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Trigonal Algebraic Surfaces and Triple Covers

Zhijie Chen and Sheng-Li Tan

ABSTRACT. We will survey the appﬁcations of our method on triple covers to the study of trigonal
surfaces, the bounds on the slopes of trigonal fibrations and the cubic defining equations of rational
triple points.

1. Gonality of curves and surfaces

The gonality of an algebraic curve is defined to be the smallest degree of a morphism from the curve
to the projective line P1. It is known that a curve C of genus g admits a map to P! of degree at most
[(9+3)/2]. Gonality is an old invariant which measures how complicated the curve is. So curves of genus
g 2 1 are divided into subclasses according to their gonality: hyperelliptic, trigonal, and d-gonal.

d 1 2  JE

C | P! | Hyperelliptic | Trigonal | ------

g 0 1, 2 3,4 |--eeee

In general, the gonality d < [232]. We are interested in curves of genus g > 2.
(I) Curves C of genus 2 are hyperelliptic, = : C 2, P!, and the double cover = is exactly the
canonical map &, of C.
(II) Curves C of genus 3 or 4 are hyperelliptic or trigonal, i.e., non-hyperelliptic curves are trigonal.

One can define the gonality d(X) of a projective complex surface X as the minimal degree of a
generically finite map to some ruled surface.

d(X) ==min{d | X %% € x P* for some curve C}.

d(X) is well defined because any projective surface is a generic cover of P2, According to the gonality
d(X), algebraic surfaces are divided into subclasses:

d(X) 1 2 3

X Ruled | Hyperelliptic | Trigonal

The analogue of curves of genus > 2 is the minimal surfaces X of general type. In this case, the Chern

numbers of X satisfies Neother’s inequality: K% > 2pg(X) — 4. By Castelnuovo-Beauville Theorem ([5)),
we have '
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(I) Surfaces X with 2p, —4 < K% < 3pg — 7 are hyperelliptic, and the double cover over some
ruled surface is exactly the canonical map ®x, of X.

So surfaces in the range 2p,—4 < K% < 3pg — 7 are analogue of curves of genus 2. Curves C of genus 3 or
4 are hyperelliptic or trigonal. The analogue of this result is the following conjecture (due to Horikawa,
Reid and Xiao):

(II) There are two numbers 3 < a < 4 and b > 8 such that surfaces with 3p, —7 < K% < ap, — b
are hyperelliptic or trigonal.

Denote by T the image of ®x,. If T is a curve, then K% > 4p, — 7 ([31]) If T is a surfrace
and deg®x, > 4, or T is a non-ruled surface and deg @k, _>_ 2, then K% > 4p, — 8 ([5]). So if

apg — b < 4p, — 8, then the canonical map is a birational map or a generically finite cover of degree 2 or
3 over a ruled surface. Therefore, the conjecture is equivalent to the following:

(I') Canonical surfaces (i.e., deg Pk, = 1) with K% < ap, — b are trigonal.

The second natural generalization of gonality of curves is the irrationality e(X) of surfaces, introduced
by by T. T. Moh and W. Heinzer [18],

e(X) := min{ d | X <5 P?},

equivalently, e(X) is the minimal degree of the field extension C(z1,z2) C C(X), where z; and z; are two
algebraically independent rational functions on X. If ¢(X) = dim H'(X,Ox) = 0, then d(X) = e(X).
In general,

d(X) < e(X).

It is obviously that d(X) and e(X) are two birational invariants of surfaces. For surfaces of non-general
type, we have

(A) K(X) = —oo: Ruled surface f: X - C or P2.. d=1, e=d(C).

(B) (X) =

Enriques, d =e =2 (see [20])

K3, d=e=2,3 (Conjecture)
Bielliptic, d <e=2,3,4 see [30]
Abelian, d<e, e>3.

(C) k(X) =1: Elliptic Surfaces f : X — C. If f has a section T', then d(X) = 2.
Conjecture: The gonality of a K3 surface is 2 or 3.

For surfaces X with a fibration f : X — C of genus g > 2, if the generic fiber is a hyperelliptic curve
and x(X) > 0, then d(X) = 2, and the double cover is given by the relative canonical map.

If the generic fiber of f is a non-hyperellptic curve of genus 3, and f has a section, then X admits a
generically finite triple cover on a ruled surface over C. So d(X) < 3.

_ In general, we need base changes = : C—-Cto get an upper bound on the gonahty Denote by
f:X = C the pullback fibration. Then for any f, there is a base change 7 such that d(X ) is less than
or equal to the gonality of a generic fiber of f.

