiyah showed the
following identity, when M, is equipped with a certain metric:

$1(0) = n(M,)

Moreover, he gave several interpretation of ¢; interms of the following quantities: (1)Hirze-
bruch’s signature defect; (2)the transformation lows of the logarithm of the Dedekind 7-function;
(3)the logarithm of the monodromy of Quillen’s line bundle; (4)the special value of the Shimizu
L-function at the origin.

In this note, we study an extension of the result of Atiyah to the case g = 2 and higher
dimansional manifold. We shall construct a higher dimensional analogue of the Meyer function
for smooth theta divasors of odd dimension.

Notation : For a complex manofold M, T1°M (resp. T%! M) denotes the holomorphic (resp.
anti-holomorphic) tangent bendle and TM denotes the real tangent bundle. We set d¢ :=

ﬁ:ﬂa — ). Hence dd® = 3{"%35.

Acknowledgement : The auther would like to thank Professor Nariya Kawazumi for the proof
of Lemma 7.2 and Professor Tomohide Terasoma for the proof of Lemma 8.2. Special thanks
are due to Professor Ken-ichi Yoshikawa for various comments and suggestions and the interests
in my studies.

2. Preliminaries from Riemannian geometry

In this section, we recall some results of Riemannian geometry which will be used in the proof
of the main theorem. Following [10], we define connections of fiber bundles and the connection
of relative tangent bundles. Let M be a manifold and let 7 : Z — B be a fiber bundle with
typical fiber M.

The relative tangent bundle T(Z/B) is the subbundle of TZ defined by

T(Z/B) := Ker{m, : TZ—>n*TB}.
A vector of T'(Z/B) is said to be vertical.

Definition 2.1. A subbundle Ty ZCTZ with TZ = T(Z/B) & Ty Z is called a connection of
the fiber bundle 7 : Z — B.

For a connection, one has Ty Z=n*T B via the projection 7, : TZ—7*TB. A vector of Ty Z
is said to be horizontal.

When Z is trivial, i.e., Z = Mx B, TZ is naturally isomorphic to the direct sum (pr;)*TM &
(pry)*T'B. This connection is called the trivial connection of the trivial fiber bundle.

Given a connection, one can define the projection Pz : TZ—T(Z/B) with kernel Ty Z. We
often identify Pz with the corresponding connection Ty Z := Ker(Pz). In the rest of Section
2, we fix a connection Ty Z, or equivalently Pz. One can define the pull-back of a connection,
as follows: Let B’ be a manifold and let h : B'5B be a C*® map. The fiber product Z' :=
ZxpB' = {(z,b)eZxB' | m(z) = h(b)} satisfies the following commutative diagram:

Z’————»Z

t

w'l lvr h = pr,, T = pry.
B’ 'T) B
Since the map Pzoh, : TZ'—+h*T(Z/B) is surjective, Ker(PZOﬁ ) is a subbundle of TZ'. Since

T(Z'/B') is canonically isomorphic to h*T(Z/B), the map Pzo h* is identified with a projection
from TZ' to T(Z'/B’).
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Definition 2.2. The connection of 7’ : Z'— B’ induced from Ty Z by h is defined by

TyZ' := Ker(Pzoh, : TZ'-T(Z/B)),
under the identification between T'(Z’'/B’) and h*T(Z/B). The projection corresponding to
Ty Z' is denoted by h*Py.

We fix a metric g%/B on the relative tangent bundle, a Riemannian metric g2 on B, and the
connection Ty Z and the corresponding projection Pz. We define the Riemannian metric gZ on
~ the total space Z by

gZ - g.Z/B@ﬂ'*gB,

under the isomorphism TZ=T(Z/B)®&Ty Z=T(Z/B)®n*TB. Let VZ be the Levi-Civita con-
nection of (Z,g%). We define the connection V2/B on T(Z/B) by

VZ/B .= p,ovZ.
Then VZ/B preserves the metric g%/3.
Lemma 2.3. The connection VZ/B i3 independent of a choice of g&
Proof. See [10, Proposition 10.2] O

Lemma 2.4. Let B' be a manifold and let h : B'=B be a C™®-map, and set Z' := ZxgB'.
Let g%'/B' = p*g%/B be the metric on T(2'/B') induced from g%/B and let Pz = h*Py be the
connection of Z' induced from Pz. Then VZ'/B' = p*yZ/B,

Proof. See [15] ‘ a

With respect to the decomposition TZ = T(Z/B) ® Ty Z, We put for eeR*
gZ,E = gZ/BQE—lﬂ.*gB.

The Levi-Civita connections of (Z, g%*) and (B, g%) are denoted by VZ* and V2, respectively.
Let R%¢ and RP be the curvature of VZ€ and V5, respectively. Then gZ := g% and VZ :=
V21, We define another connection V on Z by

V= VZ/Bgp*vB,
and we put
5©) .= V25 _ v e AEnd(TZ)), S:=5W.

Then V preseves the Riemannian meteric g2, and Pz is paralel with respect to V, i.e. VoPz —
PzoV = 0. .

Let {e1,---,ex} be a local orthogonal framing for (T(Z/B),g%/?), and let {f1,--, fi} be a
local orthgonal framing for (T Z, *g?B).

Proposition 2.5. With respect to the splitting TZ = T(Z/B)®TgB, the following identity
holds:

0 m*RB

Proof. See [7] (3.195). O

lim R%* = ( R¥I5 Py (VS) )
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3. n-invariants

In this section, we recall the definition and some properties of n-invariants. Let (M, g™) be
a coled oriented Riemannian manifold of dimension (2! — 1). Denote the space of C* k-forms
on M by A¥(M). Let » : A¥(M) - A%-%-1(M) be the Hodge star operation with respect to
gM. The signature operator D : ®;50A4% (M)— ®p>0 A%P(M) of M is defined by
| D : w— (V=1 (1P (xd — d¥)w, wEAP(M).

