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1 Introduction

There are many ways to characterize Besov spaces. Among them in the discrete version are
regular wavelet expansion, Littlewood-Paley decomposition, polynomial approximation,
spline approximation, mean oscillation, and difference operator (See [9], [13] and [15]). We
give these characterizations in context of self-affine lattice tilings of R™ and we apply to
study these pointwise versions. In particular we see to give most of these characterizations
in a framework of multiresolution approximation on self-affine lattice tilings of R®. We also
give conditions of finitely many functions which generate the Besov spaces of self-affine
lattice tilings of R in a view of multiresolution approximation scheme (cf. [6]). This
result is a generalization of characterizations of Besov spaces given by regular wavelet
functions and by spline functions.(See [3] , [12] and [15]) Moreover we apply to give
descriptions of scaling exponents by characterizations of the Besov space, and we also
consider a pointwise Holder exponent of oscillatory functions given by a multiresolution
approximation series in self-affine lattice tilings of R".

In the second section we introduce self-affine lattice tilings of R™ which arise in many
contexts, particularly, in fractal geometry and in construction of wavelet bases. See [14]
for a survey on related topics. We define Besov spaces of self-affine lattice tilings, and
give its characterizations and its pointwise versions.

In the third section we consider a multiresolution analysis {V|} generated by finitely
many functions associated with a self-affine lattice tiling. We give properties of Besov
space norms defined by approximation errors associated with {V}.

In the fourth section we give some conditions of finitely many functions which charac-
terize the Besov space by multiresolution approximation on self-affine lattice tilings of R™.
We apply this result to give a generalization of characterizations of Besov spaces given
by regular wavelet functions and by spline functions, and we also give characterizations
of the pointwise Holder space by multiresolution approximation.

In the fifth section we give descriptions of scaling exponents of global and poitwise
regularity by characterizations of the Besov space. We give properties of a pointwise
Hoélder exponent for a multiresolution approximation series in self-affine lattice tilings
and apply to compute a pointwise Holder exponent of several oscillatory functions.



We use C to denote a positive constant different in each occasion. But it will depend
on the parameter appearing in each problem. The same notations C are not necessarily
the same on any two occurrences.

2 Self-affine lattice tilings and Besov spaces

Let I be a lattice in R™, that is, I is an image of the integer lattice Z™ under some
nonsingular linear transformation and let M be a dilation matrix, that is, all eigenvalues
of M have absolute values greater than one and M preserves the lattice I': MT C I
This implies that |det M| = m is a positive integer greater than one and m is the order
of the quotient space I'/MTI". We say that a compact set T generates a self-affine tiling
{T + 7}761‘ if

Uyer(T'+v) =R™ disjoint a.e.
Uyero(T'+7) = MT disjoint a.e. (1)

where I’y is a finite subset of I' consisting of representatives for disjoint cosets in I'/MT.
The set I'y is called a set of digits and the compact set T is called a self-affine tile. The
self-affine tile T' has nonempty interior 7°. We suppose that I' = Z*. In this case the
dilation matrix M has integer entries.

For 1 < p < o0, let £P = LP(R™) be the linear space of all functions ¢ for which

9l = ([ (T I6(e—v))Pde)? < oo. )

veZnr

with the usual modification for p = co. Clearly, £P C LP(R®) and L* C LP C LIC L =
L'R*) for 1 < g<p< oo If p € LP(R") (1 < p < o) is compactly supported, then
¢ € LP. Furthermore, we observe that if there are constants C > 0 and § > 0 such that
l(z)| < C(1 + |z|)™* for all z € R™ then ¢ € L.

A finite subset ® = {¢1,... ,@dn} of L> is said to have LP-stable shifts (1 < p < 00),
if there are constants C; > 0 and C, > 0 such that for any sequences ¢; € IP(Z") (j =
1,...,N),

N N N
C1;llcj||tr < Z Z cj(V)di(z — v)l||p £ Cz;”cjnw'

Jj=1lveZn

From now those equivalences shall be described as

N N
Dolleille ~ 11D Y ¢ ()il — v)llp.

j=1 j=1veznr

Theorem A ([6]). For a finite subset ® = {¢y,... ,dn} of L®, we have following equiv-
alent conditions: )

(i) ® has L2-stable shifts,

(ii) ® has LP-stable shifts for 1 < p < oo,

61



(iii) there is a set of functions ® = {¢1,... ,¢n} in L=, dual to ® in the sense that

/qﬁj(w - u)gk(w —v)de = 6,04, j,k=1,...,N, p,veZ,
where § is the Kronecker’s symbol.