Hyperelliptic surfaces play an important role in the classification of surfaces. Due to the theory of
double covers, the structure of hyperelliptic surfaces are relatively clear. For example, one knows how
to compute the global invariants of X from the branch locus by using Horikawa’s canonical resolution of
singularities.

Trigonal surfaces are the next simple classes of surfaces which may have a nice classification. Assume
that X is a trigonal surface (so x(X) > 0), i.e., there is a generically finite triple cover ¢q : X --+ ¥ over
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some ruled surface (not necessarily smooth), ng : Yy — I is the desingularization of ¥,

)? 3 , XO 4t.:a.n. resol.

X
I d!
X Y

Xy —

X -——>%

where ¢ is the composition of blowing-ups such that ¢ is a morphism. Assume that ¢ = mp o $ is the
Stein factorization of ¢, i.e., Xo is normal, 7 is a finite triple cover and ¢ is birational. Then X is the
unique minimal nonsingular model of Xj.

So the essential part of the classification of trigonal surfaces is to understand triple covers. Therefore,
many authors have established new theories on triple covers, (see [17], [27]). We start from the cubic
defining equations of triple covers so that the computation of the normalization can be applied. The
advantage of this point of view is that we can see globally the branch locus, we have the canonical
resolution X — Xj of the singularities, and we have formulas to compute the global invariants. So triple
covers are quite similar to double covers. Note that finite covers of degree higher than 3 do not admit
the canonical resolution.

In §2, we will recall the basic facts on triple covers. Then we will apply our method on triple covers
to study trigonal fibrations and rational triple points of dimension two.

2. Basic facts on triple covers

In this section we recall some facts about triple covers. The details are referred to [26] or [8].

2.1. Triple cover data. Let X be a smooth algebraic surface over C, and let 7 : Y — X be a
normal triple cover. The following lemma is standard.

LEMMA 2.1. We can find an invertible sheaf L, and two global sections s € H*(X,L2) and 0 # 1t €
HO(X,L3), such that Y is the normalization of the surface defined by 28 + sz +t = 0 in the line bundle
of L, and  is induced by the bundle projection.

PROOF. The extension of function fields #* : C(X) < C(Y) has degree 3. The field extension is
generated by one element 6 € C(Y) \ C(X) satisfying '

(2.1) 8 +7%a-0+7%b=0, forsome a,be C(X).

b # 0 because the equation is irreducible. Without lose of generality, we assume that a # 0. Let L be
the minimal divisor on X such that

2L +div(a) >0, 3L +div(b) >0,

and let £ = Ox(L). Note that L is not necessarily effective, and L is defined by a rational section £ of
L. Now consider the following sections of £2, £3 and 7*L respectively,

s=af?, t=b% G=n"¢-6.
By the choice of L, we see that s € H%(X, £?), t € H(X, £3), and as a section of 7*L3,
(2.2) 8° +7%(s) +7*(t) = 0.

~

Because of this equation, § = 7*(£)8 has no pole when viewed as a sectionof 7*Lon Y. Sod € HO(Y,n*L).

On the other hand, we denote by p : V(L) — X the line bundle associated to L, and by z €
HO(V(L), p*L) the fiber coordinate of V(L). Then 2° + p*sz+p*t is a section of H(V(L), p*(L)3) whose
zero set is a surface £ C V(L). We say simply that T is defined by

(2.3) B4+sz+t=0
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in V(L). 8 defines a section of the line bundle 7 : V(z*L) — Y which is the pullback line bundle of
p: V(L) = X under the base change 7 : Y — X.

V(m*L) == V(L)

)

Yy ———X

So = is lifted to a map v = 7 o :Y - V(L). Locally, v(y) = 7(y, 0(y)) (m(y), O(y ), the fiber

coordinate of v(y) is G(y) ie, z(v(y)) = B(y) and v*(z) = 6 as sectlons of #*£. Hence (2.2) is the
pullback of (2.3) under v* namely,

2(v(9))* + s(n()2(v(v)) +t(7(y)) =0, forallyeY.

Hence the image of v is obviously ¥ which is a (non-normal) triple cover of X induced by p. Now we see
that the birational finite map v is nothing but the normalization of £ and 7 := pov. ]

The triplet (s, ¢, L) in the lemma is called the triple cover data of 7. Any triple cover r is determined
by some triple cover data (s,t, L). Because X is smooth, we can talk about the factorization of a section
according to its divisor.

