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Various Gauss fibers
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ABSTRACT. We find examples and constructions of nontrivial fiber
structures of Gauss maps in positive characteristic. 3 types of con-
structions of projective varieties were announced in this talk: (A) Gauss
fibers are the given projective variety, (B) Gauss fibers are hyperplane
sections of the given projective variety, and (C) Gauss map is the given
rational map g : A™ --+ A™! with dg = 0. Additional matters to the
talk are included in this paper, for example, discussion of the differ-
ences of the constructions (A)-(C), and a generalization of Kaji and
Rathmann’s construction of Gauss map, related to (C), which is the

given inseparable morphism P! — P!,

1. INTRODUCTION

In this paper, the base field K is an algebraically closed field and
varieties are integral algebraic schemes over K.
Precisely, “Gauss fibers” mean (general) fibers of the Gauss maps.

Definition of the Gauss map is as follows:

Definition 1.1. Let X C P¥ be a projective variety. The Gauss map
v on X 1s the rational map from X to the Grassmannian G(dim X, N)
such that y(p) = TpX for any smooth point p € X, where T, X is the
projective embedded tangent space.

Example 1.2. If X C PV is the hypersurface given by F, then

_(8F  8F\ ~ -
7“(6)(0_' 'BXN>'X > G(N 1,N)_P’.

Remark 1.3. The following facts are known.



(1) IfcharK = 0 then general fibers of y are linear spaces ([1],[5],[14]).

(They are one-points when dim = 0.)
(2) If charK > O then there is a variety whose general fibers of y

are two or more distinct points.

The fact (1), when X is a curve, implies that multiple tangent lines
(which have two or more distinct tangential points at X) are only
finitely many. If X is a surface with dimy(X) = 1 then we can classify
X to the two kinds of ruled surfaces, a cone or a tangent surface. (A
cone surface is the join of a curve and one point, and a tangent surface
is covered by tangent lines of some curve.) These surfaces are called

- developable surfaces.

A. H. Wallace gave examples of the kind of (2) ([13]). Kleiman-
Laksov also found interesting examples ([10]). It seems to be difficult
to construct smooth varieties of this kind, but H. Kaji ([7],[8]), J. Rath-
mann ([12]) and A. Noma ([11]) constructed such varieties.

The author found the following example.

Example 1.4. XZ® — (Y® + W)W = 0 c P3. If charK = 2 (resp.
charK = 3) then general Gauss fibers are plane elliptic curves (resp.

plane smooth conics) (]2]).

In the author’s best knowledge, this is the first example whose gen-
eral Gauss fibers are not finite unions of linear spaces. Furthermore, the

author found constructions of varieties with non-linear smooth Gauss

fibers in positive characteristic.

(A) Construction of a projective variety whose general fibers of the
Gauss map are the given projective variety ([3]).

(B) Construction of a projective variety whose general fibers of the
Gauss map are hyperplane sections of the given (general) pro-
jective variety ([4]).

(C) Construction of a projective variety whose Gauss map is the

given rational map g : A" --» A" with dg = 0.
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The main purpose of this paper is an introduction of these construc-

tions and explanation of differences of each constructions.

2. CoNnsTRUCTION (C)

Let g = (go,-.- ,9n) : A™ --» A™*! be the given rational map such
that gﬁf = 0 for all 4,7, and let X be the closure of image of the
rational map ¢ : A" --» P™L (g, z,) -+ (1 izp 0 o001 3y
—go — Tig1 — *** — Tngn). Then, T;,)X is spanned by the row vectors

of the following matrices;

1 2 ... Tn —go—T101— " — Tndn =90
o1 ... 0 -1 —a1
.. . . ) i In+1

0O 0 ... 1 —0n —9gn

where I, is the (n+ 1) X (n+ 1) unit matrix. Hence y : X --» P*+”

is given by (go : -+- : gn : 1) and we have the following commutative
diagram:

A" - 2 3 An+1

\ 3

x -1, prtv

Remark 2.1. Ezample 1.4 is given by this construction: n = 2, gy =
g2 =93 =0 and g; = 28 + x5 (with suitable coordinates).