Let Il = {T + v},ez» be a self-affine lattice tiling of R™ with a dilation matrix M. For
a nonnegative integer k, we denote the function p, with |o| < k, o € Z7, where Z, is the
set of all nonnegative integers, given by

po(z) =2% z€T°
Pa(z) =0 otherwise. ; (3)

Since ® = {Pa}|aj<k Of L= has L-stable shifts, there is a set of functions b= {Pa}iai<k
dual to &.

Let Qo be a translate of the tile T containing the origin as an interior point and let
pl, B, be corresponding translates of p,, P, respectively. For Q;(zo) = M~'Qq + zo, we
write

P (2) = m P (M!(z — z0)), B3 (2) = m!/*F, (M (z — o))

Paen (@) = 3 (482508 0) @
al|<k
We define
oscpf (2, 1) = }Eﬁk(ﬁcﬂ Qu(=) @) = P)Pdy)” (5)
and

k . 1 P 1,\1/P
Qi f(z,l) = (I—@z_(x_)l ey @)~ P F@)Pdy) /

where Q;(z) = M™'Qp + z and Py, f is given in (4), and |@;(z)| is the volume element
of Q(z), and P* is the linear space of all polynomials of degree no greater than k on R".

Definition. Let )y be the least value of absolute values of eigenvalues of the dilation
matrix M. Given s > 0, k a nonnegative integer with £k +1 > sand 1 < p,g < 00. A
function f is said to belong to the Besov space B, (M) if

1 llBs,m = [1£llp + (SO losck £ D1, < oo. )

=0

with the usual modification for ¢ = co. We note that the above definition is independent
of the choice of nonnegative integers k with k 4+ 1 > s and osc, in the definition can be
replaced by oscf. We can see WE,;(R™) C B3 (M) if s < k+1. When the dilation matrix

M is A¢-times of the identy Id with Ag > 1, the above Besov space coincides the usual
Besov space on R".
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Remark 1. We have the embedding theorem : Bfg(M) C B (M) for 8 > a > 0,
1<§n<ooandl<p< oo, and BE(M)C BE(M) fora>0,1<¢<n<ooand
1<p<oo.

Let Ayf denote the difference operator A,f(z) = f(z + u) — f(z). Let us choose
positive constants r and d such that

{ueR":lul<r}CcQ Cc{ueR":|ul <dr}. (N

We obtain a following equivalent statment

Theorem 1 . Given s > 0, a nonnegative integer k with k+1> s and 1 < p,q < 00,
we have equivalent ones of the Besov space norm given in (6), if one of them exists, with
the usual modification for ¢ = 0o

|| f1l3400)
HfHﬁ(Z A1 £ (1107 = [l £l

[I£1ls + (Z(/\B’ sup  [|AF )Y = lIfllle.

1=0 (k+1)|Miul<r/2

If 0 < s < k+1 for a nonnegative integer k and 1 < p,q < oo, then for z € R*, a
function f € T}, (z) means that

(Z(’\o osc"f(:z; l))q)l/q < 0

with the usual modification for ¢ = co. We note that the definition is independent of the
choice of k with k+1 > s.

Remark 2. We have the embedding theorem : Tp'%(m) CTp(z)for3>a>0,1<¢n<
oo and 1 < p < o0, and Ty (z) C Tg(x), Tg(z) C T(z) fora > 0,1 < < € < 00 and
1<p,q< oo

We have a poinwise version of Theorem 1, which is proved by the same way as the
proof of Theorem 1.

Corollary. Given s > 0, a nonnegative integer k with k+1 > s and 1 < p,q < o0.
Then for x € R™ following properties of a bounded function f are equivalent, with the usual
modification for g = oo

() f€Th(a),
(i) AR f(z,1))Y < oo,

l—O

(iii) (Z(A" sup

1
—_ Aﬁ“ Pdy 1/P\\V4 < o,
=0 (k+1)|Mlu|<r/z(|Qz($)| Qi) | 1)l ) )
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We will define the Littlewood-Paley decomposition. Let us A\g > 1 and ¢ a function in
the Schwartz class S(R™) with the following properties: supp ¢ C {{ € R*: |¢| < 1} and
@(€)=1on {£ € R": |¢| < A\;'}. Let () = A2p(Xoz) — @(z). Let @i(z) = Afo(Niz),
Sif = fxop, i(x) = Nrp(A\jz) and fi=fx for 1=0, 1, 2, .... Then for f € S’ we
have Littlewood-Paley decomposition:

Foosf+3 vt f=Sf+3 4 - ®)
=0

1=0

Theorem B ([13]). Suppose that a dilation matriz is of the form M = Aold with Ay > 1.
Let 1 < p,q < o0 and 8 > 0. Then we have equivalence of norms if one of them exit, for
Littlewood-Paley decomposition given in (8), with the usual modification q = oo:

(1) Hf”B;,q(M);
~ (11) Hf”p + (Z(Ag“f - Slf”p)q>1/qa

=0
00

~ (i) [[Soflle + QOGN All)H) e

=0

We write T3, (z) = C*(z). The following statement is a pointwise version of Theorem
B and can be proved by the corollary of Theorem 1 using the same way as in [1].