If s = 0, then the triple cover is cyclic and everything is known. So we always assume that s # 0.
Let

48 po 278 e 1
~ ged(s?,22)’ ~ ged(s3,82)’ ~ ged(s%,£2)°

Then a, b and c are coprime sections of an invertible sheaf such that a + b = ¢.
Conversely, any coprime triples (a, b,c) with a + b = ¢ can determine a triple cover over X. Assume
that we have decompositions (according to the decompositions of their divisors)

a = 4aya3ad, b = 27b;b%, c=cic3,
where ay,az,b1,¢; are square-free and ged(ai,a2) = 1. Then the data (s,t) determined by (a,b,c) is
given as follows:
s = a1a3biag, t = a;aib3by.
Denote the corresponding divisors by
A; = Div(a), B; = Div(by), Ci = Div(g;).

Let Dy = By + C1, D3 = A; + Az. Then the branch locus of the triple cover 7w is 2Dy + Dy =
24z + 242 + By + C1. 7 is totally ramified over D; = A; + A3, hence D, is called the totally ramified
branch locus. D, is called the simply ramified branch locus. Let £, denote the trace-free subsheaf of
7.0y, then C](g,r) =—Dj — %Dl.

It is proved that X is smooth if and only if D is smooth, Dy and D; have no common points, and
all of the singular points of D; are cusps (i.e., locally defined by y2 + f(z,y)® = 0, £(0,0) = 0) where 7
is totally ramified.

2.2. Canonical resolution. The canonical resolution 7 : ¥ — Y of the singularities of Y is the
following commutative diagrams.

?:Yk LI 7 e, » Yy —2 3 ¢ 2 Y=Y
= "kl l’rb—l lﬂ’z l’l‘] lﬂo =7
X=X, —2 Xy =4 ... y Xo — 220 X —2 Xo=X

(1) o441 is the blowing-up of X; at a singular point p; of the branch locus of ;. Yi4; is the
normalization of X1 xx, Y.

(2) The corresponding data (a®, b®, ¢¥) of m; is obtained from (o7ali=1), o3bli=1), g?cli-1))
by eliminating the common factors. (This is due to the computation of the normahzatlon (see

(25]))-

(3) # = m, has a smooth branch locus. So ¥ =Y} is smooth.
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The idea to prove the exitance of k in'step (3) is quite simple. Consider the curve D) =Div(a®p®)c(®),
We see from step (2) that

DD <o (DD) < < (o1 002 003)" (D).

By the embedded resolution of the singularities of ‘ng;, we can assume that D is a normal crossing
divisor. This implies that any two of the sections a{), () and c¥) have no common zero points because
a® +b® = ¢, The next step is just the canonical resolution of cyclic triple covers or double covers

(locally).
2.3. Determination of the new branch locus. Put
di = min {11, (AD), 1 (BY), 1 (C9)},
where p,(D) is the multiplicity of a divisor D at p. Let

1]
_ | Hp: (Dl )
(2‘4) mi = [ 2 ' »
(25) no= (PP, ifdi =y (A9)  (mod 3)
pp (D)) =1, otherwise.
Let E; be the exceptional curve of o3, & be the total transform of E; in X ,and let o =gy :--0%. Then
k-1
(2.6) Dy =0"(D1) -2 mi€is,
=0
N k-1
27 Dy =0"(D5) - Y ni€isa.
=0

We use also E; to denote the strict transform of E; in X.
(i) Ei € Dy <= pp, (D) is odd;
(i) E; ¢ D, and E; ¢ D; = 7 (Dgi)) is even and d; = pp,(A¥) (mod 3);
(ii) By C Dy <= pp, (Dg‘)) is even and d; # pp, (A®) (mod 3). Furthermore,
(a) if pp,(AW) —d; =1 (mod 3), then E; is a component of Ay;
(b) if pp,(AD) — d; = 2 (mod 3), then E; is & component of Ag.

LEMMA 2.2 ([8], Lemma 2.2). The local intersection multiplicity (D1D3)p of Dy with D, at any point
P is an even number.

