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LIMIT LINEAR SERIES, AN INTRODUCTION
EDUARDO ESTEVES

ABSTRACT. Our goal is to introduce the technique of limit lin-
ear series by using the historic example of the proof of the Brill-
Néther theorem. In our approach, we employ a formula for limits
of ramification points of linear systems along a family of curves
degenerating to a nodal curve, also proved here.

1. INTRODUCTION

The technique of limit linear series was introduced by Eisenbud and
Harris in the eighties. It originated from the proof by Griffiths and
Harris [GH] of the Brill-Néther theorem, and from subsequent work
by Gieseker [Gi] on the Gieseker—Petri theorem. Eisenbud and Harris
were able to obtain remarkable results from their technique. The reader
may consult [EH2] for a description of some of these results and further
references. In particular, they were able to give a shorter proof of the

limit linear series by using it to give a proof of part of the Brill-Nother
theorem. We claim no originality though. In fact, the same goal was
pursued by Harris and Morrison in [HM], where they actually prove
the Gieseker—Petri theorem as well.

The approach in these notes is just slightly different from theirs, as
we employ here a formula for limits of ramification points of linear
systems, instead of the compatibility conditions on order sequences of
limit linear series at nodes. To my knowledge, this formula appeared
first in [Es], where it was derived for degenerations to nodal curves of
every kind. To be more precise, Eisenbud and Harris produced the
formula only for degenerations to curves of compact type, and only in
the case the ramification points do not degenerate to nodes. And it is
exactly the fact that the formula gives an effective 0-cycle at the nodes
that we use in our approach.

The formula itself is important, so its presentation is also a goal of
these notes. It can be used to approach a problem raised by Eisenbud
and Harris in [EH3): What are the limits of Weierstrass points in fam-
ilies of curves degenerating to stable curves not of compact type? This
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was done in [EM2] for nodal curves with just two irreducible compo-
nents.

More details on the statement of the Brill-Nother theorem and its
history can be found in Section 2, which can be regarded as a second
introduction. In Section 3 we present what we need from deformations
of nodal curves, as the existence of regular smoothings of nodal curves,
and how they behave under base change. In Section 4 we review the
basic theory of ramification points of linear systems on smooth curves.
In Section 5 we present the formula for computing limits of ramification
points of linear systems along a family of curves degenerating to a nodal
curve. Finally, in Section 6 we use the formula for proving the Brill-
Nother theorem.

These notes originated from two talks I gave at the Symposium on
Algebraic Geometry and Topology at the Research Institute for Mathe-
matical Sciences of Kyoto University in January, 2006. The notes follow
the talks, giving many more details than I could give then. However,
at the talks I gave a brief overview of the results in [EM2], about the
determination of limits of Weierstrass points on nodal curves with two
components. As I would have neither time nor space to give more than
an overview here, and as this overview is given in [EM1] and in the
introduction to [EM2], I decided to omit this part in the notes.

I would like to thank the organizers of the Symposium in Kyoto,
Profs. Mizuho Ishizaka, Hajime Kaji and Kazuhiro Konno, for a very
exciting meeting. I would also like to thank their hospitality, and that
of the many Japanese mathematicians I met, which make a trip to
Japan, as always, a very pleasant and productive experience. Finally, I
would like to thank the participants of the seminar on moduli of curves
run at IMPA in 2005. The seminar served as basis for the talks in
Kyoto and these notes.

2. THE BRILL-NOTHER THEOREM

2.1. The Brill-Néther property. Let C be a nonsingular, connected,

complex projective curve of genus g. A linear system on C is a nonzero

vector space of sections of a line bundle on C. The degree of the line
bundle is called the degree of the linear system, and the projective
dimension of the vector space is called the rank of the linear system.
For each pair of nonnegative integers (d, r), let

plg.d.r) = (r+1)(d—r)—gr.

We call p(g, d, r) the Brill-Néther number associated to g, d and r. We
say that C satisfies the Brill-Néther property if for each pair (d, r) with
p(g,d,r) < 0 there is no linear system on C of degree d and rank r.
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Remark 2.2. It is not necessary to check each pair of nonnegative
integers (d,r) to ascertain that C satisfies the Brill-Néther property,
but only a finite number of them. Indeed, if L is a line bundle of degree
d on C that is nonspecial, i.e. h!(C, L) = 0 or, equivalently,

(C, L)=d+1—g,

then the rank r of any linear system of sections of L satisfies r < d—g,
and hence p(g,d,r) > g > 0. Since h*(C,L) = 0if d > 2g — 1, and
since at any rate h°(C, L) < d + 1, we may restrict to pairs (d,r) with
d <29 — 2 and r < d. There are a finite number of those.

Remark 2.3. If C is a hyperelliptic curve of genus g > 2, then C does
not satisfy the Brill-N6ther property. Indeed, a hyperelliptic curve is
a degree-2 covering of the projective line, so admits a linear system of
degree 2 and rank 1. But

p(9.2,1) =(1+1)(2-1)—g=2—y,
and hence p(g,2,1) < 0if g > 2.

Theorem 2.4. (Brill-Nother) A general nonsingular, connected, com-
plex projective curve of genus g > 2 satisfies the Brill-Néther property.

The proof will be given in Section 3, using Theorem 2.11.

Remark 2.5. Every rational or elliptic curve satisfies the Brill-Noether
property, as it can easily be checked by considering their special linear
systems. So we restrict our attention to g > 2.

2.6. Generality. What does “general” mean? The idea, when a state-
ment is made for a “general” object, is that all objects of the same kind,
but for particular cases, satisfy that statement. So, by this concept,
the word “general” can only he used when there is a classifying space
for the objects being considered. In the case of the Brill-Nother theo-
rem this space is the so-called moduli space of smooth curves of genus
g, usually denoted by M,. The precise statement of the Brill-Néther
theorem is thus:

There is an open dense subset of My, for each g > 2, such that any
curve represented by a point on that open subset satisfies the Brill-
Nother property.

2.7. Openness. The Brill-Nother theorem is also equivalent to the
following statement:

For each g > 2 there is a nonsingular, connected, complex projective
curve of genus g satisfying the Brill-Niother property.
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The point is that the Brill-Nother property is “open.” So, if there is
a nonsingular curve satisfying it, then there is an open neighborhood of
the point representing the curve in M, such that all curves represented
in that open set satisfy the Brill-Nother property.