Proposition 1 . Suppose that a dilation matriz is of the form M = X\gId with Ao > 1. Let
s > 0. Then for z € R, following properties of a bounded function f for Littlewood-Paley
decomposition given in (8) are equivalent:

(i) feCz) |
(i) |f(y) = Sif@) < COG' + |z —y|)® for all I > 0.

Corollary. Suppose that a dilation matriz M = AgId. Let f be a bounded function. If
f € C*(x), then it holds

(i) [A)| <COG +lz—y)* foralll 2 0.

Conversely, if it holds for s > s’ > 0,

@) |A@] <O+ Mle—yl)? foralll > 0,
then f € C*(x).

64



65

3 Multiresolution approximation

Let II denote a self-affine lattice tiling {T" + v},ez» with a dilation matrix M. For an
integer I and a finite subset ® = {¢1,...,¢n} of L® with L2-stable shifts, we define
operators P, f given by

Rif(a izz; (£, & (M - —0))65(M'z — ) )

where (f,¢;(M" - —v)) = [ f(y)¢;(M'y — v) dy and ® = {¢y,... ,én} is dual to @ in
Theorem A.

Let Vg = {2, Syepn as(0)dy(o—v) : ; € IP(Z)} and let VP = {f(M's) : f € ¥},
Then for 1 < p < oo, the operator P, is a bounded projection operator of LP(R™) onto
VP (1 £ p £ o) in the sense that Pf = f for any f € VF. We say ® = {¢1,... ,on} of
L> is M-refinable if there exist sequences ¢;; € I'(Z") (1 < j,k < N) such that ’

N
oi(@)=> Y cix(W)p(Mz—v), z€R*, j=1,...,N.
k=1veZn

A following theorem implies that {V{’} is a multiresolution analysis in LP(R") for
1<p<oo.

Theorem C ( [7] and [16]). If a finite subset ® of L is M-refinable and has L*-stable
shifts, then the sequence of sets {VP} (1 < p < o) satisfies following properties:

G feVWe fz-v)eVf foralvezZ,

() £ € V7 & f(M2) € V.,

(i) - CVP C VB, Coov

(iv) NiezVf = {0} (1 <p< ),

(v) UR VP is dense in LP(R™) (1<p< oo)

Given a function f in L?(R") (1 < p < 00), oF(f) denotes the error of LP-approximation
from VP in LP(R"):

of (f) =inf{||f — S|, : S € V*}. (10)
Clearly we have the following equivalence:
o (f) ~If = Piflley, fELPR™) 1<p<L o)

Given s >0, A>1and 1 < p,¢q < 0c. A function f is said to belong to B;;}"(tb) if

11l 3spc8y = 11115+ (gu‘wmq)w < oo (11)

with the usual modification when ¢ = oo
Let

le=‘Pl+1f'_1:lf) l=0’1v | (12)



We put

N N
Pof(z) = Z Y ap(v)gi(e—v), Rif(z)=3 3 aen¥)d;(M 'z -v). (13)

=1lveZ® j=lveZn

Since ® has stable shifts, we have

N N
1Pofll ~ 3 llajolle,  NBifllp ~ m= D23 flajoiplle, 1=0,1,....  (14)

j:l j=1

Then for f € B3}(®) we have

o0 N oo
f(z) = Pof(z) + Y Rif(z) = Z go Y. a(v)g;(M'z —v).

I=0 vezr

Moreover from [15, Theorem 5.10] there exists an associated set of wavelets {y$}5=1" "N ",

that is, {¢5(z—v)};=y"""N,ez~ i an orthonormal basis in Wy = V26V in L*(R™) , whose
wavelet expansion of a function f € L*(R) is given by

m—1

@)=Y ¥ st -0+ S 5 5 lmmis(Me—v)  (15)

j=1vezr j=1 e=1 =0 veZ"

where

aj0(v) = (F(y), iy — V), Bu(v) = (F(v), m"*y5(M'y — v)). (16)
Then we have

Pof(z) = Z 2 aio(v)¢i(z —v),

j=1lveZnr

R f(z) =§:m2_: Zz vim2ps(M'z — v),1=0,1,... .