2.4. Computation of invariants. Now we have the formulas for the canonical resolution:

1 1 5 1
(2.8) x(Og) = 3x(Ox) + '8'Df + ZDIKX + Ing + 5 D2Kx
_ E mi(m; — 1) _ kil ni(5n; — 9)
=0 2 =0 18 :
(2.9) K% =3K% + %D? +2D1Kx + gpg +4D;Kx
k-1 k-1
4n,-(n,- - 3)
=) 2(my—-1)2-y 21 g

3. On trigonal fibrations

Let f : S — C be a fibration of genus g, where S is a relatively minimal smooth projective surface
over complex number field, C is a smooth projective curve of genus b. If the general fibre of f is trigonal,
i.e. is a triple cover of P!, f is called a trigonal fibration.
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For any relatively minimal fibration f : § — C, we have the following basic relative numerical
invariants:

K} K30 =K} -8(g—1)(b-1),
xs =x(0s) ~ (g -1)(b—-1).
Whenever xs # 0, the slope of the fibration f can be defined as
Ar = K3/x;-
And it is known that
4- 3— <Ap <12

Az = 12 if and only if f is a Kodaira fibration.
The slope A; is an important invariant for a fibration. In 1987, G. Xiao [32] proved that for a
relatively minimal fibration f of genus g > 2 (see also {10] for semistable fibrations), one has

and Ay = 12 if and only if every fibre of f is smooth and reduced, i.e., f is a Kodaira fibration. For a
genus 2 fibration f, Xiao [31] proved that

2< XL
In general, if f is a hyperelliptic fibration of genus g, Xiao [33] obtained an upper bound:
12 - (89 + 4)/9%, g even,
4—-4/g< A <
f9ss < {12 — (89 +4)/(g?~ 1), godd.
In particular, for a hyperelliptic fibration f of genus 3, we have
8/3< )\ <17/2

As for the relatively minimal non-hyperelliptic fibration f of genus g, one has:

3, g =3, E. Horikawa [15] and [12],
Ae > 24/7, g=4, Z. Chen [6] and K. Konno [13];
/= 4, g =>5, K. Konno [13];

96/25, g =16, K. Konno [14].
Stankova-Frenkel [21] proved that if f is a semistable trigonal fibration, then
24(g—-1)
D —————
M2
See [21, 24] for some other lower bounds. [3] is a very good survey on the study of slopes.
Let o be the number of total ramification points in a general fibre of f. Then by Hurwitz’s theorem,
we have 2a < 2g + 4, i.e. a < g+ 2. It is obvious that a is invariant under base changes. A trigonal

fibration may have several o’s, we will denote its maximum by a(f).
In [8, 9] the following 2 theorems are obtained.

THEOREM 3.1 ([8]). Let f: S — C be a trigonal fibration of genus 3. If f is not locally trivial, then

< {9 alf) =345
=212, i off) =

Therefore, Kodaira fibrations occur only when o(f) < 1.
THEOREM 3.2 ([9]). Let f: S — C be a trigonal fibration of genus g > 4. If a(f) = g +2, then

12 - 6—(9-;-1—) if g is even,
A £ 6
12—9—:7 } zfgwodd.
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Ifg/2 < oa(f) <g+1, then

19 — 240(f)
ap<d 8= galD) + 1)+ el - 1)

- 12— 24a(f)

if g is even,

P —g2((f) +3) +9Ba(f) - 1) - 7a(f) + 3 if g is odd.

If2< o(f) < 4, then
Ay <12
Thus Kodaira fibration only occurs when a(f) < 1.

Here we will give a sketch of the proof. Firstly, we have the following propositions aboﬁt base change:

PROPOSITION 3.3 ([23], Corollary 4.3). Let f be a non-semistable fibration with Ay > 8, then the
slope will incease through any non-trivial stabilizing base change.

CoROLLARY 3.4 ([23], Corollary 4.4). Let f be o fibration with mazimal slope. If Ay > 8, then f is
semtstable.

Hence in the theorems 3.1 and 3.2 we may assume the fibration is semistable.

For a trigonal fibration f : S — C, after some base change, we have the following commutative
diagram:

where f': §' —s C’ is the base change of f, &, 7 are birational morphisms, o : Po — C’ is & minimal
ruled surface, % : § — P is a smooth triple cover. Since (Pg, &) is not unique, we may choose a suitable
contraction such that the singularities are not too bad.

LEMMA 3.5 (Cf. [8], Lemma 5.2). P can be contracted to a relatively minimal model Py with a ruling
wo : Po — C satisfying the following conditions.

p—2=2 o+ B
C

(1) Let R be the branch locus of %, and R be the image of R in Py. Then& : P — P, is the canonical
resolution of R.

