<table>
<thead>
<tr>
<th>Title</th>
<th>ORBIT SPACES OF HYPERSPACES (General and Geometric Topology and Geometric Group Theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>ANTONYAN, SERGEY A.</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2006), 1492: 120-121</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2006-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/58263</td>
</tr>
<tr>
<td>Right</td>
<td>Type</td>
</tr>
<tr>
<td>Departmental Bulletin Paper</td>
<td>Textversion publisher</td>
</tr>
</tbody>
</table>

Kyoto University
ORBIT SPACES OF HYPERSPACES

SERGEY A. ANTONYAN

A Peano continuum is a connected and locally connected, compact, metrizable space that contains more than one point. By the Hilbert cube we mean the infinite countable power $[0,1]^\infty$ of the closed unit interval. A Hilbert cube manifold is a separable metrizable space that admits an open cover by sets homeomorphic to open subsets of the Hilbert cube.

Let G be a compact Lie group acting (continuously) on a Peano continuum X. We denote by $\exp X$ the G-space of all nonempty compact subsets of X endowed with the Hausdorff metric topology and the induced action of G.

Here we present the following results and some related open problems.

Theorem 0.1. Let G be a compact Lie group acting nontransitively on the Peano continuum X. Then the orbit space $(\exp X)/G$ is homeomorphic to the Hilbert cube.

Theorem 0.2. Let G be a compact Lie group acting on the Peano continuum X, and let $\exp_0 X = (\exp X) \setminus \{X\}$. Then the orbit space $(\exp_0 X)/G$ is a Hilbert cube manifold.

Conjecture 0.3. Let G be a compact Lie group acting transitively on the Peano continuum X. Then the orbit space $(\exp X)/G$ is not homeomorphic to the Hilbert cube.

Recall that for an integer $n \geq 2$, the Banach-Mazur compactum $BM(n)$ is the set of isometry classes of n-dimensional Banach spaces topologized by the famous Banach-Mazur metric.

Corollary 0.4. Let $O(n)$ denote the orthogonal group and S^{n-1} the unit sphere of \mathbb{R}^n. Then for all $n \geq 2$, the orbit space $(\exp S^{n-1})/O(n)$ is homeomorphic to the Banach-Mazur compactum $BM(n)$.

Below we assume that $n \geq 2$ is an integer. Let B^n be the closed unit ball of \mathbb{R}^n and let $C(B^n)$ denote the subspace of $\exp B^n$ consisting of all nonempty compact convex subsets $A \subset B^n$ such that $A \cap S^{n-1} \neq \emptyset$.

Theorem 0.5. (1) $C(B^n)$ is homeomorphic to the Hilbert cube.

(2) $C(B^n)$ is an $O(n)$-AR.

(3) The orbit space $C(B^n)/O(n)$ is homeomorphic to the Banach-Mazur compactum $BM(n)$.

Let $SO(n)$ be the special orthogonal group. Consider the $SO(n)$-invariant subset $\text{Sym} S^{n-1} \subset \exp S^{n-1}$ consisting of all the sets $A \in \exp S^{n-1}$ such that A is symmetric with respect to an $(n-1)$-dimensional linear subspace L_A of \mathbb{R}^n. It is an intriguing problem to understand the topological structure of $\text{Sym} S^{n-1}$. In particular, we ask the following:
Question 0.6. (1) Is $\text{Sym} \mathbb{S}^{n-1}$ homeomorphic to the Hilbert cube?
(2) Is $\text{Sym} \mathbb{S}^{n-1}$ an $SO(n)$-AR? (an AR?)
(3) What is the topological structure of the orbit space $(\text{Sym} \mathbb{S}^{n-1})/SO(n)$?

Of course, similar questions can be asked about the hyperspaces of all the sets $A \in C(\mathbb{B}^n)$ (respectively, $A \in \exp \mathbb{B}^n$) such that A is symmetric with respect to some $(n-1)$-dimensional linear subspace L_A of \mathbb{R}^n.

DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE CIENCIAS, UNIVERSIDAD NACIONAL AUTO'NOMA DE MÉXICO, MÉXICO D.F. 04510, MÉXICO
E-mail address: antonyan@servidor.unam.mx