Rudin's Dowker space is base-normal: a direct proof

Author(s)
YAMAZAKI, Kaori

Citation
数理解析研究所講究録 2006, 1492: 94-99

Issue Date
2006-05

URL
http://hdl.handle.net/2433/58266

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
Rudin's Dowker space is base-normal
— a direct proof —

筑波大学・大学院数理物質科学研究科数学専攻
Institute of Mathematics, University of Tsukuba

山崎 薫里 (Kaori YAMAZAKI)

The theorem ‘Rudin’s Dowker space is base-normal’ was proved in [7] by using some results of K. P. Hart in [3]. In this report, we give a direct proof to this theorem.

Throughout this paper, all spaces are assumed to be T_1 topological spaces. The symbol \mathbb{N} denotes the set of all natural numbers. As usual, a cardinal is the initial ordinal and an ordinal is the set of smaller ordinals. The cardinality of a set X is denoted by $|X|$. For a space X, $w(X)$ stands for the weight of X. For a space X and a subspace A of X, the closure of A in X is denoted by \overline{A}.

Motivated by base-paracompactness of J. E. Porter [4], we introduced in [6] the notion of base-normality. Recall that a space X is said to be base-normal if there is a base \mathcal{B} for X with $|\mathcal{B}| = w(X)$ satisfying that every pair of disjoint closed subsets F_0, F_1 of X admits a locally finite cover \mathcal{B}' of X by members of \mathcal{B} such that, for every $B \in \mathcal{B}'$, either $\overline{B} \cap F_0 = \emptyset$ or $\overline{B} \cap F_1 = \emptyset$ holds. A space X is said to be base-collectionwise normal if there is a base \mathcal{B} for X with $|\mathcal{B}| = w(X)$ satisfying that every discrete closed collection $\{F_\alpha : \alpha \in \Omega\}$ of X admits a locally finite cover \mathcal{B}' of X by members of \mathcal{B} such that, for every $B \in \mathcal{B}'$, $|\{\alpha \in \Omega : \overline{B} \cap F_\alpha \neq \emptyset\}| \leq 1$. Note that every base-normal space is normal, and G. Gruenhage constructed in [2] a ZFC example of a countably compact zero-dimensional LOTS which is not base-normal.

Recall that a Dowker space is a normal space X for which $X \times [0,1]$ is not normal. In [6] we pointed out that a base-normal Dowker space can be constructed by using a technique of Porter in [4]. Indeed, let Y be any Dowker space. Then, the direct sum $Y \oplus (\kappa + 1)$, where κ is the cardinality of all open subsets of Y and $\kappa + 1$ has the usual order topology, is a base-normal Dowker space (although Y itself is not necessarily assumed to be base-normal) ([6]). Thus, it seems to be an interesting problem to find base-normal spaces among Dowker spaces which have been obtained so far. In fact, on the 3rd Japan-Mexico Joint Meeting on Topology and its Applications held in December, 2004, a participant asked a question if Rudin's Dowker space is base-normal.
or not, and in [7] this question is affirmatively answered.

Let us first recall the construction of Rudin's Dowker space in [5]. The symbol \(cf(\lambda) \) stands for the cofinality of \(\lambda \). Let

\[
F = \{ f : \mathbb{N} \rightarrow \omega : f(n) \leq \omega_n \text{ for all } n \in \mathbb{N} \}
\]

and

\[
X = \{ f \in F : \exists i \in \mathbb{N} \text{ such that } \omega < cf(f(n)) < \omega_i \text{ for all } n \in \mathbb{N} \}.
\]

Let \(f, g \in F \). Then, we define \(f < g \) if \(f(n) < g(n) \) for every \(n \in \mathbb{N} \), and define \(f \leq g \) if \(f(n) \leq g(n) \) for every \(n \in \mathbb{N} \). Moreover, define

\[
U_{f,g} = \{ h \in X : f < h \leq g \}.
\]

The set \(\{ U_{f,g} : f,g \in F \} \) is a base for a topology of \(X \). The space \(X \) is Rudin's Dowker space. We set \(\mathcal{B} = \{ U_{f,g} : f,g \in F \} \). Note that \(w(X) = \omega_\omega^\omega = |\mathcal{B}| \).