When m > (n +1)/2, there exist 1§ € L~ and

m—1

N
[Rufllp ~ m @22 57 S |65lls (1< p < o0).

i=1 e=1

A following result can be proved from easy routine using Hardy’s inequalty.-

Theorem 2 . Assume that a finite subset ® = {¢1,... ,¢n} of L= is M-refinable and
has L*-stable shifts. Given A > 1 and a > 0, there are equivalences of the norm ||f|| B3 (@)

gzven in (11), if one of them etzits, for any 1 < p,q < oo, with the usual modzﬁcatzon for

(1) Hfllp+(Ez=o(/\’“Hf Pif|lp)9)Ye,
(i) |Pofllp + (20 (N | Ref I, )q)x/q
(iii) (ERo(Aem™P I [lalliw)?) 9,

where {a;} are given in (13).
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(iv) inf(C2o(Nem Y2 X |leq||ie)2)/9 where the infimum is taken over all admissible
LP-convergent representations

cau(v)g;(M'z —v),

veZn

NgE

@) =3

j=11

i
S

(V) Zjsa llajollie + (SiZp(Nom! /212 T | 573 1b5][1)9)/ - when m > (n+1)/2,
where {ajo} and {b5;} are given in (16).

Proposition 2 . Given k+1 > s > 0. Assume that ® = {¢1,... ,dn} of L= is
M-refinable and has L?-stable shifts. Then we have for any 1 < p,q < oo,

B"”‘°(<I>) C B, (M)

provided that there ezists a positive number sy with s > s such that sup;o A oscld; (-, 1)], <
oo forallj=1,...,N, where the norm |-|, and osc} are given in (2) and (5) respectively,
and Ao s the least value of absolute values of ezgem)a,lues of M.

Sketch of Proof. We shall prove for any f € B3 (®),
(%()‘ff&f(f))q)l/q < (|1l + (?_:()‘f)aaf(f))q)l/q),
= =0

where o7 is the errors of LP-approximation given in (10) associated with ® and &7(f) =
|losck f(:,1)|, . Since o7(f) > 0 asl— oo (1 < p < o), we have an LP-convergent series

00 N oo
f(z) = Pof(z) + Z%sz(m) = 2_2”2 Zzn ai(v)g;(M'z — v)

where P, f(z) = E;'V=1 Lvezn ajo(v)¢j(z—v) and Rif(z) = E;'v=1 Loezn aj+n) (V)$5 (M z—
v) are given in (13).
Then we have

#(f) = 5 (Bf + S Rif)

=0
< éﬁ(Pof)+g  (Rf) = Io+§Iz

We shall give an estimate of I. By (14) we have

N
I <CY | Y- lajo(v)loscigi(z — v, lo)llp

j—l veZn

< CZ||%0||19|°SC'°¢J( lo)lp < CHPoprSup |oscE; (-, lo) -

Jj=1



If I < ly, then we see by (14) that
N
L < Om~ V2SS lajuen () losepi(@ — vy lo = 1= 1),
j=1 v

N
< Oy m OVl leloscyds (- lo ~ L = 1) < ClIR: S, Sup loscyd; (-, 1o — 1 = 1)l

j=1
If I > Iy, then we have by the definition,
I < ||Rifllp.

From Hardy’s inequality and Theorem 2, these complete the proof of Proposition 2.

A following corollary can be proved by the same way in the proof of Proposition 2.

Corollary. Given A > 1 and s > 0. Assume that ® = {¢1,...,¢n5} and ¥’ =
{d4,-.. 8L} of L> are M-refinable and have L2-stable shifts. Then we have for any
1<p,¢< x,

B3N (@) c B3N @)

provided that there ezists a positive number so with so > § such that sup;5q A°|d; —
P¢l, < 00 for all j =1,..., L, where the operator P, is given in (9) associated with ®.

For a positive integer k and 1 < p < o0, L}, = LE(R") is denoted to be the space of
all functions f such that f(z)(1+ |z|)¥ € £P. If ¢ € LP(R") (1 < p < o) is compactly
supported, then ¢ € L. Furthermore, we observe that if there are constants C > 0 and
8 > k such that |¢(z)| < C(1+ |z|)™ for all z € R" then ¢ € L.

For a finite subset ® of £{°, the domain of the operator P, given in (9), can be extended
to include the linear space P* of all polynomials of degree no greater than k on R™. For a
finite subset ® of L1, we say that ® satisfies the Strang-Fix condition of order k if there

is a finite linear combination ¢ of the functions of @ and their shifts such that ¢(0) # 0

and 8°¢(27v) =0, |a| <k —1, v € Z" with v # 0.

Lemma 1 . Let ® be a finite subset of L that has L?- stable shifts. Then ® satisfies
the Strang-Fiz condition of order k if and only if Pyq = q for any q € PF-1,

Moreover, if this is the case, then we have {|Pif — f|l, < CAF™ Yiaj=k |[0%f|lp for any
f in the Sobolev space WE(R™) (1 < p < o), with a constant C independent of f,p and
[ where Ay 1s the least value of absolute values of eigenvalues of the dilation matriz M,
that is, WE(R™) C B5*(®) f 0<s <k and 1< g < oo.