Then D is an elliptic self-adjoint differential operator of first order acting on ®p>0.A%(M). Let
o(D) be the spectrum of D. The n-function of M is defined by

)= Yy 2
Aea(D)\{0}
for s€C with Re(s)>0. Then 7(s) extends meromorphically to C and is holomorphic at s = 0
by [2], [7].
I}eﬁni}i‘:li;)n 3.1. The real number 7(0) is called the n-invariant of (M, g™) and is denoted by
n(M,9™).

Let (X, g%X) be a 4k-dimensional, oriented, compact, Riemannian manifold with boundary
Y. Put g¥ := g*|, and fix a color neighborhood UDY such that U = Y x[0,1). Assume that
g% |, = ¥ ©dt? under the above isomorphism. Let V£ be the Levi-Civita connction of (X, gX).

Theorem 3.2 (Atiyah-Patodi-Singer [2]). The following equation holds:
Siga(X) = [ LTX,9%) = n(¥,g")
X .
Here L denotes the Hirzebruch L-polynomial, which is a multiplicative genus associated with the
power series: L(x) := z/tanh(z).

Let X, B and M be closed oriented manifolds. Let = : X —+ B be a C*®°-submersion, whose
fibers are isomorphic to M. Assume that dimX = 4k. Let g%/ be a metric on T'(X/B) and
let g2 be a metric on TB. Let Ty X C TX be a connection . We identify Ty X with 7*TB via
n. With respect to the decomposition TX = T'(X/B) @ n*T B, we define the metric on X by
g% := ¢*/B @ n*g® and we consider the one parameter family of metrics on X defined by

g =g B e ln*gB, eeRt

Theorem 3.3 (Bismut-Cheeger, [6]). The limit h_r)r(x) n(X,g%*) ezists.
' 3

The limit h'_x)rtl) n(X,9%*¢) is called the adiabatic limit of the n-invariants and is denoted by
1
n°(X). By definition, 7°(X, g%) depends on the three data: gX/B, g8 and Ty X.

4. Family of smooth theta divisors

We fix the following notation. Let &, be the Siegel upper—half space of degree g and let Ty
be the integral symplectic group, i.e.,

Sy = {reM(g,C)|*r =7, Imr >0}
Iy == {y€GL(29,2) | v J, t’Y =Jg},
where J; = ( 0 1’) and 1, denotes the g x g identity matrix. I'y acts on &4 by

AB

=(AT+B)(CT+ D)™, ~= (CD

)Gl"g, T € Gq.
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For 7 € &, write 7 = ¥(7q,--+ ,7,) and set
At =Ze1® - ©Zey®Zn &---®Z1y CCY
where 1; = *(eq,--- ,e,) and 7 = (7, - - 1 Tg) € G4. Define the Z23-action on C9 x S,y by

(m,n): (z,7) :=(z+m7 +n,7), (2,7) €CIx&y, m,neZ¥.
Then
f:Ag:=(C%x6,)/2%9-6,
is the universal family of principally polarized Abelian varieties over &4, whose fiber at 7 is
A :=C9/A,. For (a,b)eR%, zeC9 and T€G, we define the theta function with characteristic

by
Jop(2,7) = Z e(

nezs
where e(t) = exp(2m/—1t). Let

f: ea,b = {(z, T)EAg l 19a,b(z’7') = 0}_)69'

be the universal family of theta divisors. For simplicity we write 1 for Yo,0 and set © = O .
On Ay, T'y acts by '

(n+a)m'(n +a) + (n+ a)' (2 + b)),

[\

AB
CD

For any (m,n)€R?, we define an automorphism ty, , : A;—A, by

v-(2,7) = (2(CTt+ D)"},(AT + B)(CTt + D)™}), ~= ( ) €Ty, z€C9, T €6,

(2,7) i= (z + mT +m, T).
Then t(,,, ) has no fixed points when (m, n)eR?\Z% and the subgroup Z2CR? acts trivially

on A,. For v = (& 2), we define

- ‘ 1
¥ = timn)0y € Aut(Ag), (m,n):= '2'((CtD)o, (A*B)o).
Then ¥ preserves the family f : 0-6,.
Proposition 4.1. For any v1,72€T,,
Y1o%2 = N2
Proof. See [15] V ‘ 0
We set
g29/6s .= dz.(Im7)"1.tdz.
Then g4/Ss is a T'g-invariant Hermitian metric on the relative tangent bundle T(Ag/S,). The
next purpose of this section is to construct a I'j-invariant Kahler metric on TA, such that
gh|, =dz-(Imr)~!.tdz for all € G&,.
Put T% := R%/Z%. Define a Z*-action on R x &, by (m,n) - (z,y,7) := (z+m,y+n,T)
for (m,n) € 2%, (z,y) € R¥, T € &,. Then (R¥ x &,)/Z% is the trivial 7%9-bundle T x &,
We define a C*-map 5: R% x &, — C? x G, by

A(z,y),7) == (zr +y,7), =,y €RI, 7€G,.

Since j is a Z*9-equivariant map, 5 induces a C*-isomorphism p : 729 x &, — A, as T%-bundles
over 6. Define a I'g-action on T29x G, by

7((@9),7) = ((&,9)v™",7-7), 7€y



Then for any y€I'y, the following diagram is commutative.

T¥xG, —2— A,

| I

p

Since the trivial connection on 7?29 x&, is I'g-invariant, A, has the induced I'p-invariant con-
nection TgA, C TA, via the I'j-equivariant isomorphism p. We denote the I'g-equivariant
projection corresponding to Ty A, by P,. Let Pf’ :TA;®C — T(Ay/6,) ® C be the complexi-
fication of P,. Then Py is also T'g-equivariant.