For \(U \subset F \), define a map \(t_U \in F \) by \(t_U(n) = \sup\{ f(n) : f \in U \} \) for each \(n \in \mathbb{N} \). For undefined terminology, see [1].

To prove base-normality of Rudin's Dowker space, we give a more strict result as follows.

Theorem. Let \(X \) be Rudin's Dowker space, and \(\mathcal{B} \) the base for \(X \) defined as above. For every discrete closed collection \(\{ F_\alpha : \alpha \in \Omega \} \) of \(X \), there is a disjoint cover \(\mathcal{B}' \) of \(X \) by members of \(\mathcal{B} \) satisfying that, for every \(B \in \mathcal{B}' \), \(|\{ \alpha \in \Omega : B \cap F_\alpha \neq \emptyset \}| \leq 1 \).

This theorem was proved in [7, Theorem 3.4] by using results in [3]. As was announced in the introduction, we directly prove this.

Proof of Theorem. First show the following statements are valid.

(i) \(X \in \mathcal{B} \).

(ii) If \(U(1), U(2) \in \mathcal{B} \), then \(U(1) \cap U(2) \in \mathcal{B} \).

(iii) If \(U(i) \in \mathcal{B}, i \in \mathbb{N} \), then \(\bigcap_{i \in \mathbb{N}} U(i) \in \mathcal{B} \).

Indeed, (i) is easy to see and (ii) follows from (i) and (iii), so we only give a proof of (iii). To prove (iii), let \(U(i) \in \mathcal{B}, i \in \mathbb{N} \). Then, each \(U(i) \) is expressed as \(U(i) = U_{f_i,g_i} \) for some \(f_i, g_i \in F \). Define \(f, g \in F \) by \(f(n) = \sup_{i \in \mathbb{N}} f_i(n), n \in \mathbb{N} \), and \(g(n) = \min_{i \in \mathbb{N}} g_i(n), n \in \mathbb{N} \). Notice that \(f \notin X \). Hence, we have \(\bigcap_{i \in \mathbb{N}} U_{f_i,g_i} = U_{f,g} \). Thus, \(\bigcap_{i \in \mathbb{N}} U(i) \in \mathcal{B} \).

Next, we show the following:
Claim. For every disjoint closed subsets F_0, F_1 of X, there is a disjoint cover B' of X by members of B such that, for every $B \in B'$, either $B \cap F_0 = \emptyset$ or $B \cap F_1 = \emptyset$ holds.

To show this, let F_0 and F_1 be disjoint closed subsets of X. The proof in [5] makes for each countable ordinal α a disjoint open collection \mathcal{J}_α of X which covers $F_0 \cup F_1$. We modify the proof in [5] so as to make disjoint open covers \mathcal{J}_α of X (consisting of members of B).

Inductively, we construct disjoint open covers \mathcal{J}_α of X, $0 \leq \alpha < \omega_1$, with $\mathcal{J}_\alpha \subset B$ having the following property:

For every $\beta < \alpha$ and every $V \in \mathcal{J}_\alpha$, there exists $U \in \mathcal{J}_\beta$ such that

1. $V \subset U$,
2. if $V \cap F_0 \neq \emptyset \neq V \cap F_1$, then $t_V \neq t_U$,
3. if $U \cap F_0 = \emptyset$ or $U \cap F_1 = \emptyset$, then $U = V$.

First, set $\mathcal{J}_0 = \{X\}$. By (i), it follows that $X \in B$, hence $\mathcal{J}_0 \subset B$.

Next, assume that \mathcal{J}_β has been constructed for every $\beta < \alpha$.