(2) Let Ry, be the horizontal part of R (i.e., Ry does not contain any fibres of po and R, = R— R,
is the sum of some fibres), then the orders of the singular points of Ry (resp. R) are less or
equal to g+ 2 (resp. g +4).

Such a geometrically ruled surface o : Py — C with the branch locus R will be called normalized.

LEMMA 3.6 (Cf. (8], Lemma 5.5). Let f be a trigonal fibration with mazimal slope. Then we can
assume that R has no vertical fibres, and that each component of D, or D is a section of wo : Po — C.

Let R be the branch locus of #, R = &(R). Then 7 is the embedded resolution of singularities of the
branch locus R, 7 is a smooth triple cover. Let Cy be a section of the ruled surface g : Py — C such
that the self-intersection number C? = —e is minimal. Let

R = Dy + 2D, Dy =By +Ch, Dy = A1 + A,

Here D, is the simply ramified branch locus, D is the totally ramified branch locus. Since the genus of
a general fibre is equal to g, RF = D1 F + 2DoF =29 + 4. Let

D; ~ o f)Co + BF,
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Dy ~ (29 + 4 - 2a(f))Co + 2vF.
By (2.8), (2.9), we have

Xs = (§9¥2+1) (ﬂ—@e)+(g+l—a(f)) (7___________g+2—a(f)e)

2
_gjw_'gm(sm-s)
= 2 pr 18 !
-0 (401) -4 - - 22590
i=0 =0 3

where ¢ is the number of (—1)-curves blown down by 7.
Then

12/ — K3 = (o) - ) (6~ SLe) + ateg + 3 200 (- L2520 )

k-1 k-1
+ 3k —22m.-(2m,- -1) —Zan(n.- -1)-e.
1=0 i=0

6 13- K- s = (40t - 4= (22 1)) (- =Le)

+ (8g+12 —8a(f) ~ (g +1 - o(f))) (.,_.9+2-2-a(f)e)

k-1 k-1
+ [3k—22m.-(2m.~ -1)-2) nini-1)-¢

i=0 i=0
= i(mg -1 oty i(5n; — 9
S(Ee )
Let »
(3.2) hp =Y (3 = 2my(2ms — 1) — 2ni(ns — 1)) — &5,
(3.3) =3 (mi(m; -1) + n¢(571z;8— 9)) .

i
From these 2 invariants, we will define a slope function

SP("") = hP + 6P”'1

Our goal is to find the lower bound of the slope function, especially when p is sufficiently small.
Let D be a horizontal effective divisor in the ruled surface @p : Py — C. Afterwards, we always
denote a fibre of the minimal ruled surface by F. Then the relative ramification index of D is defined as

D = D(D+Kpo/c) >0.

If after k blow-ups o; the strict transform D of D becomes smooth (it may be composed of several disjoint
nonsingular curves), then

k
D=(o1+++ar)*'D-)_m&i,
i=]
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where £; is the total transform of the exceptional divisor of ¢; and m; is the multiplicity of the strict
transform of D at the center of blow-up ;. In fact, we have

k
rp = Zm,-(mi — 1) + (ramification index of the finite morphism D — C).

i=1

Denote the contribution to rp of each singular point p of D by rp, then
rp=3r,
3

It is obvious that r, = 37, m;(m; — 1)+ the contribution of the inverse image of p to the ramification
index of D — C.
Afterwards we use the following notation:

= rD;) re = rDa’

T1,p = TDy,p» T2,p = TDj,p-

By analysing the singularities on the branch locus, we can obtain the following key lemmas:

LEMMA 3.7. Let o : Py — C be a normalized (Cf. Lemma 3.5) ruled surface with triple cover data
(8,2, L) such that the obtained generically triple cover fibration f : S —s C is semistable and of mazimal
slope. It is also assumed that R = Ry and Dy and D, are composed of sections. Then for any singular
point p in R, one has

(3.4) 8p(B) = M1,min()71,p + Mo min(1)72,p + M3 min(p)(D1D2)p,
where |

My min(p) = g- -1,  ifp <225

Mz,min(ﬂ-) =
202 —
(12(-3g 16:92;] 2l 42-)9(594»2)# if g is even, a(f) > § +1 and p < 3%,
—~3qg2 2 _ |
< 12(-3¢% + 158)(;2(391) 89+ 3)u if g is odd, o(f) 2> 4 and p < S&,
6(=6a(f)* + 6a(f) +1) + (a(f) = 1)(5a(f) = 4)ps .
\ 18a(f)(a(f) - 1) f2<a(f) < § and p < =y
M3 min(p) =
'3.(93;9—4-9‘2? if g is even, o(f) 2 £ +1 andpgﬁ,
ﬁ %’gg——-l)l)ﬁ' if g is odd, o(f) > T and u < 7y,
\9;{}) if2<a(f) < § and p < ;-