Under the projection, the horizontal lift of a (1,0) (resp. (1,0)) tangent vector is a (1,0)
(resp. (1,0)) tangent vector. Therefore the extension P : TA,@C—T(A,/G4)®C decomposes

(2) PF = P}'oPX,
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under the isomorphism TA,®C = T1PA;@T% Ay and T(Ay/6,)®C = THO(Ay /G, )T (A,/S,).

Hence P, induces a I'g-equivariant C*°-isomorphism

(3) TOA 2T (A /6 5)0f TS,

Let g% be the Bergman metric on &, with Kahler form -
(4) wg, = —2v/—188logdetImr.
Then ¢®s is T'g-invariant. Using the I'g-equivariant isomorphism (3), we define the ['g-invariant
Hermitian metric g4 on TAg4 by
gho = ghe/Sagy £+ 8o,
Theorem 4.2. The Hermitian metric g*s is Kihler.
Proof. See [15] O

We put A

A(Tg,x) = {f€O(8y) | f(y7) = j(r,1)*x(7) f(7), v€Tq}
' A B
C D

Ag(Tg, x) is called a Siegel modular form of weight k with character x . In particular, an element
of Ax(Ty,1) is called a Siegel modular form. Let f: 1= G¢xC9 be the trivial holomorphic line
bundle over &, with the I'g-action

where x is a character of I'y and j(7,v) = det(Ct + D) for ve (

7(1,€) i= (7,5 (v, 7)5€).
A Siegel modular form of weight k& is regarded as a I'g-invariant holomorphic setion of .’F: . Define
the Peterson metric on F¥ by

g2y = (det Tmr)*g, (r,§)eFE.
By the automorphic property of detIm(y-7) = [j(7,7)|"2detIm7, we see that ||| Fu 18 Tg-
invariant.

Let Ny := {7 € G, | Sing®,#0} be the Andreotti-Mayer locus, which is the locus of Abelian
varieties whose theta divisors is singular. The followings are known for the locus M.

). An element of
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Theorem 4.3 ([12]). N is a divisor of Sy, consisting of two irreducible components as a divisor
of the modular variety I'j\G, :

Ng = anu[[’g + 2Ngl.
Here Onyu,g is the zero divisor of Igusa’s modular form xg4(T) which is the Siegel modular form

of weight 2972(29 +1) defined as the product of all even theta constants and M 0 for g = 2,3.
For a generic point T€0h,119, Sing(©,) consists of one ordinary double point.

Theorem 4.4 ([25]). There is a Siegel cusp form Ag(7) of weight iﬂ)—”— with zero divisor Nj.
By the Proposition 4.8, this implies that there e:czsts Jo(7) which is a Siegel modular form of

weight M 2973(29 + 1) with zero divisor NJ such that

We put 6'9 =6y — N, 6; = 9!5;. Then f: 9'-—»6'9 is a family of smooth theta divisors.
Endow T'(6'/&,) the Hermitian metric g® /8¢ = ghe/Ss |- Let g° = g%9|g be the restric-
tion of the Kahler metric g*s. Consider ge'/ ®; and ge’ as Riemannian metric on T(©/ G'g) and
TO'. Let ‘

Tr®' := (T(0'/6,))*

be the orthgonal complement of T(©'/&}) in T©’, which induces a connection Py : TO'»TO'/ 6
Hence we obtain the connection V©'/ 65 on T(©'/6,) by using ¢® /8 and Py as in Section 2.2.

Let V" be the holomorphic Hermitian connection on T10(0'/&! %) with respect to the Hemitian
metric g©/Ss

Lemma 4.5. Under the C*-isomorphism T(©'/65)@C=T"0(&//6})aT" (0'/6)), the fol-
lowing equality of connections holds.

ve'/€:eC = Ve Th
Proof. Let VL be the Levi-Civita connection on TAy and let VH be the holomorphic Hermitian
connection on T'0A,. Since g#¢ is Kihler, the following equality holds ([18])
vieC = vEgVH
under the isomorphism TA,®C = T0A,6T%'A,. By (2), we get

ve'/Gsv@C = (P,VEP,)RC
= PL(VieC)PS
— pLOUH pl,04 pO,1&H po,l
= FBy"VUP, 0P, V7P,
Since P;*VH P}® = Vh (see [18] Capter I, Section 6), we get the result. O
Let g;, be the restriction of the Hermitian metric |dz|2 on TAy/S, to the relative tangent

bundle 76"/ G Let F(TO'/ Gg, g1,) be the correspondmg Chern-Weil form for F(z) and the
holomorphic Herrmtlan connection of (T©'/ 69, 91,)-

Proposition 4.8 ([24], Proposition 2.1). The following equality holds:
[F(Te'/8,,0,)]“ =0.

In particular one has
[£.F(T6 /6,,01,)] " =o.
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(2g+3)-(29)!
Let || Agq(7)||? := (detImr) Rl |Agq(7)|? denote the Peterson norm of the Siegel modular

form Agy(7) and let By be the k-th Bernoulli number, i.e.,

T T ad k+1 -’L'2k
—1-Z EENCRY: Wiy
e 2 +k§( B o

Theorem 4.7. The followig equality holds:
(_1)922g+1(229+2 -1)

’l Nl (1(2)
[f.L(T(@ [63g),V® /S30)] o T D)D) Do+rddlogdetimr
~1)9220+3(920+2 _
= (2gi3)! LB 1delogl| sy 1) 2.

By Lemma 4.5 and the fact that (V)2 is a (1, 1)-form, we see that the left-hand side is equal

) 1,1 »
to [f,.L(Tl'o(@' /S2)s V")]( ). By Proposition 4.6 we obtain

[LT0(6'/83,), VMY = —dd® £ [L(T10('/63,), 91, 9° /S9)] 9712070,

Hence we deduced the proof to the computation of the Bott-Chern form and we can compute it
by using the same idea in [25]. Since this is rather complicated, we omit the proof.