Case 1. α is limit. For every $f \in X$ and every $\beta < \alpha$, choose a unique $U(f)_{\beta}$ such that $f \in U(f)_{\beta} \in \mathcal{J}_\beta$. Define

$$U_f = \bigcap_{\beta < \alpha} U(f)_{\beta} \text{ for every } f \in X, \text{ and } \mathcal{J}_\alpha = \{U_f : f \in X\}.$$

Then, by (iii), it follows that $\mathcal{J}_\alpha \subset B$. Moreover, \mathcal{J}_α is a disjoint cover of X because each \mathcal{J}_β is a disjoint cover of X. Fix $\beta < \alpha$. We shall show that U_f and $U(f)_{\beta}$ satisfying conditions (1), (2) and (3) above. Since $U_f \subset U(f)_{\beta}$, (1) holds. To show (2), assume $U_f \cap F_0 \neq \emptyset \neq U_f \cap F_1$. Then, $U(f)_{\beta+1} \cap F_0 \neq \emptyset \neq U(f)_{\beta+1} \cap F_1$. Hence, it follows from the assumption of induction that $t_{U(f)_{\beta+1}} \neq t_{U(f)_{\beta}}$. Since $t_{U_f} \leq t_{U(f)_{\beta+1}} \leq t_{U(f)_{\beta}}$, we have $t_{U_f} < t_{U(f)_{\beta}}$, so (2) holds. To show (3), assume either $U(f)_{\beta} \cap F_0 = \emptyset$ or $U(f)_{\beta} \cap F_1 = \emptyset$ holds. Then, since $U(f)_{\beta} = U(f)_{\beta'}$ for every β' with $\beta < \beta' < \alpha$, we have $U(f)_{\beta} = U(f)_{\beta'}$. It follows that $U_f = U(f)_{\beta}$. So, (3) holds.

Case 2. $\alpha = \beta + 1$. Fix $U \in \mathcal{J}_\beta$. We shall construct a disjoint cover $\mathcal{J}(U)$ of U with $\mathcal{J}(U) \subset B$ so as to have the following property:

For every $V \in \mathcal{J}(U)$,

1' if $V \cap F_0 \neq \emptyset \neq V \cap F_1$, then $t_V \neq t_U$,
2' if $U \cap F_0 = \emptyset$ or $U \cap F_1 = \emptyset$, then $U = V$.

Case A. $U \cap F_0 = \emptyset$ or $U \cap F_1 = \emptyset$. Define

$$\mathcal{J}(U) = \{U\}.$$

Then, $\mathcal{J}(U) \subset B$, and U satisfies conditions (2)' and (3)'.

Case B. \(U \cap F_0 \neq \emptyset \neq U \cap F_1 \), and there exists \(i \in \mathbb{N} \) such that \(cf(t_U(i)) \leq \omega \). Then, we select \(i_U \) so as to satisfy \(cf(t_U(i_U)) \leq \omega \). Then, as in [5], we can show that \(cf(t_U(i_U)) = \omega \). Choose an increasing sequence \(\{ \lambda_U(n) : n \in \mathbb{N} \} \) of terms of \(t_U(i_U) \) cofinal with \(t_U(i_U) \). Set

\[
V(U, n) = \left\{ f \in U : \lambda_U(n-1) < f(i_U) \leq \lambda_U(n) \right\}
\]

for each \(n \in \mathbb{N} \). Define
\[
\mathcal{J}(U) = \{ V(U, n) : n \in \mathbb{N} \}.
\]

Note that \(V(U, n) = U_{f, g} \cap U \), where \(f, g \in F \) is defined by \(f(i_U) = \lambda_U(n-1) \) and \(f(n) = 0 \) if \(n \neq i_U \), and \(g(i_U) = \lambda_U(n) \) and \(g(n) = \omega_n \) if \(n \neq i_U \). Since \(U_{f, g}, U \in B \), it follows from (ii) that \(V(U, n) \in B \). Thus, \(\mathcal{J}(U) \subset B \). For every \(M \subset \mathbb{N} \), set
\[
V(U, M, f_U) = \left\{ h \in U : h(n) \leq f_U(n) \text{ for every } n \in M, \text{ and } h(n) > f_U(n) \text{ for every } n \in \mathbb{N} - M \right\}
\]