LEMMA 3.8. Let ¢g : Py — C be a normalized ruled surface with triple cover data (s,t,L) such that
the obtained generically triple cover fibration f : § — C is semistable and of mazimal slope. It is also
assumed that R = Ry and D, and D, are composed of sections. If Dy is composed of disjoint sections
and that a(f) < (g + 5)/2, then for any singular point p in R one has

(3'5) 3p(u) 2 Ml.min(l‘)rl,p + M4,mln(l“)(D1D2)pa
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where /
M, min(p) = g— -1,  ifu <225

M‘vmin (l“') =

24+g(g —10)p . g 2
— — ; +5 24
T3l — 1) v #f g odd, of) < &7, p < o=y

By these lemmas, we can prove the theorem 3.2. We take the simplest case a = g + 2 as an example.
Then D, =0,v=0and ro = D1D; =0.
By formula (3.1), (3.2), (3.3), we have

5g+1 +2
12x — K2 — pxs = (4g+4——-£§--—u) ( "g_i—e)

+ Y (hp + Gpm).
14

By Lemma 3.7,
Z(hp + Jpl‘) 2 E(Ml,min(”)rl,p + MZ,mln(I‘)rz,p + Ma,min(”)(DlDz)p)
P p

= Mz min()r2.
Here

’I‘2=D2(D2+Kf) =2(g+1) (ﬂ— g—%ze) 20.

If g is even and u < 9—25, then

4(6(g+1) —g¢° +2
12x; - K2 — pixy 2 (6(g+1) yu)(ﬂ_y e)_

99(g +2) 2
Take p = & g'” < 7%3, then

6(g+1

That is
A <12 6—(29%9.
Kfo(f) =9g+2,9isodd and p < —g-ffg, then

4 1N6-{(g~-1 2
N e = U]

Takeu=-g-f-1-<g%3,then
6
<12— ——.
Ap <12 7-1

4. Examples of smooth hyperelliptic central fibre

In this section we will give some examples to show how to construct local fibration by triple cover
such that its central fibre is a smooth hyperelliptic curve of genus 3. Let P = P%:(}t]] = P} x¢ Spec(C|[t])).
Then ¢ : P —» Spec(C[[t]]) is a local P*-bundle whose central fibre is Fo = ¢~1(0) 2 P!. Let y denote
the affine coordinate in P¢. Let P = U UV be an affine open cover of P where P\ U is the line at infinity
oo xc Spec(C[[t]]), P\ V = Z(y). Let Uy = U — Z(y) = Spec(C[{]l[y,y~*))-
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EXxAMPLE 4.1. Let
= (-9t + 9t - 3)y* + 12ty — 3t € (P, 0p(4)),
t = (9% — 9% + 2)3% + (9t + 18t% — 12t)y* + 15t%y% + 2t € I(P, Op(6)).
and £ = Op(2). By using the following polynomial equation in £3
p(z) = 22 + 82 +1,

we can define the triple cover f : Y — P determined by the triple cover data (s, t, £).
Then we have

_ ao =8 = (=93 + 912 — 3)y* + 12ty% — 3¢2,
bo =t = (93 — 9% + 2)y% + (9t* + 18¢3 — 12¢t)y* + 15¢%y* + 2¢°,
ap=a3=b0=1, Cco = 27t2y,
c1 = (—4% + 12¢% — 1263 + 362 + 2t — 1)y'0 + (223 — 2612 + 4t + 4)y®
+ (—t* + 2083 + 8% — 22t — 2)8 + (22t + 8t)y* + (4t — 1)y® + 4¢.
The discriminant of ¢; is a polynomial in ¢, hence it has 10 simple roots in an infinitely small

neighborhood of t = 0. When ¢ = 0, ¢; has a double root y = 0 and 8 simple roots. Thus this triple
cover has only double ramification. The following diagram shows the resolution of the singular points of

the branch locus. _F ;
- -* ==} 1
00 + -l (1,00 +
I (0,0 I (1,0) T
tn % o
+ + +
To T T2

Note that Uy, is invariant during the resolution, Fo N Uy, & Co N Uy,. Since Fp is contained in the zero
set of co, Y is not normal over f~1(Fp) (cf. [26]). But the restriction of the defining polynomial p(z) to
FNU,is

p(z) =22 -3tz + 2% = (2 + 20)) (2 —4?)? (mod t)
So p(z) is reducible in C{[t]][y,y1]. This implies that after the normalization ¥ — Y, the triple cover
of Cp has 2 components. By the connectedness of the fibre, we can obtain the smooth fibre bundle.