If we consider the rational map g : A® --+ A™*! as the rational map
- ¢ from P" to P™*1, then the above varieties can be got as the image
of a suitable linear projection of the graph I'y C P"*+37+1 of ¢ which
is embedded by Segre embedding.

Now we study the graph I'; of a rational map g : P" --» P™ with
dg = 0. Let X C P "™ be the image of the graph I'; by Segre
embedding P* x P™ C P"+n+m  Then we have the commutative



diagram
Iy = X
p1 !
P2 by
/ l Y
p" -->-Pm N G(n,nm +n+m)

where h is an embedding given by h(t) = P" x t. This implies that the
Gauss map 7 can be identified with the projection p,, hence generically
identified with g. Precisely, X is the closure of the image of the rational

map P" --» an+n+m:
(Lizpiooixp)> (Lo i i grio i Gm e 1Tyt e ).

We can check easily that varieties given by (C) can be got as the image
of a suitable linear projection of the graph of P" --+ P,

The latter construction is a generalization of Kaji and Rathmann’s
for inseparable morphisms P! — P! ([7],{12]).

In the latter construction, it is very interesting that the Gauss map
can be defined at any point of X, hence it is a morphism, and the
tangent variety of X is P® x P™ if g is dominant. The second fact
implies that any Segre variety of two projective spaces is the tangent
variety of some variety, and that the classical fact X C SingTanX in
characteristic 0 ([1]) does not hold in positive characteristic.

3. CONSTRUCTION (A)

3.1. Concept of (A) or (B). Let Y C P* be a given projective
variety of codimension 7. We move P* “inseparably” in P¥ (N >> k).
Then, Y moves in conformity to the projective space P¥, and constructs
X. We will have the diagram
A" xPr L PN
U U
Arxy ™pvox

such that 7 is inseparable (onto its image) and n|a-xy is birational.
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The idea for our construction (A) or (B) is based on “circular sur-
faces” ([6]) studied in differential geometry or real singularity theory.
Conceptually, our variety with (A) could be called a “developable”

circular surface.

3.2. Construction (A) (plane curve’s case). Let p > 0 be the
characteristic, and let pg, p1, p2 : Al — P? be morphisms (which form
a frame) as follows,
pp = (1 0 u )
pp = (010 0
pe = (0 0 1 0)
Let n: Al x P2 — P3 be |
(W) x (L:y1:y2) = [po+ o+ %202] = (Liyn s u+y2 1 0P).

We may assume that y; — a is a local parameter at a smooth point (1 :
a:b) € Y. (We can always take this coordinates by linear transforms
of P2)) Let X be the closure of n(A! X Y), and let 7 := n]a1xy :
A!' x Y — X. Then the following proposition holds.

Proposition 3.1. The morphism 7 is birational, and Ty X = n(ux

P?) for a general point (u,y).

Proof. The differentials of 7 is given by the matrix

0 1 0
1 dys/dy, 0

(upper row is a list of the differentials by u, lower is the differentials
by y1). We find the separability of 7 by this matrix and, because 7 is
generically one-to-one, birationality of 7.

Tr(uy)X is spanned by the row vectors of the following matrices:

1y uty o 100 o
0 0 1 0 |~1 010 O
0 1 dy/dy; O 0010

This coincides with n(u x P?). O
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3.3. Generalized form. Let £ > 2 and r < k be positive integers,
and let Y C P* be a closed subvariety of codimension r. We take the

morphisms pg, . .. , o : AT — P*¥*7 a5 follows,
pp= (10 ... 0wy ... u uf ... uf)
p=©1...00 ... 00 ... 0
k= (00 .. 00 ... 10 ... 0

Remark 3.2. The form can be more generalized (see [3]). The base
space AT which moves projective planes and the how of the moving
{p;} are more free and formulated to some extent. Furthermore, we
. can also construct varieties whose general fibers are two or more Ys

for the suitable moving {p;}.