Proof. We can prove by the same way of [8, Theorem 5.2]. We will omit its details.
4 Characterization of Besov spaces

Let II be a self-affine lattice tiling {T" + v}, ez~ and II; denote the subdivision {M~4(T +
V) }oezn of R” for a nonnegative integer I. Let ® = {¢y,... ,dn} be a finite subset of L=
and A the least value of absolute values of eigenvalues of the dilation matrix M.
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Proposition 3 . Given 1 < p, ¢ < o0 and k > s > 0. Assume that a finite subset
® = {¢1,...,0n} of L satisfies

(a) ® has L2-stable shifts,

(b) ® is M-refinable,

(c) ® satisfies the Strang-Fiz condition of order k.

Then we have By, (M) C By (®).

Proof. We shall prove for any f € BS (M)

(S OE2(F)) < Ol llzs,00

=0

where o} is given in (10) associated with ®. We choose a function x in C°(R") such that
J Ix(u)|du =1 and supp x C {u € R": |u| < r/2k} where r is the positive number given
in (7). We write xi(u) = m'x(M'), h(z)= [(f(z)-L5f(2))x:(u)du and g = Pihy—hy
where P, is given in (9) associated with ®. Then we have for 1 < p < o0,

If = Piflle < If = hullp + llgtllp + || PR = Pifllp < ClIf = hallp + |lgullp = CL + L.

Obviously we have :
L<C sup ||ALfl,-
k|Mu|<r/2
We shall give an estimate of I, by (1):
L=(Y [ la@Pde)?=(Y [ | la-Mv)pda)s. (17)
Qe ’Q vegn /M~'T

Let g, be the (k — 1)-th Taylor polynomial of k; about z € R™ and let r, be the corre-
sponding remainder. Since ® satisfies the Strang-Fix condition of order k, we see from
Lemma 1

(2 = M%) = Pry_pgesy(z — M) = ml f K(M'z, M'y)r,_pr-u,(y — M~'v)dy

where K(z,9) = T, ¥, ezn 65( — 1) (y — v).
To estimate I, we use

1k
Pont—ty(y — M) = /0 2

ﬂlﬁﬂhz(z +t(y —z) — M) —t)* Yy — z)Pdt,
1Bl=k " .

and

k
Fr@)l<C, (/Iu|<r/2k |f(z — eM™u)[Pdu)?

e=1

< Czk:(ml

e=1

— u)[Pdu)/? < OmY/? — w)Pdu) VP,
>/|M'ul<r=/2klf(x wPdu)? < Cm (-/|M1u|<r/2 |f(z = u)fPdu)



Hence we get an estimate:

( Z Irz-M"ly(y - M-ly)lp)l/P

VELP .
< 0 T (TI0n(e +Hy - 2) - MP)o(1— /e - y
Bi=k ¥ -

' ! Y — My NP NP1 — 1YL — il
C/" |1§=:k(2v:m /IM‘uI<r/2lf(m+t(y z) = M~ —u)Pdu)?(1 - )"z - y[*dt

1
s C/o ml/P(; '/M"’(T+v) |f(z+t(y — o) +w)Pdu) /(1 — ) o — y|*dt

1 |
< C /0 m'?||f||o(1 = )z — yl¥dt < Clz — y*m"?|| |},

IA

Hence, since & C L, we get an estimate of I in (17):
I, < Om( fM_‘T 2 / K (M'z, M'y)|Ira-r-1(y — M7'v)|dy)Pde)*/?
< COmi( /M_,T{/ K (M2, MY)|(S Iracse-s(y = M) P)Vrdypda)
omt o fllp([ ([ 1K(M', My)|z - yldy)do)/e
Ol ([ 1K (@)l IM (@ - y) 1 dy)da)/s
< ClflIA™([([ 1K@ ylle - yldy)Paz)? < ClifllpAs™.

IA

IA

Now we combine the estimates of I; and I, to write

f=Pfllo <ChL+L<C( sup ||ALf|l, + 2% |Flla)-

k| Mtul<r/2
This implies that -
(g(%’#’ (DY < ClIfl| By
This completes the proof of Proposition 3.

A following theorem is an immediate consequence of Proposition 2 and Proposition 3.
This theorem is a generalization of results in [3], [4] and {12].