-2 -1
1:3 blow-down
Ar—— ————————
5 times
-1
-4 = i
g=3 g==3, hyperelliptic

PROPOSITION 4.2. Let Fy be a fibre of a minimal ruled surface p : P — C, and let f : S = C
be a relatively minimal fibration obtained by a triple cover of P. If the fibre of f over Fgy is a smooth
hyperelliptic fibre, then

(1) a= D2F <1 N

(2) There is only one singular point p € Fy of branch locus. If DoF = 0, then up(Dy) < 3. If
DoF =1, then py(D1) = pp(D2) = 1. Hence the other intersecting points of branch locus with
Fy are all of double ramification.

The examples above imply that smooth hyperelliptic fibres may exist when o = DoF < 1. As we
know the Kodaira fibration do exist when g > 3, so the slope may reach the upper bound 12 when a < 1.
At last we will investigate the behavior of the branch locus if f is Kodaira fibration.

COROLLARY 4.3. If f is a Kodaira fibration, then the branch locus must satisfy the following condi-
tions:

(1) DgF = 0: A singular point p of the branch locus (good cusp is excluded) must be one of following
type. If a fibre has a singular point as follows, it can have neither second singular point nor
good cusps.

(a) Double point not tangent to the fibre;
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(b) Triple point not tangent to the fibre;
(c) Smooth point tangent to the fibre with order 2.

(2) D2F = 1: A singular point p of the branch locus (good cusp is excluded) must be of following
type. If a fibre has a singular point as follows, it can have neither second singular points nor
good cusps.

(a) pp(D1) = pp(Dz) = 1 and the intersection number (D1Ds), is even. Dy, Dy are not
tangent to the fibre.

5. Cubic equations of rational triple points of a surface

Rational double points of dimension two were studied first by Du Val ([11]) in 1934. There are
5 types of rational double points and each type has one standard quadratic defining equation. These
equations are very useful in the classification of algebraic surfaces.

.An:o—o-uo——o 22+$2+y"+1=0, (n21)

Du: oo oot o Aty +N=0, (n24)
Eg: o—o I oo 2+4+z84+9y4=0

Er: o—o .o__.I — 24222 +43) =0

Eg: o—o—o—o I —o 2+284+45=0

From the quadratic equations, we can resolve the surface singularity by using a canonical method for
double covers (see [4], p.107).

A rational point of multiplicity higher than 2 is not a hypersurface singularity, so it is impossible to
define the singularity itself by one equation (cf. [1]). On the other hand, a surface singularity is isomorphic
to the normalization of a local hypersurface f(z,y,2) = 0 in C3. Sometimes, it is very convenient if we
know f, especially when we know the processes of normalization and resolution directly from f. A typical
example is the Hirzebruch-Jung singularity defined by the normalization of 2™ = zy™~9. We do not need
to find the defining equations of the normalized singularity. In fact, the singularity is determined by n
and q.

In 1966, M. Artin (1] classified the dual graphs of rational triple points of dimension 2 into 9 classes,
and he proved that each rational triple point can be embedded into C4. In 1968, Tyurina (28] gave
explicitly 3 defining equations for each singularity. Tyurina [29] proved also that a rational triple point
is determined uniquely by its dual graph. So isomorphically, there are 9 rational triple points.

k
P
O e L o m n
A k- © &—i—c (o] B [o T o_.*i_o_o o
n,m, { ) m,n
n
n n
C . [o] O—o—Q :»—i—o Dn, B Oesesrenaane GH—‘i—H
mn y

n
Eo,7: 0—-0-—0——0—1—0—0 Fne: oy o—&—o—o—i—-o—o‘

N
Gn'o:

Where o is a (—2)-curve, o is a (—3)-curve.
On the other hand, the singularities coming from the normalization of a local surface defined by a
cubic equation 23+ s(z, y)z+t(z,y) = 0 can be resolved by canonical resolution. Theoretically, a rational
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triple point might be defined by one cubic equation (up to normalization). So it is interesting to find out
the equations similar to rational double points. By using triple cover theory, the local cubic equations of
all the rational cubic points are obtained(Cf. [7]).

