Dynamical properties of holomorphic maps with symmetries on projective spaces

Complex Dynamics and its Related Fields

Author(s)
Ueno, Kohei

Citation
数理解析研究所講究録 2006, 1494: 117-126

Issue Date
2006-05

URL
http://hdl.handle.net/2433/58292

Type
Departmental Bulletin Paper

Textversion
publisher
Kyoto University
Dynamical properties of holomorphic maps with symmetries on projective spaces

Kohei Ueno (上野康平)

Graduate School of Human and Environmental Studies
Kyoto University (京都大学大学人間環境学研究科)

We consider complex dynamics of a holomorphic map from \mathbb{P}^k to \mathbb{P}^k, which has symmetries associated with the symmetric group S_{k+2} acting on \mathbb{P}^k, for each $k \geq 1$. Here \mathbb{P}^k denotes the k-dimensional complex projective space. Informations about critical orbits lead us to global dynamics results: The Fatou set of each map of this family consists of attractive basins of superattracting points determined by an action of the symmetric group S_{k+2}. Furthermore each map of this family satisfies Axiom A.

1 S_{k+2}-equivariant maps

For a rational map f and a finite group G acting on \mathbb{P}^k as projective transformations, we say that f is G-equivariant if f commutes with each element of G, that is, $f \circ r = r \circ f$ for any $r \in G$. Doyle and McMullen [1] introduced a notion of G-equivariant functions on \mathbb{P}^1 to solve quintic equations. See also Ushiki [2] for G-equivariant functions on \mathbb{P}^1. Crass [3, 4] extended Doyle and McMullen’s algorithm to higher dimensions to solve polynomial equations. Crass [5] found good pairs of G and f for which one may say something about global dynamics.

Crass [5] selected the symmetric group S_{k+2} as a finite group acting on \mathbb{P}^k and found an S_{k+2}-equivariant map g_{k+3} which is holomorphic and critically finite, for each $k \geq 1$. Holomorphy means that f is well-defined at any point in \mathbb{P}^k. We denote by $C = C(f)$ the critical set of f and say that f is critically finite if each irreducible component of $C(f)$ is periodic or
eventually periodic. In addition, the complement of \(C(g_{k+3}) \) is Kobayashi hyperbolic so that we can use Kobayashi metrics to prove our theorems.

1.1 Existence of \(S_{k+2} \)-equivariant maps

An action of \(S_{k+2} \) on \(\mathbb{P}^k \) is induced by the permutation action of \(S_{k+2} \) on \(C^{k+2} \) for each \(k \geq 1 \). The transposition \((ij)\) in \(S_{k+2} \) corresponds with the involution \(u_i \leftrightarrow u_j \) on \(C^{k+2}_u = \{ u = (u_1, u_2, \ldots, u_{k+2}) | u_i \in \mathbb{C} \} \). This action pointwise fixes the hyperplane \(\{ u_i = u_j \} \). Since \(S_{k+2} \) preserves a hyperplane \(H = \{ \sum_{i=1}^{k+2} u_i = 0 \} \), \(H \cong A \) \(\mathbb{C}_{X}^{k+1} = \{ x = (x_1, x_2, \ldots, x_{k+1}) | x_i \in \mathbb{C} \} \), the permutation action of the symmetric group \(S_{k+2} \) on \(C_x^{k+1} \) induces an action of \(\langle S_{k+2}, P \rangle \) on \(\mathbb{C}_X^{k+1} \), where \(S_{k+1} \) is the permutation action on \(\mathbb{C}_X^{k+1} \) and \(P \) is a matrix which corresponds with \((1, k+2) \) in \(S_{k+2} \).

\[
T = \begin{pmatrix}
-1 & 0 & \ldots & 0 \\
-1 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
-1 & 0 & \ldots & 1
\end{pmatrix},
A = \begin{pmatrix}
1 & 0 & \ldots & 0 & -1 \\
0 & 1 & \ldots & 0 & -1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 1 & -1
\end{pmatrix},
Au = x.
\]

Induced hyperplanes in \(C_x^{k+1} \) are \(\{ x_i = 0 \}, 1 \leq i \leq k+1 \), and \(\{ x_i = x_j \}, 1 \leq i < j \leq k+1 \). This action of \(\langle S_{k+2}, T \rangle \) on \(C_x^{k+1} \) projects naturally to the action of \(\langle S_{k+2} \rangle \) on \(\mathbb{P}_X^k \) and we denote it by \(S_{k+2} \) for simplicity.