Remark 4.8. In Section 5, it will be cruicial that d°log||Ay(7)||? is [',-invariant and that
dd°log||Ay(7)||? is an eaxct form as a 2-form on [,\G,.

5. The signature cocycle for smooth theta divisors

 Since Iy acts bn G'g properly discontinuously the space I‘g\G; has naturally orbifold structure
and can be regarded as the moduli space of smooth theta divisors. We shall consider the orbifold
fundamental group of I‘g\G'g and construct a 2-cocycle of this group.

In the rest of this section we fix a generic base point *GG;, i.e., » satisfies {y€ly | y-* = x} =
{£144}. Let (B,b) be a topological space with a base point and let = : B—B be the universal
covering. Then the fundamental group m; (B, b) acts on B as the deck transformation. Fix a lift
beB of be B. We set

[B,T\&,]°™ := {(p, B) | p: B=&,, B: m(B,b)-Ty, st. p(b) = +, p(y-z) = B(7)-p(z)}/~.
Here the relation (po, Bo)~(p1, 81) holds if and only if By = £ and there is a map 5 : Bx [0, 1]-—)6;
such that $(z,0) = po, #(x,1) = p1 and p(y-z,t) = B(7)-p(z,t) for any yel'y, z€B, t€[0,1].
Definition 5.1. We define the orbifold fundamental group of I‘g\G; by

8y = [S',T\G,™
= {(&7) | 7€ly, a:R-6,,s.t. a0) = %, alt) = y-a(t+1), teR}/~.

Then '
So = {(,M)I7€Ty, @ [0,116),54. a(0) = y-a(l) = x}/~.
Here (a9, v0)~(c1, 1) if and only if vg = v; and there exists a homotopy a(s, t) : [0,1]x[0,1]-6
connecting ap and a3, such that a(s,0) = yp-a(s, 1) = * for s€[0, 1].

'
g

The group law of S, is defined as follows. Let [(a1,71)], [(@2,72)]€S,. Then ;-0 is a path
path from ;1 to (y172)"}-*. We define the new path « : [0, 1]—-)6; by a(t) := az(2t) for
0<t<3, a(t) := 73 1-en(2t — 1) for <t<1. Then we define [(a1,11)]- [(2,72)] := [(@, 7172)] €S,
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Let p : Sg—T'y be the projection to the second factor. Since the kernel of p is isomorphic to
7r1(6'g, ), we have an exact sequence

(5) 1—>7r1(6;, *) =Sy —=Tg—1.

Remark 5.2. When g = 1, ]f‘l\G'1 = SL,Z\G; is the moduli space of curves of genus 1 and

S1 = Mj;. When g =2, FQ\G; is the moduli space of curves of genus 2 by the Torelli theorem
and Sz = M2.

Recall that a (B, b)-equivariant map f : (B,b) — (Gg,*) induces the homomorphism of
groups f. : m1(B, b) - S, such that f.([c]) = [f o ] for [c] € m1(B, b).

. Proposition 5.3. Let (B, b) be a compact orienrted surface with base point and with non empty
boundary. Then the map

[B,T\&]”® 5 [f]  f. € Hom(m(B, b), S,).
18 a bijection.
Proof. 1t is known that B is homotopy equivalent to an n-bouquet V_, S} for some n and the

fundamental group (B, b)=m; (VE_, S}, 0) is isomorphic to the free group of rank n. Hence we
get

[B,T\&,]™~[Vi_, S5, To\ &, ~Hom(m1 (Vi_, 5}, 0), S;)~Hom(r1 (B, b), S,).
which completes the proof. O

In the rest of this section we assume that B = §2 — H2=1 Dy, where D;, D;, D3 are mutually
disjoint open discs. Since B is homotopy equivalent to a 2-bouquet 71(B,b) is the free group
of rank 2. Let g,g2 be generators of m;(B,b) represented by the loops which are mutually
homotopy equivalent to §D;, dD;. By Proposition 5.3 we have a bijection

(6) [B,Tg\6] =Sy xS,
which is given by [f]—(f.(g1), f«(92)) €Sy xS, for [f Je(B, T \G .
For | f]G[B I‘g\G Jor® the fiber product 7 : Bx fe—>B is a (B, b)- -equivariant fiber bundle

because f : B —)G is a m1 (B, b)-equivariant map. We get the fiber bundle 7 : (B x 7©)/m(B,b)—B,

which is umquely determined by [f]€[B, I‘g\G ] up to an isomorphism and whichi is 2g-
dimensional compact oriented manifold with boundary For (01,02)€8,%x Sy, Let 7 : X (01,02)—B
denote the corresponding fiber bundle under the isomorphism (6).

Definition 5.4. Define the map cyy : Spgx Sog—Z by

cag(01,02) := Sign(X (01, 02)).
We call cy4 the signature cocycle for smooth theta divisors.

Remark 5.5. We only consider the case of an even genus because in the case of an odd genus
Sign(X (01, 02)) always vanishes.

Lemma 5.8. The followig relation holds:
C2g(01,02) + €29(0102,03) = €24(02,03) + cag(0203,01),
for any 01,02,C €8Sy¢. In particular, cyg is a 2-cocycle of the group Sqq ([11]).
Proof. By the same argument in [1], we obtain the assertion. a

Let [cog)€ H?(S2g, Z) be the cohomology class of czg. When g = 1, ¢; is the Meyer cocycle.