Theorem 3 . Given 1 < p, g L ocoand k > s > 0. Assume that a finite subset
® = {¢1,...,0n} of LY satisfies

(a) @ has L-stable shifts,

(b) ® is M-refinable,

(c) there ezists a positive number so with 8o > s such that sup;sq Ag°losck~2¢;(-, 1), <
oo forallj=1,...,N,

(d) @ satisfies the Strang-Fiz condition of order k.
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Then we have By (M) = B3 (®) with equivalent norms
1fllazgon ~ 1l 000

where the norms ||f||ss () and ||f]| Bio(a) OTe given in (6) and (11) respectively, and A
is the least value of absolute values of eigenvalues of the dilation matriz M.

Remark 3. When {¢;})_; have compact supports, we see that the condition (c) in
Theorem 3 can be rephrased as :

(c)’ There exists a positive number sy > s such that SUP;>g A"°|]osc§“1¢j(-, Dllp < 00,
(that is, ¢; € B2, (M) if 59 < k) forallj=1,...,N.

We say that a function on R” is k-regular if it is of class C* and rapidly decreasing in
the sense that |0°f(z)] < Cn(1+|z])™M foral N =0, 1, 2, ... and all |a| < k. Any
k-regular function belongs to £ for any N > 0 and any k-regular function f satisfies the
condition (c) in Theorem 3 : sup;5q Aff|oscE™1f(:, 1), < o0.

Corollary 1 . Suppose that a dilation matriz is of the form M = Aold with Ao > 1. Let
1<p, g< o0 and k > s> 0. Assume that a finite subset @ = {¢1,... ,dn} of k-regular
functions on R™ satisfies: .

(a) @ has L2-stable shifts,

(b) @ is M-refinable.

Then there ezits a set {15 }E“l’ W1 of k-regular wavelets associated with ®, and we
have equivalence of norms, if one of them ezit, for wavelet expansion given in (15) with
the usual modification for ¢ = 0o

@ Illzsy ),
~ (11) ||f”3"‘0¢)1

N m-1
~  (iii) Z llajolle + (Z(Ao AR B S [ A TELS

=0 j=1 e=1

Proof. From [15, Theorem 5.15], for a finite subset ® of k- regular functions there
exists an associated set of k-regular wavelets for a general dilation matrix M if m >
(n+1)/2. Since a finite subset of k-regular functions satisfies the Strang-Fix condition
of order k + 1 in the case M = M\¢Id (See [9, Theorem 4 in 2.6] and Lemma 1), we have
the equivalence of (i) and (ii) from Theorem 3. The equivalence of (ii) and (iii) can be
proved by Theorem 2.

We define the tensor product B-spline by M = [I%; Mk(zi), = = (z1,... ,%Tn) €
R", k = 1,2,.... where M,(t) is the k-th order central B-spline, that is, M,,(t)
sin(t/2) \
(=5 2 )

I

Let us denote by {e‘}?, the set of unit vectors in R*. We put e"*! =

r.€ and X = {z',... 2%} with z' = €!,... 0% = el, g0t = ¢?,.., ghth =
e?, ... ghttdntl = gntl | gpdo — el where dy = dy + - - - + dny1. We denote the box
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spline B(z, X) corresponding to X given by B(z, X) = (27)~/2 52, li;je p In the
case that the self-affine lattice tiling is the net of closed cubes generated by T = [0,1]"
and the dilation matrix is 2/d, the k-th order tensor product B-spline M satisfies the
conditions of Theorem 3, particularly, M; € BE1*1/P(R™) and M satisfies the Strang-
Fix condition of order k. The above box spline B(z, X) also satisfies the conditions of
Theorem 3 replacing the above k by k¥ = min{d; +d;: ¢,j=1,...,n+1, i# j}. Hence
we get results of [3] and [12]. '

Corollary 2 . Suppose that the self-affine lattice tiling is the net Il = {T + v},ezn of
closed cubes generated by T = [0,1]" and the dilation matriz is 2Id. Then Theorem 3
remains true for the tensor product B-spline ® = {M,} or the boz spline ® = {B(z, X)}.

A following proposition is a pointwise version of Corollary 1 in Theorem 3.

Proposition 4 . Suppose that a dilation matriz is of the form M = XOI d with \p > 1
and k > s > 0. Assume that a finite subset ® = {¢y,... ,¢dn} of k-regular functions on
R™ satisfies:
(a) ® has L2-stable shifts,
(b) ® is M-refinable.
Then for x € R™ and a bounded function f on R™ , following properties are equivalent:
@) fecC(z),
(i) 1f@)-PfWI<COG +lz—y)* 120

where B,f is given in (9).
Proof. This can be proved by the same way as in Proposition 1. See [1, Theorem 3].

Corollary. Suppose that the conditions in Proposition 4 are satisfied. Let s > &' > 0.