To get \(S_{k+2} \)-equivariant maps on \(\mathbb{P}_X^k \) which are critically finite, we have the critical set coincide with the union of these hyperplanes.

Theorem 1 (Crass [5]). For each \(k \geq 1 \), \(g_{k+3} \) defined below is the unique \(S_{k+2} \)-equivariant holomorphic map of degree \(k+3 \) which is douubly critical on each hyperplane.

\[
g = g_{k+3} := [g_{k+3,1} : g_{k+3,2} : \ldots : g_{k+3,k+1}],
\]

\[
g_{k+3,l} = x_1^3 \sum_{s=0}^{k} (-1)^s \frac{s+1}{s+3} x_l^s A_{k-s},
\]

where \(A_{k-s} \) is the elementary symmetric function of degree \(k-s \) in \(x_1, x_2, \ldots, x_{k+1} \) and \(A_0 = 1 \).

Then \(C(g) \) coincide with the union of hyperplanes. Since \(g \) is \(S_{k+2} \)-equivariant and each hyperplane is pointwise fixed by some action of \(S_{k+2} \), \(g \) preserves each hyperplane. In particular \(g \) is critically finite.
1.2 Properties of S_{k+2}-equivariant maps

Let us look at properties of an S_{k+2}-equivariant map g_{k+3}, which is proved in Crass [5] and will be used to prove our results. Let L^{k-1} denote one of hyperplanes $\{x_i = x_j\}$ and $\{x_i = 0\}$. Let L^m denote one of intersections of $(k - m)$ distinct L^{k-1}'s for $m = 1, 2, \cdots, k - 1$. Clearly $L^m \simeq P^m$ for $m = 1, 2, \cdots, k$.

First let us look at properties of g itself. The critical set of g consists of the union of hyperplanes and g preserves each hyperplane. In particular g is critically finite. Furthermore $P^k \setminus C(g)$ is Kobayashi hyperbolic.

Next let us look at properties of g restricted to L^m for $m = 1, 2, \cdots, k - 1$. Since g preserves each L^m, we can also consider dynamics of g restricted to L^m. Each restricted map $g|_{L^m}$ has the same properties as above. Let us fix some L^m. The critical set of $g|_{L^m}$ consists of union of hyperplanes in L^m. Here L^{m-1}, a hyperplane in L^m, is a intersection of L^m and another L^{k-1}. And $g|_{L^m}$ preserves each hyperplane L^{m-1} of L^m. In particular $g|_{L^m}$ is critically finite. Furthermore $L^m \setminus C(g|_{L^m})$ is Kobayashi hyperbolic.

Finally let us look at properties of superattracting fixed points of g. The set of superattracting points, where the derivative of g vanishes for all directions, coincides with the set of L^0's.

Remark 1. For any $k \geq 1$ and $m \geq 1$, any restricted map $g_{k+3}|_{L^m}$ of g_{k+3} to some L^m is not conjugate to g_{m+3}.

1.3 Examples for $k = 1$ and 2

Let us see hyperplanes of an S_3-equivariant function g_4 and an S_4-equivariant map g_5 for make clear what L^m means. We do not write explicit forms of g_3 and $g_4|_{L^1}$. See Crass [5] for details.

1.3.1 An S_3-equivariant function g_4 in P^1

$$g_3([x_1 : x_2]) = [x_1^2(-x_1 + 2x_2) : x_2^2(2x_1 - x_2)],$$

$$C(g_3) = \{x_1 = 0\} \cup \{x_2 = 0\} \cup \{x_1 = x_2\}^* = \{0, 1, \infty\}$$

in $P^1 = \{(x_1 : x_2) | (x_1, x_2) \in \mathbb{C}^2 \setminus \{0\}\}^* = \{z = \frac{x_1}{x_2} | x_2 \neq 0\} \cup \{\infty\}$.

In this case "hyperplanes" are points in P^1 and L^0 denotes one of these superattracting fixed points of g_3.
1.3.2 An S_4-equivariant map g_5 in P^2

$C(g_5) = \{x_1 = 0\} \cup \{x_2 = 0\} \cup \{x_3 = 0\} \cup \{x_1 = x_2\} \cup \{x_2 = x_3\} \cup \{x_3 = x_1\}$

in $P^2 = \{(x_1 : x_2 : x_3) \mid (x_1, x_2, x_3) \in C^3 \setminus \{0\}\}$.