An,m,k: (n Z m Z k)

23 + (z + yk+1)z2 + nyn—kZ + x2ym+2n-3k(z + yk+l) =0, (m > k)’

2B+ z(z + y**)z + z(z + y*H1)%yP = 0, (n=3p+k,m=k);
22+ z(z + y*t )z + (z + YRyt = 0, (n#k (mod3), m=k).
B!

B (—z+ yPH)22 23, L gy = 0, n=2p;
23 — 122 + ym+3(ym + yp)z + my2m+3 =0, n=2+1,.

Cmpnt
B4y +2™2)z 4 z(y? + 2™ )2 =0, n=3p+1;
24z +2m )2+ P+ =0, n£1l (mod 3).
D, 5:
2+ a2+ 4 2y = 0,
Ego:
B+ =0.
E-,.,o:
24+2¥yz+9yt=0.
Eor:
2+ +4%) =0.
Fog:
{z3 +z(2?2 + )2+ 2(x® + )%y =0, n=3p+2;
B+z@?+yY)z+ (22 + %)% =0, n#2 (mod3).
Gno:

2 +aP*2y24 152 =0, n=3p;
22 +37 2z 4+ 223 =0, n=3p+1;
2 +zy?(y+2P*2) =0, n=3p+2.

Here is an example to show the canonical resolution. We use the following notations:

e ~3 ;8 rational curve with self-intersection number —3 which is a component of the totally
ramified branch locus Dy;
—4: a rational curve with self-intersection number —4 which is a component of the simply
ramified branch locus D,, note that the self-intersection number —2 will not be marked;

--------- 1: arational curve with self-intersection number —1 which is not a component of the branch
locus, note that the self-intersection number —2 will not be marked;
---f---:  a simply ramified point on a rational curve;

---f---: a totally ramified point on a rational curve;

EXAMPLE 5.1. 28 +2%yz+y* =0, po = (0,0)
(0) s =22y, t=y* :
(1) a =425 b=27y5 c=42%+27y5. (Step 0: eliminate y* = ged(s?, ¢3))
(2) Multiplicities of (a, b, c) at po are (6,5, 5).
(3) Pullback of a + b =c: €% + €% = €52 = ed + b = & (Eliminate €°)
(4) New data: o’ = ei, b’ = b, ¢ =é. So e is in a;.
(5) Multiplicities of (a’,b’,¢’) at p; are (1,5,1).
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A A
(-84 6A '
' 5B ‘ 6A,
r {C 5B 5B
J -1-4----f-4B
c c
(8,5,5) -1 -2
(1,5,1) (1,4,1)
A 3B
AT
6A, F---22
—
~1-L--.}3B
C
-4 -2
(1,2,1)
A 2|B 4'B 2B 4B
' A - ! ' 1
— ' 6B —— e | sB
-1 : ' 2B .
C 1 t ' '
-5 -2 -2 -1 -2 =2
(1,1,1) -2 -2 -2 -2
-2 -2 -2 L2
triple -3 blow-down ~2 v I
B —p
cover _1 2times
-1 -2
-3 -4 -4 -2 =3

This is a rational triple point of type E7,o.

6. Further remarks

The final purpose of this study is to get the computation formulas for the global invariants of a
trigonal fibration f : X — C from the local data of the special fibers. If the genus g of a generic fiber is
2, G. Xiao [31] got nice formulas:

X1 = soa(f) + g

K} = 35a(f) + gos(f),
ey = s2(f) + s3(f),

where 33(f) = 3" s2(F) and s3(f) = 3 33(F) are two nonnegative indices of the singular fibers. When
F is a semistable fiber, so(F) (resp. s3(F)) is the number of inseparable (resp. separable) double points
of F. A double point p of F is called inseparable if the partial normalization of F at p is still connected.
Otherwise, p is called separable.

Based on the local analysis of the singularities, Jun Lu and the two authors of the present paper get
similar formulas for non-hyperelliptic fibrations of genus g > 3. When g = 3, we have

1 1 4 1 4 1
Xs=gh + 3® + 9% + 3% + g% + ge

1 7 13 4
K}= gut 3az + 303 + 204 + a5 + 306,

ey = 2a3 + a3 + a4 + 3as + as,

For non-hyperelliptic fibartions of genus 3, M. Reid has some conjectural formulas [19]. We will compare
them with our formulas later.
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