6. Construction of the Meyer function

Let o = [(a,7)] be an element of Sz, where o : R—)G'zy and v€T'y,. Let Rx,0' be the fiber
product, which has a natural m;(S*)-action. We define the mapping torus M, for o by

7 My = (Rxa@’)/m(sl)—)SI.

Since the metric ¢© /S2 on T(8'/ 6'9) and the connection Py on O are I'yq4-invariant and the

map p: S1 = Ry, is m (S?)-equivariant, the mtric gM+/S" on T(M,/S") and the conection
on P, on M, are naturally induced via the map p. Using the connection P, we define the
1-parameter family of Riemannian metrics {gM*}.50 on M, by

gMa:E = gMo/SI@E-‘Iﬂ,*dtz, EER)O-
Here we regard S! as R/Z and t€R as a coordinate of S1. By the theorem 3.3, the adiabtic limit
(M, gMe*) = 31_1)1(1) n(M,, g™ *)
exists. Recall that the Siegel modular form Agy(7) with zero divisors Ny, (see Section 3.3.).

Since the 1-form d®log||Agq(7)||? is ['2g-invariant the pull-back p*dClog||A2,(7)||? can be regarded
as a l-form on S*.

Definition 6.1. For 0€S;, we fix (p,7) which represents o = [(p,7)], where v€l'5, and p :
]R—-)S'g. we set

-1 922g+3 22g+2 —~ 1B .
B2y(p,) 1= 1 (M, ™) + 1 (2(g+3)! e [ oglaa

The following theorem is the main result of this paper.

Theorem 6.2. (a) The value ®24(p,y) is independent of a choice of (p,y) which represents
0€Syy. In particular @24 is a function on Sy,.

(b) The cocycle —cyq 18 the coboundary of the function ®o4. In particular [c2,)®Q = 0 € H(S2,, Z).

As a corollary of the Theorem 6.2, it follows that ¢, = ®, by the uniqueness of Meyer’s
function of genus 2. On the other hand, A3(7) coincides with the Igusa’s modular form x2(7)
([25]), which is the product of all even theta constans.Then we can derive the following formula:

Corollary 6.3 ([15]). Let o = [(p, 'y)] be an element of S2 = My as before. Then we have

2
b2(0) = n0(My, g <) — 2 / p*dlogllxa(7)]12.
15 /g1

Proof of Theorem 6.2. (a) Assume that (po, ) and (p1,7) represents the same element 0€Sy,.
Put I :=[0,1]. There is a map

P IXR—)G'zg
which satisfies 5(s,0) = * for s€l and p(s,t) = v-p(s,t + 1) for (s,t)€IxR and the following
condition

(7) p(s,t) = po(t), se[O,%) and H(s,t) = pi(t), se(g,l].

Since 7 is w1 (I xR)-equivariant, the fiber product (IxR)x 30  has the m1 (I x.S)-action and the
quotien space

#: M, = (IxR)x30 /m (IxSY)—+IxS?
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has the induced metric gM=/T*5" on T(M,/IxS') from the metric 9° /€ and the connection
P, on M, from the connection Py mutually via the map p. Using the connection P, we set

7. gMa,E = gMg/IXS @E—l’n‘*(ds @dtz), e€R5p.

Let glM ** be the metrics on M,, induced from the map p; for i = 0,1 as above. The condition
(7) implies that

Mo, Mayf —1442 M,, Mo 1 —1 142
g El[O,%)xS‘ De dt l(zl]xsl—g e~ dte.

Then we can apply the Atiyah-Patodi Singer’s index theorem to (M, gM”e ):
(8) Sign(M,) = /I o 7. L(TM,, g™ *) - (n(M,,gg'[”e) - n(My, g7 *)).
X

Since M, is isomorphic to the product M, xI, we have (see [3]),
9) Sign(M,) = Sign(M,)xSign(I) =
By Proposition 2.4 and the Proposition 2.5, we get

lim . ‘Tr.L(TM,,gM“‘) = /1 > ( (T(M,/(IxS)))-7* (T(Ixsl)))
(2)

- / 7. L(T(M,/(Ix8Y)), v¥/Ix5M))
IxS1
.

= Axsl T
(10) = /I XSlﬁ*[mL(T(e'/s;),ve'/s;)]‘2)

where VMo/(S'xI) i the connection on the relative tangent bundle T(M,/(S'xI)) assoc1ated

with gMe/(S'x1) and P, and we used the commutativity of fiber integrals and base changes in
the last equality. By the Proposition 4.7, we have

(11) /1 - Iy [ir.L(T(@’/S;),Ve'/s;)]m

22g+3(22g+2 - 1) B2g+2
- p*ddlog|| A 2
a2 [ adioglan(r

229+3 (22g+2 — 1)B2g+‘2 /
- td°log||Agy (7)||% — / adClog|| Aze(7)(1?),
(29 + 3)g ( 1}xst 41 g” 29( )” (0}x81 Po g” 2g( )“ )

where we used the I'y;-invariance of the 1-form dlog||Azg(7)||?) in the last equality. By (25) ~
(12) and the Definition 6.1, we obtain

0= ¢2g(p1;7) - (I)2g(p0v7)a
which completes the proof of (a).

(b) Let o1 = [(p1, )], 02 = [(p2,72)), 03 := (0102)™! = (p3, (1172)"})ES2g. Set B :
52 — I13_, Dy. Recall that the fiber bundle 7 : X (al,ag)-)B for 01,09 defined at the Sectlon
3.2. By the definition of @3, we have ®3(0~!) = —P4(0) for any 0€Sz,. Therefore to show
that —cyy is the coboundary of @, we have to show that

ST CEAR LI

(12) Sign(X (01,02)) = Z Dgq(04)

=1



Let U; be the neighborhood of 0D; in B such that U;=[0,1)xdD;. Let §; : ,...[O 1)xR—B
be the lift of the map U;j—B. Let g1,g92€m1(B,b) be the generators represented by the loops
0D,,0D,. Let {(p, @)]€[B, 1‘2-9\6;9]""’ be the corresponding element for (¢}, 02)€S24 X S, under
the isomorphism (6) where o : m1(B,b)—I'y, is a group homomorphism and p : B——»G;Q is a
m1 (B, b)-equivariant homomorphism preserving the basepoint. Since 8D;, dD, and 8Dj3 are

homotopy equivalent to the loops which represent g;,g> and (g; g2)~1en(B,b) we can assume
that