To explain this idea in more precise terms, we need to introduce
a few objects. Let f: X — S be a smooth projective map between
complex algebraic schemes with connected fibers of dimension 1. For
each integer d, there is an S-scheme Pic? parameterizing line bundles of
degree d on the fibers of f, the so-called degree-d relative Picard scheme
of f; see [Gr], Thm. 3.1 or [BLR], Thm. 1, p. 210. Since f is smooth,
Pic‘} is proper over S; see, for instance, [BLR|, Thm. 3, p. 232 and
Thm. 1, p. 252. For each nonnegative integer 7, let W2(f) C Pic‘} be
the closed subscheme parameterizing those line bundles on the fibers of
f having at least »+1 linearly independent sections; see Subsection 3.5.
(That W2(f) is indeed closed follows from the semicontinuity theorem.)
Since Pic? is proper over S, so is Wa(f).

Now, suppose one of the fibers of f satisfies the Brill-Nother prop-
erty. Denote by s the point of S over which that curve lies. Let g
denote the genus of every fiber of f, and let d and » be nonnegative
integers such that p(g,d,r) < 0. By the Brill-Néther property, W2(f)
does not intersect the fiber of Pic‘fl over s. Since W2(f) is proper over
S, its image in S is thus a closed subset not containing s. So there
is an open neighborhood U,(d,r) C S of s such that W2(f) does not
intersect any fiber of Pic‘} over a point in Ug(d,r). This means that no
fiber of f over a point in Uy(d,r) admits a linear system of degree d
and rank 7.

Intersecting all the Ug(d, ) with d < 2¢g—2 and » < d (and p(g,d,r)
negative) we get an open neighborhood of s such that all fibers of f
over points of that neighborhood satisfy the Brill-Nother property. We
have just shown that the subset U C S of points over which the fibers
of f satisfy the Brill-Nother property is open.

If M, were a fine moduli space, then there would be a smooth projec-
tive map f as above with S = M, whose fiber over each s € S would be
the curve represented by s in M,. Then the above reasoning, and the
irreducibility of M, (see [DM]) would yield the Brill-Néther statement
of Subsection 2.6.

However, M, is just a coarse moduli space. Anyway. there is a map
f as above such that the induced “moduli map” h : S — M, taking
s € S to the point representing the fiber f~!(s) is surjective and proper,
even finite; see [HM], Lemma 3.89, p. 142. Then V := M, — h(S = U)
is open, and parameterizes curves satisfying the Brill-Nother property.
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Remark 2.8. Even though there are in a sense many more curves that
satisfy the Brill-Nother property than those that don'’t, it is very dif-
ficult to exhibit explicitly curves that satisfy the property. The reason
is that most curves that we can think of, and those that appear in
practice, are very particular, like plane curves, complete intersections,
hyperelliptic, trigonal, tetragonal, etc.

2.9. History. What we are calling the Brill-Nother theorem in these
notes is actually just a part of the full statement of it. A more complete
statement is:

A general nonsingular, connected, complex projective curve of genus
g > 2 has a linear system of degree d and rank r if and only if
p(g,d,r) 2 0; and if so, then p(g,d,r) is the dimension of the locus of
those linear systems. '

To make the addendum in the last statement more precise, let C he
a nonsingular, connected, projective curve of genus g. As in Subsec-
tion 2.7, for each integer d, let Pic?C' be the degree-d Picard scheme of
C, parameterizing line bundles of degree d on C. And, for each integer
r, let WeC C Pic?C be the closed subset parameterizing line bundles
with at least » + 1 linearly independent sections; see Subsection 3.5.
Then the addendum to the above Brill-Nother statement says:

If C is general and p(g,d,r) > 0, then dim W4C = p(g.d,r).

Brill and Noéther made their statement in [BN], p. 290, giving an
incomplete proof. Severi, based on ideas of Castelnuovo [C], suggested
a way of proving the statement, by using a degeneration argument; see
[S], Anhang G, Section 8, p. 380. There are serious problems with his
approach, but a variation of it eventually proved the statement, as we
will comment in more detail below.

The “if” part of the Brill-Nother statement was proved indepen-
dently by Kempf [Ke] and by Kleiman and Laksov [KL1]}, [KL2]. It is
not our goal in these notes to go through that proof. However, let us
just sketch the argument. The argument is based on the fact that W2C
is a determinantal variety, as explained in Subsection 3.5, and hence
its class in the Chow ring of Pic®C can be given by Porteous formula
if WeC is either empty or of the right codimension. The idea is then
to compute that class, and check that it is nonzero, and hence cannot
be the class of the empty set. This argument, and hence the “if” part
of the Brill-Nother statement, is valid for any nonsingular, connected,
projective curve C.

To prove the “only if” part, Severi suggested considering a family
of smooth curves degenerating to a general rational nodal curve Xj,
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that is, a curve obtained from P! by choosing 2¢ general points of P’
grouping them in g pairs, and identifying the two points in each pair,
in such a way to produce an ordinary double point.

Severi’s idea was that if linear systems of a certain rank and degree
existed for the smooth curves in the family, then linear systems of the
~ same kind would exist, by passage to the limit, on X,. If so, one could
consider the pullbacks of those linear systems on the P! normalizing
Xo. On P! we would have linear systems of rank r and degree d
that, being pullbacks, would be special in the sense that every section
that is zero on a branch over a node of X, would have to vanish on
the other branch as well. If the branches are in general position on
P!, then one could hope that the locus of those linear systems on P!
has the “expected” dimension, and that is exactly p(g, d, r); see [HM],
Chapter 5 for more details.

It turns out that the above argument presents two problems. First,
linear systems may not degenerate to linear systems, as line bundles
may not degenerate to line bundles. The degree-d Picard scheme of
Xo is not complete! This problem was the first to be overcome, by
Kleiman [Kl|, by using torsion-free rank-1 sheaves.

The second problem is a major one. It is hard to exhibit a set of
29 points on P! such that the locus of linear systems on P! mentioned
above has dimension p(g, d, r), if nonempty. This seems to be as hard
as exhibiting a nonsingular curve satisfying the Brill-Néther property!

Despite this problem, Griffiths and Harris [GH] were able to “com-
plete” Severi’s argument by considering specializations of Cj, making
the 2g points on P! converge, in a certain way, to a single point.

Later, it was noticed by Eisenbud and Harris [EH1], following work
by Gieseker [Gi], that the proof of the Brill-Nother statement is simpli-
fied by considering a degeneration to a rational cuspidal curve, instead
of a nodal one. And by considering a semistable model of that curve,
where the cusps are replaced by elliptic curves attached to the normal-
ization, a flag curve according to Definition 2.10 below, one would not
even need to consider torsion-free rank-1 sheaves. The proof we give
in these notes follows this idea.