(a) If f € C*(z), we have

IRfWI<SCOF +1e—ul)* 1=0,1,23,...

where R, f is given in (12).

If it holds ,

[Rf @) SO+ Xle —y)” 1=0,1,2,3,...,

then f € C*(z). ’

(b) If f € C*(z), we have

B0 < Ox P+ Nz - v

forj=1,...,N,1=1,23,...,e=1,... ,m—1 and any v € Z" where b;(v) is given in
(16).

If it holds
15 ()| < CAE('+%)I(1+|A€,:B—-V|)" for j=1,...,N, 1=1,2,3,... and e=1,... ,m-1
and any v € Z*, then f € C*(x).

(c) For {a;i(v)} given in (13), if it holds

lap()| S CXN*A+ Nz —v))* j=1,...,N, I>0and veZ",

then f € C*(x).
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5 Scaling exponents

For 1 < p,q < oo we define ayy(f) = sup{s > 0: f € B:, (M)} for functions f € LP(R™).
If there is not a positive number s with f € Bg (M), "then we define apg(f) = 0. We
remark that a,,(f) > 0 for any f € LP(R") in the case 1 < p < oo. In the same manner
we define a,(f, ) = sup{s > 0: f € T3 (z)} for £ € R and bounded functions f on R".

We putt p(f) = agoo( 1), alf) = ea(f), (£, 7) = Gpen(£, 3) 80d a(F, 3) = s, 2).
We can prove a following proposition by the embedding theorem ( See [11]).

Proposition 5 .

(1) ap(f) = apm(f) for 1<p,n< o,
(i) a(f) > ap(f) = 2 2 ag(f) — 2 for 1 < g < p < 00 when M = A4,

(ili) op(f,z) = ap,,(f,:c) forl <p,77 < o0,
(iv) o(f) < off,2) £ ap(f,z) < ay(f, z) for1<g<p< oo

For 1 < p < oo we have by Theorem 1 and Theorem B

() = — 8 LelD)

log Ao
if the right hand side of the above equality is less than k + 1 where

A(f) = hmsupllosc"f( l)ll”‘—hmsup sup [|AGFFI
=00 (k+1)|Miul<r/2

and furthermore when M = \yId with A\ > 1
Ap(f) = limsup||f — S,f|[3/* = limsup || fi]|%/".
l-00 =00

For 1 < p < oo we have by the corollary of Theorem 1

1 )
a(f,z) = “%J;_x)

if the right hand side of the above equality is less than & + 1 where

A(f,z) = liﬁ suposch f(z,1)"/! = limsup  sup | AR £ (y) [Pdy) /7.

=0 (k+1)|M‘ul<r/2(lQl(m)l Qi(=)

Furthermore when M = A\gId with Ay > 1, we have by Proposition 1 and its corollary

log |f(y) = Sif )|
af,z) = Agif,‘},_‘jlf_,o log(A\g* + |z — y])

and, if a(f) >0 |fi(y)]
log | fi(y
o(f,z) = Ao_}i_lﬁ_ﬁ_,o log(A\g* + |z — yl)

where S;f and f; are given for Littlewood-Paley decompostion in (8).
We can prove a following proposition by Theorem 2, Theorem 3, Proposition 4 and
its corollary.




Proposition 6 . (i). Assume that a finite subset & = {¢1,... ,dn} of L satisfies the
conditions (a), (b), (c) and (d) of Theorem 3.
Then for f € LP(R™) (1 < p < 00) we have

oy(f) = — 284S _ logm _ logpy(f)
? log Ao plog Ag log Ao

if the second and third parts of the above equality are less than min(k, so) where
Ay(f) = limsup of ()" = limsup || Ri(f)|};"
=00 =00

and
polf) = hmsupz lagll¥* = infimsup 3° el

-0 J"’l l—00 _7-—-1

and {a;} is given by (13) and inf is taken over all admissible representations f(z) =
Y, Y20 Suezn ci(v)¢(M'c — v) as in Theorem 2.
(ii). Furthermore when m > (n+ 1)/2, we have

logm _ log p,(f)

a(f) = (1/p- 1/2)10g % Togh

if the right hand side of the above equality is less than min(k, so) where

N m-1

Ay(f) =lmsup 3 3 b A

=R j=]1 e=1

and {b5,} is given in (16) for the wavelet ezpansion (15) associated with ®.
(111) Suppose that conditions in Proposition 4 hold for a bounded function f. Then
we have

log |f(y) — Pf(y)|
o(f,z) = A-}Eﬁiﬁ,f_,o log(Ag' + |z — o)

if the right hand side of the above equality is less than k and,

log |R.f(y)|
a(f,z) = 2
(£,2) A5 He—yl-0 log(A\g* + I:v =)
= liminf  inf log )‘0 I ()l < liminf inof log a;(v)|

A5t He-agt-0 1 1og(Ag! + 12— Ag'W]) T agttie-aghiso 1 log(Ag' + |z — Ag'])

if a(f) > 0 and the right hand side of the above inequality is less than k where P,f, R, f
and {a;i} are given in (9), (12) and (13) respectively.