(13) poBilg(sint) = pi(t), (36, )€T[0,1)xR, i = 1~3.
Let gX(@1:02)/B apd Px(0,,0,) be the metric on TX(01,02) and the connection on X(o1,02)
induced from the metric g° /€25 and the connection P via the map p. Let gZ be the metric

on TB such that gB|U = d82®dt2 ‘Using the conectlon Px(s,,0,) We define the metric on
TX(o1,02) by

X(01,02)¢ X(01,02)/B

g =g @etn*gB, e€Rsq.
Let gMei* be the metric on M,, induced from p; for i = 1~3 as above. Let VX(91.:92)/B pe the
connection on T'(X (01,02)) defined by the metric g*X(91,92)/B 314 the connction Px(o1,0,)- Since

the condition (13) implies that the metric g* (91,02)¢ jg a product metric near the boundary of
X(01,02) we can apply the Atiyah-Patodi-Singer’s index theorem to (X (o1, 03), gX(e1:02)%):

3
Sign(X(01,02)) = /X( )L(Tx(gl,@)’gx(az,az)ﬁ) - zﬂ(McrngM""e)
01,02 i=1

3
= / W*L(T(X(O’l, 0'2)/3), VX(dl,dg)/B) — Z no(Ma‘:’ gM,‘.,E)
B

=1

ro 3
= [ ErE )] 7 - St g

i=1

PR By, :
—?_jl [ - ogl Aoy (r)

_—Zn (Mg, g™
i=1

3
= — Z (I’Zg(oi)

t=1

which completes the proof of (b). O

7. The first cohomology of ng

The uniqueness of a 1-cocycle that cobounds the 2-cocycle cyq4 is equivalent to the vanishing of
H1 (S29,Z). In deed, if there is another 1-cocycle <I>'29 : S2¢g—R that cobounds cag4, the difference
B3y — B, is an element of Hom(Sa,, R) & H(Sz, R). While H'(S),Z) = H(S;,Z) = 0, the
uniqueness no longe valid for higher genus.

Theorem 7.1. The following holds:

<g<

Z g>4.
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In particular, the cochain cobounding the signature cocycle cog is not unique when g > 2.

By (5) and [11], we have the 5-term exact sequence
(14) 1+H(Ty, Z)>H(S,, Z) > H' (11(6,, %), Z)'s S H(Ty, Z) > H?(S,, Z).

We have Hl(Fg,Z) = 0 for g>1 and H%(['y,Z) = Z for g>3. By the Hurwitz theorem we see
that

(15) H'(m1(6,,+), Z)~H"(6,,Z).
Lemma 7.2. Let X be a connected complexr manifold of dim¢ X >2. Assume that
(16) HY(X,Z) = H*(X,Z) = 0.

Let D = Y, Dy be a divisor on X such that ny#0 and D) is irreducible for all A € A.
Then

HY(X - D,z) = 7°.
The generator of the cohomology H*(X ~ D, Z) corresponding to AEA is represented by the map

Ix—1 and 1,0 for u#A€A, where I, denotes the loop around a small disk and intersecting D,
transversally.

Proof. Since the real codimension of SingD in X is greater than or equal to 4, we have (X, X —
SingD, *) = 0 for 1<k<3. The relative Hurwitz theorem asserts that Hi(X,X — SingD,Z) =0
for k<3. Hence H*(X, X — SingD, Z) = 0 for k<3, which together with the cohomology exact
sequence for the triple (X, X — SingD, X — D), yields that

(17 H*(X,X - D,Z)~H*(X - SingD, X — D, Z).
By the éohomology exact equence for the pair (X, X — D) and (16), we obtaion
(18) HYX - D,Z)~H*(X,X — D,Z).

Since D —SingD is a closed submanifold in X —SingD and X — D = (X —SingD) — (D —SingD),
the Thom isomorphism asserts that

(19) H?*(X — SingD, X — D,Z)~H°(D - SingD, Z).

By the irreducibility of Dy, D) — SingD,, is path connected so that

(20) H%(D - SingD, Z)~ZA,

The result follows from (17)~(20). O

Lemma 7.3. The following holds:

Z 1<g<3

! r

By regarding H 1((‘5;,C) as the de Rham éohomology group, the image of the generators under
the natural map HI(S;,Z)—+H 1(6;,@) are represented by the 1-forms ‘E#leogxg('r) and
#—idlong('r). Here Jo(7) = 1 and hence dlogJy(7) =0 for 1 < g < 3.

Proof. By Proposition 4.3, Proposition 4.4, the isomorphism (15) and Lemma 7.2, we get the
assertion. O



Recall that the automorphic factor j(7,~) is a nowhere vanishing holomorphic function on G,.
Since G, is simmply connected, the logarithm of j(7,~) makes sence. Choose a branch of the
logarithm of j(7,v) and denote it by log,j(7,7) for y€Ty. Define the function A; : TgxI'y—Z
by .

1 . . .
(21) )‘U(Aa B) = m{logaﬂ(ﬂ AB) - logaJ(B'Ta A) - loga](T) B)}’ (A’B)GPQXPQ'

Lemma 7.4. The function A, 1s a 2-cocycle of 'y, whose cohomology class generates H(T'y, Z).

Proof. For g = 1 see [4]. When g > 1, we follow [4]. Let G := Sp(2g,R) be the symplectic
group and let G? be the same group endowed with the discrete topology. Let ue H2(G?,Z) be
the cohomology class corresponding to the universal covering

0—+Z—G—G—1.
We choose the branch log,j(7,~) satisfying
(22) ' Im logaj(\/:1'12g) 7) 6[01 2“)'

Since the function ), is measurable, the cohomology class [),] is a constant multiple of u by [20].
Therefore it suffices to determine the restriction of the cohomology class [A,] to the maximal
compact subgroup of G. We shall identify the unitary group U(g) with the maximal compact
subgroup of G by the inclusion map defined as .