Definition 2.10. A nodal curve is a connected complex projective
curve whose only singularities are nodes, that is, ordinary double points.
A flag curve, in these notes, is a nodal curve F satisfying the following
three properties:

(1) It is of compact type or, equivalently, the number of nodes of
F is smaller (by one) than the number of components.
(2) Each component of F' is either P! or an elliptic curve.
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(3) Each elliptic component of F' contains exactly one node of X.

Theorem 2.11. Let f: X — S be a flat, projective map from a regular
scheme X to S := Spec(C[[t]]). If the special fiber of f is a flag curve,
then the general fiber satisfies the Brill-Néther property.

The proof will be given in Section 6. A clarification of the statement
will be given in Subsection 3.6. Also, in Subsection 3.7 we will see how
Theorem 2.11 implies Theorem 2.4.

3. DEFORMATIONS OF NODAL CURVES

3.1. Deformation theory. The infinitesimal deformations of a nodal
curve, as far as smoothening of the nodes go, is easy to describe.

Let X, be a nodal curve. Then there is a versal deformation of X
over a ring of power series over C; see [DM], p. 79. In other words,
there are a map h: Y — B, where B := Spec(C[[t1,...,tn]]), and an
isomorphism between X, and the closed fiber of h, satisfying certain
universal properties.

The versal deformation space of X is formally smooth over the versal
deformation space of its singularities; see [DM]. Prop. 1.5, p. 81. In

other words, let V;, ..., N5 denote the nodes of Xg. Then m > 4 and,
after a change of variables, we may assume that for each i = 1,...,4
there is an isomorphism of C[[t;, ..., t,)]-algebras:
6YN ~, Cllt1, .-, tm, u, 0]
o (uwv — t;)

Let S := Spec(C[[t]]) and let S — B be the map given by sending
t; to t for each i = 1,...,m. Form the fibered product X :=Y xg S,
and let f: X — § denote the projection onto the second factor. Then
f is flat and projective, being a base change of h. The closed fiber of
f is naturally isomorphic to the closed fiber of h, which is identified
with Xy. In addition, from the description of the map S — B, for each
i=1,...,0 there is an isomorphism of C[[t]]-algebras:

Cl[t, u, v]]

X (uv —t)

In particular, X is regular at each N;. Since in addition f is smooth on
an open neighhorhood of each nonsingular point of X, it follows that X
is regular on an open neighborhood of X,. But an open neighborhood
of Xo is X! So X is regular.

We have just proved that regular smoothings of X exist, and this is
everything we need in the sequel.
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Definition 3.2. Let X, be a nodal curve. A regular smoothing of X
consists of two data: a flat, projective map f: X — S from a regular
scheme X to S := Spec(C[[t]]) and an isomorphism hetween the closed
fiber of f and X.

3.3. Base changes of regular smoothings. Let X be a nodal curve, and
f: X — S aregular smoothing of X,. Identify Xy with the closed fiber
of f with the provided isomorphism. Let X, denote the general fiber
of f.

Since X, C X is open, X, is regular. Moreover, since X, is a scheme
over the field of Laurent series, C((¢)), which has characteristic zero,
X, is smooth. In addition, since X is connected, h%(Xo, Ox,) = 1,
and thus, by semicontinuity, h°(X,,Oy,) = 1. In particular, X, is geo-
metrically connected, that is, X, is connected and any base extension
of X, is connected. Finally, since Xy has dimension 1, by flatness so
does X,.

The fiber X, is defined over C((¢)), which is not algebraically closed.
In applications, it is often necessary to consider nonrational points of
schemes derived from X,, i.e. points defined over a finite field extension
of C((t)). At the cost of changing Xy in a very controlled way, we may
actually assume that the necessary field extension is trivial.

More precisely, let & be a finite field extension of C((#)). Let R be
the integral closure of C|[t]] in k. Since C[[t]] is Noetherian, R is a finite
C|[t]]-module by [M], Lemma 1, p. 262. So, by [Ei], Cor. 7.6, p. 190, the
ring R is isomorphic to a finite product of complete local rings. Since
R is a domain, R is itself a complete local ring. Let P C R denote its
maximal ideal. Since R is normal of dimension one, R is regular. Since
R is finite over C[[t]], so is R/P over C, and hence C = R/P. So R
is a complete, local, Noetherian C-algebra of dimension 1 with residue
field isomorphic to C. By the Cohen structure theorem, [Ei], Thm. 7.7,
p. 191, there is an isomorphism of C-algebras R — C[[s]]. It follows
that there is an integer e > 1 such that tR = P¢. Since every power
series in C[[t]] with nonzero constant term has an e-th root, we may
choose the isomorphism R = C[[s]] such that ¢ is sent to s°.

Let €: § — S be the map given by sending f to . To differentiate
source from target, we will denote the source of € by S.. The upshot is
that the fibered product X, := X xg S. has, as general fiber over S,
the base extension X, x k, and as special fiber, the same fiber X,. The
new scheme X, is flat and projective over S., but fails to be regular if
e> 1. '

 Indeed, let N be a node of X,. Since X is regular, and flat over §
with closed fiber of pure dimension 1, the dimension of X is 2. Using the
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Cohen structure theorem again, there is an isomorphism of C-algebras
@A ~ = C[[u,v]]. Since N is a node of X, the tangent space of X, at
N is equal to that of X. Thus we may choose the isomorphism such
that u® XN = =10 x,N, and there is even a choice such that ¢ = uv. So,

as C[[t]]-algebras,

Bxn ~ Cllt,u,v]]

(wv —t)
After the base change, we have that
~ C[[t, u, v]]
Ox.N & ———.
XeN (uv — t°)

So X, fails to be regular at N if e > 1. A singularity of a surface whose
complete local ring is isomorphic to the above local ring is called an
Ae_1-singularity.

Suppose e > 1. We may resolve the singularities of X, by blowing
up, at the cost of adding rational components to Xo. Indeed, let X/ be
the blowup of X at N. To describe X/ locally over N we may replace
X by Spec(@xi ~). The ideal of N in @XGN is (¢t,u,v). Thus the
blowup can be covered by three affine open subschemes U,, Uy and
Us, the first two with rings of functions

[['LL, v, tH [51, 52] and C[[U, v, i“ [Clz 62}

(u — &t v — &t §1€p — 1972) | (t — Qu, v — Qu, (o — (fue?)’
respectively, and Uz with a ring of functions very similar to that of Uy,
but with u exchanged with v. The patching between U; and U, is given
by &1¢ =1 and §1(2 = &2.