4. CONSTRUCTION (B)

4.1. Construction (B) (surface case). Let p > 0 be the charac-
teristic, and let po, p1, o2, p3 : A2 — P be morphisms (which form a

frame) as follows:

Po 1 00 u v v 0)
pp=0100 0 0 v
2 = (0010 0 00
;s = (0001 0 00

Let n: A%2 x P3 — PS be
| C(w,v) X (1912 Y2 y3) = [po + Y101 + Y202 + Y3p3]
=(:y:ve:utys:ufv:vy).
We may assume that y; — a, y2 — b are a local parameter at a smooth

point (1:a:b:c) €Y. Let X be the closure of n(A? x Y), and let
T :=n|azxy : A2 x Y = X. Then the following proposition holds.

Proposition 4.1. The morphism 7 is birational, and v is generically
identified with the morphism A?2 x Y — A3 : (u,v) X (y1,%2,¥3) —

(upa v, yl)

80



81

Proof. The differentials of 7 is given by the matrix

00 1 0 0 O
00 0 01 wn
1 0 dys/dy;y 0 0 w
0 1 dys/dy 0 0 O

(the first row is a list of the differentials by u, the second is by v, the
third, fourth are the differentials by 4, y2 respectively). We find the
separability of 7 by this matrix and, because 7 is generically one-to-one,
birationality of 7.

Tr(uy)X is spanned by the row vectors of the following matrices:

/ 1 1 2o u+ys uwl v vyl\ ( 1000w 0 —vyl\

0 0 O 1 0 0 O 000100 O

0 0 O 0 0 1 wy ~1 00000 1 9w

0 1 0 dys/dyy 0 0 w 0100 0 0 w
\0 0 1 dys/dyp 0 0 0 /) \0O0O1000 0 }/
This implies our 2nd assertion. , O

Corollary 4.2. The set {77'(p)}pex... almost coincides with {Y)}aek,
where Yy, is the hyperplane section Y N {Y; — A\Y; = 0} (ezcept the line
Yo=Y1=0 ).

Example 4.3. Let charK > 2. Let Y C P3? be the surface given
by Y2Y, — Y3(Ys — Y5)(Ys — Y1), and let Yy be the hyperplane section
Y Nn{YL — AY; = 0}. Then, the set of all Gauss fibers of X almost
coincides with {Y)}.

4.2. Generalized form. Let £ > 2 and r < k be positive integers,
and let Y C P* be a closed subvariety of codimension 7. We take the

morphisms py, ..., px : ATt = P72 55 follows,
p= (10 ... 0wy ... u v ... w u4 O0)

pr=(01..00 ... 0 0 ... 0 0 oy

pk= (00 .. 00 ... 1 0 ... 0 0 0



5. ELLIPTIC CURVES AS GAUSS FIBERS '

In this section, we discuss the differences of our constructions. We

recall some properties of our constructions.

Remark 5.1. A variety X given by each constructions has the follow-
ing properties:
(A) X is birational to the product of two some varieties and one of
which varieties Y is the general fiber of the Gauss map.
(B) X is birational to the product of two some varieties and the
differential dy of the Gauss map is not identically zero.
(C) X is rational and the differential dy of the Gauss map is iden-

tically zero.

Let charK = p > 3. Then we get projective varieties whose Gauss
fibers are elliptic curves if we take Y or g as follows.

(A) Let Y C P2 be given by Y2 + Y2 + Y3 =0.

(B) Let Y C P? be given by Y7¥; — ¥3(¥s — Y)(¥s — ¥i) = 0

(Example 4.3).

(C) Let g: A2 — A3 be (z,25) — (2 + 2, 0,0).
We call X, (resp. X3, X,) constructed by (A) (resp. (B), (C)) with the
above Y (resp. Y, g).

X, can not be constructed by (B) nor (C), because dy = 0 and this

is not rational.

X, can not be constructed by (A) nor (C), because isomorphic classes
of Gauss fibers vary and dv is not identically 0.

X, can not be constructed by (A) nor (B), because Gauss fibers are

elliptic curves and this is rational, and dy = 0.
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