ReZ Im2Z
-ImZ RelZ

Since j(v/=1-134,4(Z)) = det(Z)~! for ZeU(g) and the isotropy subgroup at v/=1-130€G, is
just U(g), we have

(23) 21/ =10, (21, Z2) = —log,det(Z Z2) + log,det(Z)) + log,det(Z2)
for (2,, Z2)€U(g)xU(g). By (23), the restriction of the cohomology class [A,] to U(g) is the pull-

i

back of the cohomology class corresponding to the universal covering 0—-Z—U (1)=R—-U(1)-1,
via the map det : U(g)—U(1). Since the induced map (det). : m1(U(g))—=m1(U(1)) is an
isomorphism, we obtain [X,] = u. Since the cohomology class [),] is independent of the choice
of the branch of log,j(7, ) and since the restriction of u to Iy is the generator of the cohomology
H%(T'y,Z) we obtain the assertion. O

Lemma 7.5. Let g > 2. The map ¢ : Hl(ﬂl(G'g,*),Z)-—)HZ(I‘g,Z) is given by
(m, n)—(k1(9)m + k2(g)n) €H*(Ty, Z)=Z
for (m,n)eH (m (6'9, *), Z)=Z®?2, Here,

¢:U(g) 32— ( > €G, ZeU(g).

3)-g!
k(o) = 297220 41), kalg) = EEVE g3 1)
are the weights of Siegel modular forms x4(7), Jo(7), respectively.

Proof. Let o : Ty—S, be a section, and write o () = [({,,7)]€S, for v€I'y. We can assume that
l,-1 = —y-ly, where —I(t) := I(1 - t), t€[0,1] for a path I(t). Hence o(y~!) = o(7)~!. Let a be
an element of H'(m1(&,, *), Z)Ts2Hom(m; (&, ¥), Z)'s. Then é(a) : TyxTy—Z is given by

(A, By—a(o(A)o(B)o(AB) 1)€Z, (A,B)elyxTy,
where we identufy 0(A4)o(B)o(AB)™! € Im{m (G'g, %) — Sg} with the corresponding preimage of
nl(G;, *) under the inclusion wl(G'g, *x)=8,. Write 0(A)o(B)o(AB)™! = [(l(a,5) 1)]6%1(6;, *).
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Here (4 p) is a loop on 6'9, which is the composition of the paths [g, B~1.l4 and —l45. Under
the identification H! (wl(G;, x),Z)'s = 792 given in Lemma 7.3, the cochain §(m,n) is given by

5(m,m)(4,B) = —— [ dlogxo(r)™J,(r)" €Z, (A, B)€TyxT,,
2m/—1

la,m)

for (m,n)eH(m (6, +), Z)'+=~Z®2. Using o, we choose the branch log, j(r,7) for v€l'y such
that

1
log._1 *, ) 1= —-———/ dlo T).
ga’]( ) kl(g) 17_1 ng( )
Then we get
27v/=16(1,0)(4,B) = dlogx(7)

la,B)

= / dlogxy(AB-T)
AB-l(4,8)

- / [k1(g)dlogs(r, AB) + dlogx,(r)]
AB-I(A‘B)

]

/ dlogx,(7) + / dlogx,(T) - _/ dlogxg(7)
AB.lg Alg AB-laB

= - /13-1 dlogxg(A-7) - /u-x dlogx,(7) + / dlogx,(7)

(4B)-1

= -/ [k1(g)dlogj (7, A) + dlogx,(7)].

B-1
—k1(g)log,j(*, 4) + k1 (9)log,j(*, AB)
= kl(g) [_Iogaj(B‘*a A) + loga'j(*7 A) - logaj(*a B)
~log,j(*, A) + log,j(*, AB)]
= ki(g) [logaj(*’ AB) —log,j(B-*,A) — log,j(*, B)] .

By Lemma 7.4 we get §(1,0) = ki(g9)€H%(Ty, Z)~Z. Similarly, §(0,1) = ka(g)€H?(Ty, Z)=Z.
This completes the proof. -0

Proof of Theorem 7.1. Since H'(T'y, Z) in the exact sequence (5), we get H 1(Sy,Z) = kerd. By
Lemma 7.5, we get kerd = 0 for 1 < g < 3 and kerd 2 Z for g > 4. This completes the proof of
Theorem 7.1. a

. 8. The value for the Dehn twist

In this section, we shall compute the value of &, for the Dehn twist, which is defined as
follows (cf. [16]). Let A C C be the unit disk. Recall that the Andreotti-Mayer locus N3g has
two irreducible components 6,12, and /\/’2' ¢ by Theorem 4.3. Let p : A—Gy, be a C*°-map such
that p(0)€0nuu 24 is a generic point, p(2) N2, for 2€A\{0} and p(A) intersects with Onuit,2g at
p(0) transversally. For simplicity we assume that the base point * lies in p(8A) and we denote
the monodromy corresponding to the loop plsa : A — G;g by 024€525. The element o34 is
called the Dehn twist. We put

w: Xog :1= Ax,0—A, ,
which is smooth family of theta divisors over A induced from the universal family 7 : © — Gy
by p. Let p: X24—© be the lift of the map p defined as the projection to the second factor. By



the assumption of p and the Theorem 4.3, Sing(w_l(O)) consists of one ordinary double point

and w™!(z) is a smooth theta divisor for z€A\{0}. Notice that X5, endowed with the the

orientation induced from Xj4 is diffeomorphic to the mapping torus M oyt endowed with the
9

natural orientation, i.e., 0X2g = —M,,,.
Theorem 8.1. The following equality holds:
' -4 if g=1,.