From the above local descriptions we see that the fiber of X/ over N
consists of the union of two smooth rational curves, L; and Lo, meeting
at a node, denoted N’. These curves are given by §; = 0 and {; = 0
in U;. The node N’ is the unique singular point of X{, but is a milder
singularity than N is with respect to X, as the power ¢ drops to e — 2.
Actually, the above description works for e > 3 only. If e = 2, then X
is regular, and the fiber over N is a unique smooth rational curve L,
the conic given by &&; = 1 in U;. From the descriptions of Uz and Us,
we see that L; and L (or just L) intersect transversally the rest of the
closed fiber of X! over S.. More precisely, the branches of Xy at N are
split in X/, with one branch lying on U, and the other on Us. Then L,

passes through the branch lying on U; and L; through that on Uz. If

e = 2, then both branches are in L.

The upshot is that, by blowing up at N, we produce a scheme X/
whose closed fiber over S consists of the union of the partial normal-
ization X of Xy at N and a nodal curve Ey meeting transversally
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XJ at the two branches over N. If e = 2, the curve Ey is smooth and
rational, and X! is regular on a neighborhood of Exn. If e > 2, then
Ej is the union of two smooth, rational curves meeting transversally
at a single point N, and X! is regular on a neighborhood of Ex but
at the point N', which, for e > 3, is an A._s3-singularity of X.. Also,
the branches of X{¥ over N are distributed between the components of
En.

If X! is not regular on a neighborhood of Ey, that is, if e > 3, we
proceed by blowing up X! at N’. Since N’ is an A._3-singularity, it is
clear that this second blowup has a description similar to that given to
X!, with e replaced by e — 2.

By repeating the above process, and applying it to each node of X,
it should be clear by now that we will end up with a regular surface
X, which is flat and projective over S, and whose closed fiber is the
union of the (total) normalization X of X, with a collection of disjoint
chains of e — 1 rational curves, one for each node of X,. Each chain
corresponds to a node of Xy, and intersects X transversally at the two
branches over that node, which become points on the outer components
of the chain, one for each component. _

From the above description, the general fiber of X over S, is the base
extension X, X k, while the closed fiber is what we will call here an
avatar of Xy, as explained below.

Definition 3.4. A chain of n rational curves, for n > 2, is a nodal
curve with n irreducible components, all of them smooth and rational,
and n — 1 nodes. In addition, it is required that the number of compo-
nents containing only one node of the curve is 2. These two components
are called the outer components of the chain. A smooth rational curve
will eventually be called, for homogeneity, a chain of 1 rational curve.

Let Xo be a nodal curve. Let Ny, ..., N5 be nodes of Xy, and X the
partial normalization of Xy along them. Let E,..., Es; be chains of
rational curves, not necessarily with the same number of components.
Let X be the union of X§ with Ej, ..., Es in such a way that E; and E;
are disjoint if ¢ # j, and each E; intersects X transversally at exactly
two points: the branches of X over N; on the side of X, and two
points lying each on a different outer component of E;, on the side of
E;. We call all possible curves X; obtained from Xj in this way avatars
of Xo.

3.5. Determinantal subschemes of the Picard scheme. Let f: X — S
be a smooth, projective map with geometrically connected fibers of
dimension 1. Let g denote the genus of the fibers of f.
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‘For each integer d, let P1c denote the degree-d relative Picard scheme
of f, parameterizing mvertlble sheaves of degree d on the fibers of f.
Assume f admits a section 0: S — X, and let ¥ := ¢(S). Then there
is a Poincaré, or universal sheaf £ on X xg Pic? %, an invertible sheaf
whose restriction to X xg {t} for each t € Ple is the invertible sheaf
represented by t; see [BLR], Prop. 4, p. 211. The Poincaré sheaf
is unique if we impose that it be I‘lgldlﬁed by the section, i.e. that
Elzxqplcd be trivial.

Since f is smooth, ¥ C X is an effective Cartier divisor. Denote by
p: X Xg Ple — X and p2: X Xg Plcf — Ple the projection maps.
Set

M = L & p]Ox(nX)
for an integer n >> 0. More precisely, we need that

(3.5.1) hH(X xs {t}, Mlxxs(n) =0

for each t € Pic?. As M has relative degree d+n over Picd it is enough.
by the Riemann—Roch theorem, to choose n with n > 2g -1—d.

Since f is smooth of relative dimension one, nX. C X is finite and
flat over S with relative degree n. Set

Y, =nX Xg PICf C X Xg Ple

Consider the derived long exact sequence of higher direct images under
po of the natural exact sequence

(3.5.2) 0 — L =5 M — Mg, — 0.

Since Equation (3.5.1) holds for each ¢ € Pic‘}, we have R'py M = 0.
So we obtain an exact sequence:

(3.5.3) 0 — poul = poeM — puMis, = R'paul — 0.
Let

©: pauM — oMz,
denote the middle map in the above sequence.

Since M and Mg, are flat over PiC;ic, and their restrictions to the
fibers X xg {t} for t € Pic‘} have zero higher cohomology, ¢ is a map
of locally free sheaves. The rank of the source is d +n + 1 — g, by the
Riemann-Roch theorem, while the rank of the target is n. For each
integer u > 0 let

E,:={te Picjrl | o(t) has rank at most u}.
More precisely, E, is the closed subscheme of Picji, given locally by the

“vanishing of the minors of size u + 1 of a matrix representing . Since
different representing matrices are similar, the ideal generated by the
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minors is well defined. Because of the way it is defined, we call E, a
determinantal scheme.

What does E, parameterize? To see this, let h: T — Pic‘} be any
map of S-schemes, and put

h1:=1xh: X xgT — X x;3 Pic}.

Let g;: X XgT — T be the projection onto the second factor. Since
M|z, is flat over Pic}, applying h} to (3.5.2) we end up with a short
exact sequence of sheaves on X xXg7T. And, as before, the derived long
exact sequence of higher direct images under g, truncates to the exact
sequence:

(3.5.4)  0— quhiL — guhIM — ghiM|s, — R'quhiL — 0.

There is a natural map of exact sequences from the pullback of (3.5.3)
under h to (3.5.4):

h*poul —— h*ppaM 5 hrpp Mg, —— h*RipsL

| l l l

guhiL —— @M —— @My, —— RlguhiL.

Since M and M|s, are flat over Pic‘}, and their restrictions to the

fibers X xg {t} for t € Pic? have zero higher cohomology, the two
middle vertical maps above are isomorphisms. Thus

(3.5.5) Ker(h*p) = go.hiL and Coker(h*p) & Rlgu.h}L.