Define
\[
\mathcal{J}(U) = \{ V(U, M, f_U) : M \subset \mathbb{N} \}.
\]

Likewise the proof of Case B, by (ii), we can show that \(V(U, M, f_U) \in B \) for each \(M \subset \mathbb{N} \). Thus, \(\mathcal{J}(U) \subset B \). Also, we can show that \(\mathcal{J}(U) \) is a disjoint cover of \(U \). Finally, it is not difficult to show \(V(U, M, f_U) \) and \(U \) satisfy conditions \((2)' \) and \((3)' \).

Case C. \(U \cap F_0 \neq \emptyset \neq U \cap F_1 \), and \(cf(t_U(n)) > \omega \) for every \(n \in \mathbb{N} \). By the quite similar proof to those of [5, Lemmas 5 and 6], we can select \(f_U \in F \) such that \(f_U < t_U \) and such that either \(\{ h \in U : f_U < h \} \cap F_0 = \emptyset \) or \(\{ h \in U : f_U < h \} \cap F_1 = \emptyset \) holds. For every \(M \subset \mathbb{N} \), set
\[
V(U, M, f_U) = \left\{ h \in U : h(n) \leq f_U(n) \text{ for every } n \in M, \text{ and } h(n) > f_U(n) \text{ for every } n \in \mathbb{N} - M \right\}
\]

Define
\[
\mathcal{J}(U) = \{ V(U, M, f_U) : M \subset \mathbb{N} \}.
\]

Likewise the proof of Case B, by (ii), we can show that \(V(U, M, f_U) \in B \) for each \(M \subset \mathbb{N} \). Thus, \(\mathcal{J}(U) \subset B \). Also, we can show that \(\mathcal{J}(U) \) is a disjoint cover of \(U \). Finally, it is not difficult to show \(V(U, M, f_U) \) and \(U \) satisfy conditions \((2)' \) and \((3)' \).

Set
\[
\mathcal{J}_\alpha = \bigcup_{U \in \mathcal{J}_\beta} \mathcal{J}(U).
\]

By using conditions \((2)' \) and \((3)' \) above and the assumption of induction, we can show that \(\mathcal{J}_\alpha \), \(0 \leq \alpha < \omega_1 \), have the required property.

For every \(f \in X \) and every \(\alpha \) with \(0 \leq \alpha < \omega_1 \), there exists a unique \(U(f)_\alpha \in \mathcal{J}_\alpha \) such that \(f \in U(f)_\alpha \). Let \(\beta \) and \(\alpha \) with \(\beta < \alpha < \omega_1 \). Then, we have \(U(f)_\alpha \subset U(f)_\beta \), hence \(t_{U(f)_\alpha} \leq t_{U(f)_\beta} \). If \(U(f)_\alpha \cap F_0 \neq \emptyset \neq U(f)_\alpha \cap F_1 \),
then \(t_{U(f)_{\alpha}}(n) < t_{U(f)_{\beta}}(n) \) for some \(n \in \mathbb{N} \). As in [5], for every \(n \in \mathbb{N} \) one can move backward in \(\omega_n \) only finitely many steps. Hence, there exists \(\alpha(f) < \omega_1 \) such that
\[
U(f)_{\alpha(f)} \cap F_0 = \emptyset \quad \text{or} \quad U(f)_{\alpha(f)} \cap F_1 = \emptyset.
\]
By (3), if \(\alpha(f) < \beta < \omega_1 \) then \(U(f)_{\beta} = U(f)_{\alpha(f)} \). Clearly, \(\{U(f)_{\alpha(f)} : f \in X \} \) is a cover of \(X \) consisting of elements of \(B \). To prove \(\{U(f)_{\alpha(f)} : f \in X \} \) is pairwise disjoint, assume \(U(f)_{\alpha(f)} \cap U(g)_{\alpha(g)} \neq \emptyset \). Take \(\beta < \omega_1 \) so as to satisfy \(\alpha(f) < \beta \) and \(\alpha(g) < \beta \). It follows from \(U(f)_{\beta} = U(f)_{\alpha(f)} \) and \(U(g)_{\beta} = U(g)_{\alpha(g)} \) that \(U(f)_{\beta} \cap U(g)_{\beta} \neq \emptyset \). Since \(J_\beta \) is pairwise disjoint, we have \(U(f)_{\beta} = U(g)_{\beta} \), hence \(U(f)_{\alpha(f)} = U(g)_{\alpha(g)} \). This shows that \(\{U(f)_{\alpha(f)} : f \in X \} \) is pairwise disjoint, and this is the required \(B' \) in Claim.