@ - g+2_
29(02g) {( )y+1(29+1)2(2"+jg,2 2 1)BgH.l if g>1

Proof. Put A, := {2€A | |2| < r}CA for 0 < r < 1. We choose p such that the restnctxon
Plays : A1 /3—P(A1/3)CGyq is a holomorphic embedding that

3

Let g® be the metric on TA which is a product metric near the bondary dA and coincides with
the metric p*g®s on A, /3. Let pEX3, be the unique singular point on the singular fiber Xo. Let

g%29/2 be the metric on T(X2,/ A)| Xag—{p) induced from the metric g9/Ss via the map p. Let

(24) | p(re‘/:w) =p (ge‘/:w) , ; < r<l, 0<6 < 2m.

g% be the metric on T Xa4 which coincides with g%X2%/Apw*g®, where we used the connection
induced from the connection Py on ©' via the map p, on Xzg — {p} and coincides with the
metric induced from the metric ¢® via the map j on a neighbourhood of p. Set

ng,,e

By the assumption of g® and the condition (24), g%?¢ is the product metric near the boundary
0Xag for € € R5g. By the Atiyah-Patodi-Singer index theorem,

= g%X@e lw*g®, e€Rso.

(25) Sign(Xag) = [ L(TXag, %) + (Mo, 60",
X2y

Here 0Xy, is identified with —M,, , and gM"ﬁﬂ * is the restriction of gX?s¢ to the boundary
 0X324%= — M,,,. By the formula in [26], the first term of the right-hand side of (25):

(26)  lim L(TX5p,9%%0%) = L(T(Xag/A), VX%/2) + P(=t,- -, (1)) |- u(p)p

Here L(T(X24/A), VX2/2) is only defined on X, — {p} but has the natural smooth extension
on whole X34. The constant u(p) is the Milnor number of the singular point p, §, is the Dirac
delta current supported at p and P(zy,: -+, 22¢)€C[[Z1, - -, T24]] is defined by

2g
[1L(=zx) = P(oy,- -+, 02),
k=1

where L(z) = z/tanh(z) and 01 = 3 Tk, 02 = 3 _;5; TiTj, * **, 029 = [ |, Tk are the fundamental
symmetric polynomials. Notice that
P(—t,- (=)} = L7 (8)] 20 |
Since p is a non-degenerate critical point of 7 : X — A, we get u(p) = 1 which together with
(25), (26) and Theorem 4.7, yields that
(—1)9229+1(229+2 1)
(g+1)(29+1)
(_1)922g+2(22g+2 - 1)
(29 +2)!

Sign(X2g) = Bg41 A p*ddflogdetImT

(27)

Bgy1 + ")o(Mazg ) gMazg ,5).
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By (27) and Definition 6.1, we get

¢2g(02g) = nO(MvzgagM%g’E))
(_1)922g+3 (229+2 -

1 * 1c (2g+3)-(2g)!
)Bg+1 /;Ap d (log[Azg(T)lz(detImT) 2 )

(29 + 3)!
—1)99229+2(929+2 _ .
) 29 f_ 2 )Bg+1 + Sign(X3)
(—1)9229+3(229+2 - 1) / * 7.1C 2
(zg + 3)! Bg+1 Ap dd 10g|A29(T)l

—1)9+1(2 +1 9229+2(929+2 -1 .
- ( ) ( g ) ( )Bg+1 -+ Slgn(X29)7

(29 + 3)!
where we used the Poincaré-Lelong formula and Theorem 4.4 to get the last equality. When
9 = 1, since the singular fiber has two irreducible components and Sign(X;) = —1, we obtain the

proof for the case g = 1. We complete the proof by the following Lemma, in the case g > 1. O

Lemma 8.2. Let 7 : X — A be a Lefschetz degeneration of relative dimension 2n — 1, i.e.,
7 18 a proper holomorphic surjective map from a 2n-dimensional complez manifold X to the
unit disk A and there is a point p € Xy and an open neighbourhood p € U = {(21,--- ,220) €
C™ | 2 |2kf? < 1} such that '

2n
7r(zl,---,22n)=Zz,2c, (21, ,22n) €U
k=1

and m, has mazimal rank on X\ p. Assume that n > 1. Then Sign(¥) = 0.

Proof. For € A, we set U; := X; NU. Then a sequence of inclusions
Xo\UoCXo\{p}CXoC X

induces a sequence of isomorphisms:

(28) Hon (X0 \ Up, Z) = Hon(X0 \ {p},Z) = Hon(X0,Z) = Hop (%, Z).

Here the first isomorphism follows from the homotopy equivalence of ¥¢ \ Uy and ¥ \ {p}, the
second isomorphism follows from the fact codimg{p}/Xo = 4n — 2 > 2n + 1, and the third
isomorphism follows from the fact that the inclusion X9 — X is a deformation retraction. By
Ehresman’s Theorem, X\ U is diffeomorphic to (Xo\Up) x A as a fiber bundle over A. Since A is
contractible, the inclusion X;\U; < X\U induces an isomorphism Hon(X:\Ut, Z) & Hopn(X\U, Z).
By (28), the inclusion X;\U; — X induces an isomorphism Hop (% \ Uy, Z) = Hon (%, Z). Hence,
for any t € A, any element of Hy,(X, Z) can be represented by a cycle contained in X;. Therefore
the intersection matrix of Ha,(%,Z) is trivial and Sign(X) = 0. This completes the proof. [J

Remark 8.3. When g = 1, 02€ M3 is the Dehn twist along a separating simple closed curve
on a Riemann suface of genus two. Since Sign(X2) = —1 and By = 310-, we obtain ¢g(02) =
®2(02) = —%, which confirms a result of Matsumoto ([19]).
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