Because of this property, we say that ¢ represents universally the co-
homology of £ under ps.
Applying (3.5.5) to the case T' = {t}, for t € Pic?, we see that

Ker(p(t)) = H(X xs {t}, Llxxs{s)-
So
E, = {t € Pic} | R%X x5 {t},Llxxsry) Zd+n+1—g—u}.

Fix u := d+n — g —r. Then E, parameterizes invertible sheaves with
at least 7 + 1 linearly independent sections. We set W2(f) := E,.

In principle, it seems that W2( f) depends on the choice of the section
o and of the integer n. It does not. In fact, since ¢ is a presentation
for R'py. L, from the exact sequence (3.5.3), we see that E, is defined
by the (g+r—d—1)-th Fitting ideal of R'ps.L. (See [Ei]. Section 22.2,
p. 496 for the definition of Fitting ideals of modules, their independence
of the choice of presentations, and their functoriality. which allows for
their patching.) Being £ rigidified by o, it could still seem that W2(f)
depends on the choice of . It does not. If £’ is another Poincaré
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sheaf, rigidified by another section or not, then £' = £ & piN for an
invertible sheaf A on Pic‘}l. Then Rlpy L' = R'paL ® N, and hence
Rpy L' and Rpss L have the same Fitting ideals.

What happens if f does not admit a section? Well, the projection
onto the second factor, b: X xgX — X, admits a section, the diagonal
embedding. So we may construct a subscheme We(b) C Pic{ as before.
Now, the formation of the relative Picard scheme is functorial, that is,
commutes with base change. In addition, W%(b) does not depend on
the choice of the section. Thus, since f is flat, W2(b) descends to a
closed subscheme W2(f) C Pic‘}". Moreover, the formation of W2(f)
commutes with base change. More precisely, if S’ — S is any map of
schemes, and f': X x55" — S’ is the projection onto the second factor,
then W4(f) x5 S’ = W2(f’) as subschemes of Pic} x 5.9’ = Pic%.

If S is the spectrum of a field, we will use the notation Pic?X := Pic‘}
and W2X := W2(f).

The above construction can be found in [ACGH], Chapter IV, Sec-
tion 3, p. 176 for the case of a single curve.

3.6. Clarification of the statement of Theorem 2.11. Let X, be the
general fiber of the given map f. As we observed in Subsection 3.3,
the fiber X, is smooth and geometrically connected over C((¢)). Let
k be an algebraic closure of C((t)), and let G := X, X k he the base
extension of X, over k. Let g be the genus of G.

Being more precise, Theorem 2.11 states that for each pair of non-
negative integers (d,r) such that p(g,d,r) < 0 there is no invertible
sheaf on GG with degree d having at least » + 1 linearly independent sec-
tions, i.e. W2G = 0. Notice that, by what we saw in Subsection 3.5,
we have W4G = W4X, x k. Thus, requiring that W2¢G = 0 is the same
as requiring that W4X, = 0.

3.7. Proof of Theorem 2.4. Let F be a flag curve of arithmetic genus
g, i.e. with g elliptic components. Since F' is nodal, as we observed in
Subsection 3.1, there is a regular smoothing of F, i.e. there are a flat,
projective map f: X — S from a regular scheme X to S := Spec(C{[[t]])
and an isomorphism between the closed fiber and F. Let Xy denote
the closed fiber and X, the generic fiber of f.

Since X, is projective, hence given by a finite number of equations in
projective space, there is a subfield £k € C((t)) finitely generated over Q
such that X, is actually defined over k, i.e. there is a projective curve G
over k such that X, = G x; C((t)). Since C has infinite transcendence
degree over Q, we may embed £ in C, and thus consider an extension
of G over C to a complex curve C, i.e. ¢ = G X3 C. Since X, is
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geometrically connected and smooth, so are G and C, and all of them
have the same genus g. So C is a nonsingular, connected, complex
projective curve of genus g. We claim that C satisfies the Brill-N6ther
property, thus proving the Brill-Nother statement in Subsection 2.7,
from which Theorem 2.4 follows.

Indeed, let (d, ) be a pair of nonnegative integers such that p(g, d, r)
is negative. We need to show that W2C = (). However, WX, = 0 by
Theorem 2.11; see Subsection 3.6. Since

WAC = WG x, C and W2X, = WAG x, C((t)),
it follows that W2C = 0. The proof of Theorem 2.4 is complete.

4. RAMIFICATION POINTS

4.1. Ramification points of linear systems. Let C be a nonsingular,

connected, complex projective curve of genus g. Let L be a line bundle

on C and V C I'(C, L) a nonzero vector subspace. Let d := deg L and
r:=dimV - 1.

Let P € C. We say that an integer ¢ is an order of the linear system
(V,L) at P if there is a nonzero section of L in V' vanishing at P with
order €. If two sections of L have the same order, a certain linear
combination of them will be zero or have higher order. Thus there are
exactly 7 4+ 1 orders of (V, L) at P. Putting them in increasing order
we get a sequence,

eo(P), ... & (P),

called the order sequence of (V, L) at P. Notice that i < ¢;(P) < d for

each 7. Put
,

wt(P) =Y (&(P) —1).
i=0
Then
0 < wt(P) < (r+1)(d—r).
We call wt(P) the ramification weight of (V,L) at P. If wt(P) > 0 we
say that P is a ramification point of (V,L). Also, we call the cycle
(P)

WV, L)] =Y wt(P)|
PeC
the ramification cycle of (V, L).

4.2. The Plicker formula. Keep the setup of Subsection 4.1. Since C'
is smooth, Qf is a line bundle. Let U C C he an open subscheme such
that Qf, and L|y are trivial. Let u € T(U,Q%) and ¢ € ['(U, L) be
sections generating Qf, and L|y.
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Fix a basis 8 = (Sg,...,Sr) of V. Then there are regular functions
fo,..., fr on U such that s;|y = fio for each i. Let d be the C-linear
derivation of T'(U, O¢) such that dh = 8(h)u for each h € T'(U, O¢).
Form the Wronskian determinant:

| afo 8fr
waw= |0
fy ... Of,

If o' and ' are other bases of L|y and Q}; then o/ = ao and ' = by
for certain everywhere nonzero regular functions a and b on U. Then

afo ce G;f:,-

bd(afy) ... bo(af,)

w(B, o', W) = = a7 )w(f, 0, p),

(b0)"(afo) ... (bO)"(afr) | |
where the first equality follows from the definition, and the second

from the multilinearity of the determinant and the product rule of

derivations.
Thus the w(8, o, 1) patch up to a section of

L®r+1 & (Qé)@,(y;])

Denote the zero scheme of this section by W (V,L). We call W(V, L)
the ramification divisor of (V,L).
The multilinearity of the determinant, and the fact that 0 is C-linear,
imply that W (V, L) does not depend on the choice of basis 3 of V.
Given any effective divisor D of C' and any P € C we let

multpc(D)
denote the multiplicity of D at P, and consider the associated cycle:

[D] := Z multpo(D)[P].
PeC

The cycle associated to W (V, L) is the ramification cycle [W(V,L)].