Let IT = {T + v}, ez~ be a self-affine lattice tiling with a dilation matrix M and a set
T of digits, and II; denote the subdivision {M (T + v)},cz» of R" for a nonnegative
integer I. We write Q = M~ (T +vg)for Q e II,. Let IL(T) ={Q €1,;: Q c T}
and II(T) = URIL(T). We put o = {7, '+ ,Ym}. Then from (1) for Q € IL(T),
vg is of a form vg = M* 1y, + -+ 7, Wi, »% € Do and let Mgy = My — vg
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and pg = p, ---py, for I > 0 where uy, yo, . .. , thm are real or complex numbers with
0<|w|<1,i=1,...,m. Forl =0 we put My = Id and pr = 1.

From now we suppose that a dilation matrix M is of a form M = A¢ld with Ay > 1
and we consider a bounded function f which is given by a series

FW)= Y ued(Mgy), yeR" (18)
QeI(T)

where a function ¢ is bounded and zero outside T°. We remark that a(f) < a(¢). Let

' log I;U'QI . i IOg lﬂQl
= lim inf =k of
70(2) gt Ki(2)3Q log(Ag' + |z — Ag'ugl) i K‘(’)QQ log A"

where K;(z) = {Q € IL(T) : B(z, ') N Q # 0} and B(z, A;') is a ball centered at
with a radius A;'. When z € Q = N2, Ugen, () @°(the interior of Q) there exits a unique
sequence {Qi;}1>0 such that Q;, € II; (T) and z € Q7,. Then we have for z €

1
7_0 (m) ].lm nf Og )UQZ .t

I=oo  log A
Let for z € Q | |
— g NQJ z
(z) = lim glf —_log Ao
where A(z) = dist(z,0Q;;) is the distance from z to the boundary 8Q;, of @, .. We
remark for z € Q, 19(z) = 11 (2) if sup>p —~ A=) < o
A (2)

A following theorem may be proved by the same way as in [11].

Theorem 4 . Let f and ¢ be bounded functions given in (18). Then we have

(©) a(f,) 2 min(a(¢),m(a) forz €T,

(ii) a(f, z) > min;(a(¢, %), 11(z)) for z € Q with sup;s, A ((3:)

141

where O, = MY (T°+v;), i €Ty, i=1,...,m and a(¢, ) =sup{s > 0: ¢ € C*()}
and C*(S);) is defined as the Besov space B;m(sz,-) on ;.

(iii) Suppose that € C*(;), i =1,... ,m and there ezit a positive number sy and
Yo € T° such that ‘

sup sup |fiy)]

20 v (' +ly—wl)o
Then 1o(z) > a(f,z) forz € T. '

Corollary. Let ¢ be a bounded function on R™ such that ¢ € C=(2;),j =1,...,m and
¢ = 0 outside T°. Consider a bounded function f given by (18) satisfying the condition
(iii) in Theorem 4. Then we have

() 7o(z) 2 of,2) > min(a(e), o(z)), z€T,
(ii) for z in Q with sup;s, Auz) < oo, offz)="7(z)=mn(z).
= Aupa(z)

Examples. We consider a self-affine tiling I = {7+ v},¢z such that a tile T = [0, 1] and
a dilation M = 2Id on R.
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(a) We consider the Takagi function such that

[o <]

f@ =Y ¥ Wé(Moz), VaeR

=0 QeII(T)

where 0 < 4 < 1 and ¢ is a bounded function such that ¢(z) =z (0 < z < ), ¢(z) =

l1-z (3 <z <1), ¢(z) =0 (otherwise). Let 7 = log u . Then from the corollary of

. log2-1
Theorem 4, if 7 <1, 7 = o(f,z) for each z € T.. |
(b) We consider the Weierstrass function f(z) = Y72, u'é(2'z) with 0 < p < 1 and

#(z) = sin27z (z € R). The proof of Theorem 4 can be also applied to this function
case. Then we have

T=0a(f,z), VreR.

log
log2-1
(c) We consider Lévy’s function

where the constant 7 = is given in the part (a) above.

o0

f@)=Y" 5 27'¢(Mpz), VzeR

=0 QeI (T)

where ¢(z) = z —-;— (0 <z <1), ¢ =0 (otherwise). Then we can see that

Bulz)

1 =71(z) = o(f,z) for a point z in Q with sup;g —— A, (m)
1+1
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