Finally, to complete the proof, let \(\{F_\alpha : \alpha \in \Omega \} \) be a discrete closed collection of \(X \). Since \(X \) is collectionwise normal, there is a discrete open collection \(\{U_\alpha : \alpha \in \Omega \} \) of \(X \) such that \(F_\alpha \subset U_\alpha \) for each \(\alpha \in \Omega \). Due to the fact shown above, for every \(\alpha \in \Omega \), there is a disjoint cover \(B_\alpha \) of \(X \) by members of \(B \) such that, for every \(B \in B_\alpha \), either \(B \cap F_\alpha = \emptyset \) or \(B \subset U_\alpha \). For every \(\alpha \in \Omega \), define
\[
B_\alpha^* = \{B \in B_\alpha : B \subset U_\alpha \}.
\]
Note that \(F_\alpha \subset \bigcup B_\alpha^* \subset U_\alpha \) for every \(\alpha \in \Omega \). Set
\[
B^* = \bigcup_{\alpha \in \Omega} B_\alpha^*.
\]
Since \(\bigcup B_\alpha^* \) is clopen for each \(\alpha \in \Omega \), and \(\{ \bigcup B_\alpha^* : \alpha \in \Omega \} \) is discrete in \(X \), it follows that \(B^* \) is clopen in \(X \). Hence, by the fact shown in the above, there is a disjoint cover \(C \) of \(X \) by members of \(B \) such that, for each \(C \in C \), either \(C \cap B^* = \emptyset \) or \(C \subset B^* \) holds. Then, \(\{C \in C : C \cap B^* = \emptyset \} \cup \bigcup_{\alpha \in \Omega} B_\alpha^* \) is the required disjoint cover of \(X \) by members of \(B \). This completes the proof. □

The notion of base-normality is motivated by the well-known fact that \(X \) is normal if and only if every pair of disjoint closed subsets \(F_0, F_1 \) of \(X \) admits a locally finite open cover \(U \) of \(X \) such that, for every \(U \in U \), either \(\overline{U} \cap F_0 = \emptyset \) or \(\overline{U} \cap F_1 = \emptyset \) holds. On the other hand, it is easy to see that "locally finite" in the above fact can be replaced by "star-finite"; a collection \(\{U_\alpha : \alpha \in \Omega \} \) of subsets of \(X \) is said to be star-finite if \(|\{ \beta \in \Omega : \beta \cap U_\alpha = \emptyset \}\}| < \omega \) holds for every \(\alpha \in \Omega \). In order to consider a base version of this fact, we define a space \(X \) to be strongly base-normal if there is a base \(B \) for \(X \) with \(|B| = w(X) \) satisfying that every pair of disjoint closed subsets \(F_0, F_1 \) of \(X \) admits a star-finite cover \(B' \) of \(X \) by members of \(B \) such that, for every
$B \in B'$ either $\overline{B} \cap F_0 = \emptyset$ or $\overline{B} \cap F_1 = \emptyset$ holds. The Theorem in the above shows that Rudin's Dowker space possesses this property. Also, note that there is a base-normal space (in fact, a metric space) which is not strongly base-normal ([7]). Related results on strongly base-normal spaces, see [7].

References

Institute of Mathematics
University of Tsukuba
Tsukuba, Ibaraki, 305-8571
Japan
kaori@math.tsukuba.ac.jp