This statement justifies the notation used in Subsection 4.1. Since
L has degree d and Q} has degree 2g — 2, it follows that

deg[W(V,L)] = (r + 1) (d+ r(g = 1)),

a formula known as the Plicker formula.
To prove the statement, let P € C. Let ¢ be a local parameter of C at
P. Then t is a regular function on an open neighborhood U C C of P.
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Shrinking U around P if necessary, we may assume that df generates
Qf. Also, we may assume there is o € T'(U, L) generating L|y.

There are sy, ..., s, € V vanishing at P with orders (P), ..., e.(P).
Shrinking U around P if necessary, we may assume that there are
everywhere nonzero regular functions wug, ..., u, on U such that

S; IU = ’U,ite’:(P)O'

for each i. Since the orders of vanishing are distinct, 8 := (so, ..., s,)
is a basis of V.
The Wronskian determinant w(g, o, dt) has the form:

ugto® g pe(P)
d(, 4€(P) d(, se(P)
Ut - Ut
w8, o, dt) = | @0 ()
& (gtoP)) L. Ly e (P))

Using the multilinearity of the determinant, the product rule of deriva-
tions, and the fact that %(tJ ) = j#7~1 for each integer j > 1, we get

w(B, o, dt) = t* Py,

where v is a regular function on U whose value at P satisfies

v(P) = 6*‘(,}))) ui(P).

A =TI () I

In particular, v(P) # 0, and thus w(8, g, dt) vanishes at P with order
wt(P). This order of vanishing is, by definition, the multiplicity of
W(V,L) at P. Since this is valid for every P € C, we get that the
cycle associated to W(V, L) is indeed [W(V, L)].

5. LIMIT LINEAR SERIES

5.1. Setup. Let S := Spec(C|[[t]]). Let Xy be a nodal curve, and
f: X — S aregular smoothing of X,. Let X, denote the general fiber
of f, and identify the closed fiber with X,. Let Cy, ..., C, denote the
irreducible components of X,. Though not really necessary, for sim-
plicity we will assume in these notes that C1, ..., C, are nonsingular.

5.2. Twists. Keep Setup 5.1. Since X is regular, every invertible
sheaf on X, can be extended to an invertible sheaf on the whole X.
But the extension is not unique. Indeed, since X is regular and two-
dimensional, C1,...,C, are Cartier divisors of X. So, for each invert-
ible sheaf £ on X, and each n-tuple of integers & = (ay, ..., q,), we
may define

LY=L Ox(xCy+ -+ anCy).
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Then L£? is invertible and satisfies £L%|x, = £
the a-twist of L, or simply a twist of L.

Let £ be an invertible sheaf on X. Notice that, since f is flat, the
endomorphism of £ given by multiplication by ¢ is injective. Thus
t0'(X, L) is the kernel of the restriction map I'(X, L) — I'(Xo, L|x,)-
We say that £ has focus on Cj if the restriction map

I'X, L) — I'(C;, Llg,)

has kernel t['(X, £) as well. Equivalently, £ has focus on C; if every
global section of £ that vanishes on C; vanishes on the whole Xo.

x..- We say that £% is

Proposition 5.3. Keep Setup 5.1. Let L be an invertible sheaf on X.
Then for each C; there is a twist of L that has focus on C;.

Proof. Tt is enough to exhibit a twist of £ whose restrictions to C; for
j # 1 have negative degree.

Without loss of generality, we may assume that ¢ = 1, and that the
components C; are ordered in the following way. First, Cy,...,C}; in-
tersect C;. Then Cj 41, ..., C;, intersect CU- - -UC;, but not C. Next,
Cip41, - - -, Cig intersect Cj 1 U-+-UCy, but not CoU--- U C;,- Goon
like this, until all components are exhausted. At the end, C;, 41,...,Ch
intersect C;,_,41 U---UCy, but not C;,,_,41 U---UGC;,_,. That all
components are exhausted follows from the fact that X, is connected.

Now, choose m + 1 integers ¢,,,...,% in this order satisfying the
following conditions. First, choose ¢,, such that

L =L Ox(=bn(Cipp_ypr + -+ Ci))

has negative degree on each Cj 41,...,Cn. This is possible because
each of these curves intersects C;,,_,+1U---UC;,,. Second, choose £,_;
such that

ﬁm—l = Em ® OX( - ﬁm—l(c'im—2+1 + T + 6’7:"!—1))

has negative degree on each C; ,_;+1,-..,Cj,. Asbefore, this is possible
because each of these curves intersect C; _,43 U--- U C;,_,. Also,
Ln—1 has the same degree as L,, on each Cj, 41,...,Cr, as none of
these curves intersect C; _,+1 U+ UC;,_,. Go on like this, choosing
integers £,,—2, - - - , £1 and obtaining sheaves L2, ..., £;. The sheaf £;
has negative degree on C; +1,. .., Cn.

Finally, choose an integer £, such that Lo := £1 ® Ox(—£,C1) has
negative degree on each Cy,...,C;;. Then Ly has negative degree on
each Cs, ..., Cp, and hence is a desired twist of L. O

Proposition 5.4. Keep Setup 5.1. Let L be an invertible sheaf on X.
Then L£* = LP if and only if a — B € Z(1,...,1).
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Proof. We may assume that £ = Ox and 8 =0.
First, since X is reduced, divy(t) = C; +--- + C,. Thus

Ox 2 O0x(Cr+ -+ Cy).

Iterating, we get that O% = Oy if o € Z(1,...,1).

Now, suppose O% = Ox for a certain n-tuple . Using the already
proved part, we may assume that o is the unique representative of
a+ Z(1,...,1) such that a; > 0 for each j, with equality for at least
one j. We will show that o = 0.

Without loss of generality, we may assume that a; = 0. We may

also assume that Ci,...,C), are ordered as in the proof of Proposi-
tion 5.3. Now, since O% = Oy, in particular O%|c, has degree 0.
Since Cy, ..., C;, intersect Cy, and a1 =0, we get ap = ++- = a; = 0.
Also, O% has degree 0 on each C,,...,C;,. Since Ci+1,---,C, in-
tersect Co U---UCy, and @ = -+ = ¢, = 0, we must also have
Qj+1 = - = oy, = 0. Go on like this, and, since X is connected, we
will get at the end that o = 0. ]

5.5. Connecting numbers. Keep Setup 5.1. Let £ be an invertible sheaf
on X, and £* and L£” twists of L. For each pair of distinct components
C; and Cj let

(E,-,J-(E"‘, Eﬂ) =y o+ G — ﬂj.
We call ¢;;(L, LP) the connecting number between £* and £P with
respect to C; and Cj. It follows from Proposition 5.4 that the connect-

ing number depends only on £* and £?, and not on the choices of a
and S. In addition, from the definition,

G5(L%, LP) = 0;,(LP, ).

5.6. The relative ramification divisor. Keep Setup 5.1. Since X is
a regular surface, 2} is locally free of rank 2. Consider the natural
presentation of the sheaf of relative differentials:

(5.6.1) gy — Q% — Qi{/s — 0.

Taking exterior product with f*dt gives a natural map Q3 — 0%. As
dt is a basis of Q, this map factors through a map 7 : Q) s — 0%
Let D: Ox — Q% denote the induced Og-derivation.

The map 7 is bijective on the smooth locus of f, i. e. off the nodes of
Xo. Indeed, the natural pullback map f*Qfg — 2} is injective, because
it is so on the generic fiber. So the presentation (5.6.1) is a short exact
sequence. The map 7 is bijective where Q% /s is locally free (and hence
where (5.6.1) is locally split), that is, off the nodes of Xj.
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Let £ be an invertible sheaf on X. Since f is flat, the associated
points of £ lie on X,, and hence the restriction ['(X, £) — ['(X,, £|x.)
is injective. Thus I'( X, £) is a torsion-free C|[t]]-module, whence free.

Let V C I'(X, £) be a C|[t]]-submodule. Assume V is saturated, that
is, the quotient module is free. Since I'(X, £) is free, so is V. Assume
V is nonzero, of rank r + 1 for a certain nonnegative integer r. Let
B = (sp,---,8r) be a C[[t]]-basis of V.

For each open subscheme U C X such that L|y and Q% are trivial, let
o € T(U, L) and p € T(U, Q%) such that L|y = Oyo and QF = Opyp.
Then s;|y = fio for a regular function f; on U for each @ = 0,...,7.
Also, there is a C[[t]]-derivation 8 of I'(U, Ox) such that D|y(-) = 0(-)p.
Form the Wronskian determinant:

afo 8fr
w(f,o,pu) = Efo fr i
Ofo ... Ofr

As in Subsection 4.2, the w(f, o, u) patch up to a section of
£®r+1 ® (Q‘ZX)@(’;])

Denote the zero scheme of this section by W (V, L). We call W (V, L) the
relative ramification divisor associated to (V,L). As in Subsection 4.2,
this divisor does not depend on the choice of the hasis 5.

Let R, := W(V,£) N X,. Since X, is smooth, n|x, is bijective,
and it follows from Subsection 4.2 that R, is a Cartier divisor of X,.

So W(V, L) is indeed a divisor of X. But W(V, L) may contain the

components C; in its support. Let W(}V, L) C X be the Cartier divisor

obtained by removing from W (V, £) the components C; with their mul-
tiplicities. Then W(V, £) is S-flat, and restricts to R, on X, whence

W(V,L) = R..

If £ has focus on C;, the sections sg,..., S, restrict to a basis of a
vector subspace V; C I'(C;, L|¢,). Since 7 is bijective off the nodes of
X, it follows that

(5.6.2) W(V,.L)NC;=W(V,L)NC; = W(V,, L|e,) N CF,
where C} := Xo — ;4 Cj-

5.7. Twists of modules. Keep Setup 5.1. Let £ be an invertible sheaf
on X, and V C H%( X, £) a saturated C[[t]]-submodule.
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Let a be a m-tuple of integers. Using the natural identification
L% x, = L|x,, define
Ve .= {s e ['(X, L) I S|x. = v|x. for some v € V}.
We call the submodule V* C I'(X, £L*) the a-twist of the submodule
V CT(X,L).
It follows directly from the definition that V' is a saturated submod-

ule of the same rank as V. In addition, since the sections of V* and V
coincide over X,, we have that

WV, L)NnX, =WV LY NX,,
and hence W(V, £) = W(Ve, £*).

5.8. The limit ramification divisor. Keep Setup 5.1. Let £ be an in-
vertible sheaf on X and V C H%(X, L) a saturated C{[t]]-submodule.
Let W(V, L) be the corresponding relative ramification divisor, and
W (V, L) the divisor obtained by removing from W (V, L) the compo-
nents C; with their multiplicities. Then

LimW(V, L) := W(V, L) N X
is a Cartier divisor, called the limit ramification divisor of (V, L).

Theorem 5.9. Keep Setup 5.1. Let L be an invertible sheaf on X and
V CI'(X,L) a saturated submodule. For each C;, let o; be a n-tuple
such that L% has focus on C;, and let V; C I'(C;, L*|¢,) be the vector
subspace generated by V. For each pair of distinct C; and C;, let
¢;; be the connecting number between L% and L% with respect to C;
and C;. For each i = 1,...,n let W, be the ramification divisor of
(W’Lailci)' Then

(5.9.1) [imW(V,L)] = Z[W +Y > (r+ 1) —y)[P)-

i<j PEC,NC;

Proof. Let P € X,. Suppose first that P is not a node of X,. So
P € C] for some i, where :

Cl:=Xo—-|JC;.
i#i
By (5.6.2),
multp e, (lim W(V, L)) = multpg, (W;).
So the coefficients of P on both sides of Equation (5.9.1) are equal.

Assume now that P is a node of Xy. We may assume. without loss
of generality, that P € C; N Cy. Let

bj == multpc (W(V, L) N C})

103



LIMIT LINEAR SERIES, AN INTRODUCTION

for j = 1,2. Since W (V, £L)N Xy is a Cartier divisor of Xy, the coefficient
of P in [lim W(V, L)] is by + bs.

Now, for each j = 1,2, there is a n-tuple of nonnegative integers u;
such that

(592) W(V,L) = WV, £5) = 3 iC.
i=1

Notice that 4, ; = 0 because £ has focus on C;. Then the intersection
W(V%,L%)NC,; is a Cartier divisor of C;. Let

a; :=multpg, (W(V, L%)N Cj).
Then
(5.9.3) by =a; —p12 and by = ag — ta;.

Comparing Equations (5.9.2) for j = 1,2, we get

W(val,ﬁal) — W(V027Ea2) — Z(ﬂ'l,i - /1'2,1')02‘-

i=1
Now,
Ox(W(ver L)) = (L) @ (25)°1F)
for j = 1,2. Thus '
(Lo)8r+1 = (Lo2)®r+l g Ok 2
Then, by Proposition 5.4,
(r+ 1) (o1 — a2) — (B — p2) € Z(1,...,1).
Since p1,1 = p22 = 0, it follows that
P12+ pz1 = (r+1)(a1z — Q1+ g1 — Qga) = (1 + 1)1,
Thus, using Equations (5.9.3) we get
(5.9.4) by + by =a;+az — (r+1)f1s.
Now, by adjunction, for each j = 1,2,
O, & (% ® Ox(C)))lc,-
Since C; + - - - + C, = divx(?), it follows that
Dxle; = O, ® O, (X Q),

where @ runs through all nodes of X on C;. We claim that the restric-
tion of the map n: Qg — Q% of Subsection 5.6 to C; factors through

the natural map

XQ '
0L, =5 0 % 0, (¥ Q).
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Indeed, as we saw in Subsection 3.3, for each & we have f*t = wv in
Ox,q, where u and v are equations of C; and C — X, respectively. So

f*dt = udv + vdu = vdu mod ().

Now, since Q is a node, v restricts to a local parameter of C; at Q.
As 1 was defined by taking the exterior product with f*dt, the claim
~ follows.

The upshot is that the Og-derivation Ox — % induced by 7 re-
stricts on a neighborhood of P in C}; to z(-id; where z is a local parameter
for C; at P. Since the C[[t]]-submodule V% & ['(X, L% ) generates
V; € I(Cj, £%|c;), using the multilinearity of the determinant, and
the product rule of derivations, we get

1
(5.9.5) a; = multpe, (W;) + (r; )

Combining (5.9.4) with (5.9.5) for j = 1,2, we get
by + by = multpe, (Wh) + multpc,(Ws) + (7 + 1)(r — £1,2).

Since b; + by is the coefficient with which P appears in [lim W (V, L)},
the coefficients of P on both sides of Equation (5.9.1) are equal.

6. APPLICATION

Proposition 6.1. Keep Setup 5.1. Let L be an invertible sheaf on X,
and L, ...,L, twists of L. For each pair of distinct C; and C};, let
8;.; be the number of points of C; N Cj, and £ ; the connecting number
between L; and L; with respect to C; and C;. Let d be the degree of L
on the general fiber, and d; := deg L;|¢, for eachi=1,...,n. Then

d= f; di — Y b5t

i=1 i<j

Proof. By Proposition 5.4, for each i = 1,...,n there is a n-tuple o;
such that £; = £* and a;,; = 0. Restricting to C; and taking degrees,
we get
deg [.:lci = di - Z ai,jd,;,j.
J#
Summing up for i = 1,...,n, we get

d= Z deg Ll¢, = Zdi - Z (ai,j + aj,i)5i,j~
i=1

ci=1 i<j
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Now, it is enough to observe that the connecting number between L;
and L; with respect to C; and Cj is

Qij = Qg+ Qi — QG5 = 05 + Qg
U

6.2. Proof of Theorem 2.11. Use the notation in Setup 5.1. Let g be
the genus of X,. Fix a pair of nonnegative integers (d,r). Suppose
WiX, # 0. We will show that p(g,d,r) > 0.

Since W2X, is of finite type over C((t)), there are a finite field exten-
sion k of C((¢)) and a k-point of W2X,. As we saw in Subsection 3.3,
up to replacing the special fiber by an avatar, which is also a flag
curve, we may assume that £ = C((¢)). In other words, we may as-
sume we are given an invertible sheaf L on X, of degree d such that
dimI'(X,,L) > r+1.

Let ' :=dimI'(X,, L) — 1. It is enough to show that p(g,d,r') > 0.
Indeed, ' > d — g by the Riemann-Roch theorem. Thus

p(g,d, ) =p(g,d,7') + (' =r)(r +1'+ 14+ g —d)
>p(g,d,7") + (¢ = 7)(r + 1)
>p(g,d,r').

So we may assume that dimI['(X,,L) = r + 1.

Since X is regular, L extends to an invertible sheaf £ on X. So we
may apply the theory of limit linear series developed in Section 5.

Let V := H°(X, L). For each C;, let £; be a twist of £ with focus on
C;, and d; := deg L;|¢,. Let V; C H%(C;, L;|c,) be the vector subspace
generated by H%(X, £;), and let W; C C; be the ramification divisor of
(Vi Lilc,)

Let s; be the sum of the multiplicities of the nodes of Xy in W;. By
the Pliicker formula, if C; is rational, degW, = (r + 1)(d; — r), and
hence

(621) S; S_ (7' + 1)(dz - 7‘).

On the other hand, suppose C; is not rational. Since Xj is a flag
curve, C; is elliptic, and contains only one node of X,. Call this node
Q. Let €g, ..., € be the order sequence of (V;, L;|c,) at Q.

We claim that €, < d;, with equality only if ¢,_; < d; — 2. That e, is
bounded by d; follows from d; = deg L;|¢c,. Now, suppose ¢, = d;. Then
Lile, & O, (d:Q). If e,-1 = d; — 1, then Lilg, = O¢,((d; — 1)Q + Q')
for some Q' € C; — {Q}. It would follow that Oc,(Q) & Oc,(Q’), and
hence that C; is rational. So our claim is proved. .
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From our claim, the ramification weight of (V;, £;|¢,) at @ is at most
(r+1)(d; — r) — 7, and hence

(622) S; S (7' -+ 1)(dz — ’f') -7

Since there are exactly g elliptic components of X,, combining (6.2.1),
valid for C; rational, and (6.2.2), valid for C; elliptic, we get

‘isi <(r+ 1)(id,- ——nr) — gr.
i=1

i=1
Now, by Formula (5.9.1), since lim W (V, £) is an effective divisor,

n

D si+ D (r+1)(r—4i;)6i; 0.

=1 i<j

In particular,

n . ‘
(r+ 1)(2 d; — m‘) —-gr+ Z(r + 1)(r — 4;;)0,; = 0.
i=1 i<j
Using Proposition 6.1, the left-hand side of the inequality becomes

(r+1)(d=nr)—gr+(r+r Z 0;, 5.
i<j
Furthermore, since Xj is a flag curve, >_d;; = n — 1. Then the in-
equality becomes
(r+1)(d=r)—gr =0,
that is, p(g,d, ) > 0. The proof of Theorem 2.11 is complete.
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