In this case L^1 denotes one of irreducible components of $C(g_5)$, which is a hyperplane in P^2. For example let us fix a hyperplane $\{x_1 = 0\}$. Since g_5 preserves each L^1, we can also consider dynamics of g_5 restricted to $\{x_1 = 0\}$. The critical set of $g_5|_{\{x_1=0\}}$ in $\{x_1 = 0\} \simeq P^1$ is

$C(g_5|_{\{x_1=0\}}) = \{[0:1:0],[0:0:1],[0:1:1]\}$.

When we use L^0 after such sentences above, L^0 means one of intersections of $\{x_j = 0\}$ and another L^1, which is a superattracting fixed point of $g_5|_{\{x_1=0\}}$ in P^1. The set of superattracting points of g_5 in P^2 is

$\{[1:0:0],[0:1:0],[0:0:1],[1:1:1],[1:1:0],[1:0:1],[0:1:1]\}$.

Sometimes L^0 denotes one of intersections of two or more L^1's, which is a superattracting fixed point of g_5 in P^2.

2 The Fatou sets of S_{k+2}-equivariant maps

Theorem 2 (Ueno). For each $k \geq 1$, the Fatou set of g_{k+3} consists of attractive basins of superattracting points which are intersections of k distinct hyperplanes.

Before starting a proof of Theorem 2, let us recall theorems about critically finite holomorphic maps and a notion of Kobayashi metrics. Let f be a holomorphic map from P^k to P^k and U a Fatou component. A holomorphic map h is said to be a limit map on U if there is a subsequence $\{f^{(n)}|_{U}\}_{n \geq 0}$ which locally converges to h on U. We say that a point q is a Fatou limit point if there is a limit map h on U such that $q \in h(U)$. The set of all Fatou limit points will be called the Fatou limit set. We define the ω-limit set of the critical points by

$E = \cap_{j=1}^{\infty} f^j(D), \quad D = \cup_{j=1}^{\infty} f^j(C)$.

Theorem 3. (Ueda [6, Proposition 5.1]) If f is a critically finite holomorphic map from P^k to P^k, then the Fatou limit set is contained in E.
Let $K_M(x,v)$ be a Kobayashi quasimetric on a complex manifold M.

$$\inf \left\{ |a| : \varphi : D \to M : \text{holomorphic}, \varphi(0) = x, D\varphi \left(a \left(\frac{\partial}{\partial z} \right)_0 \right) = v, a \in \mathbb{C} \right\}$$

for $x \in M$, $v \in T_x M$, $z \in D$, where D is the unit disk in \mathbb{C}. We say that M is Kobayashi hyperbolic if K_M becomes a metric. Theorem 2 is a corollary of Theorem 4 and Theorem 5 for $k = 1$ and 2.

Theorem 4. If f is a critically finite function from \mathbb{P}^1 to \mathbb{P}^1, then the only Fatou components of f are attractive components of superattracting points.

Theorem 5. (Fornaess and Sibony [7, theorem 7.7]) If f is a critically finite holomorphic map from \mathbb{P}^2 to \mathbb{P}^2 and the complement of $C(f)$ is Kobayashi hyperbolic, then the only Fatou components of f are superattractive components of superattracting points.

We can apply an argument in FS [7] to an S_{k+2}-equivariant map g_{k+3} because each L^{m-1} is smooth and $L^m \setminus C(g|_{L^m})$ is Kobayashi hyperbolic for $m = 1, 2, \ldots, k$.

Proof of Theorem 2. Take any Fatou component U and any point $x \in U$. It is enough to show that $\{g^n(x)\}_{n \geq 0}$ accumulates to some L^0, one of superattracting fixed points. By theorem 3 $\{g^n(x)\}_{n \geq 0}$ accumulates to $C(g)$.

Since $C(g)$ is the union of L^{k-1}s, there exists a smallest integer m such that $\{g^n(x)\}_{n \geq 0}$ accumulates to some L^m. Let m be $k - 1$ for simplicity. By using Kobayashi metrics and an argument in FS [7], we shall show the following result later,

$$\exists n_k \in \mathbb{N} \text{ s.t. } g^n(U) \cap L^{k-1} \neq \emptyset. \quad (1)$$

Next let $U_{k-1} = g^n(U) \cap L^{k-1}$ and do the same thing as above. Then

$$\exists n_{k-1} \in \mathbb{N}, \exists L^{k-2} \text{ s.t. } g^{n_{k-1}}(U_{k-1}) \cap L^{k-2} \neq \emptyset.$$

Let $U_{k-2} = g^{n_{k-1}}(U) \cap L^{k-2}$ and do the same thing as above. These reductions finally come to some L^1. Let U_2 be $g^{n_k + n_{k-1} + \cdots + n_3}(U) \subset L^2$, then

$$\exists n_2 \in \mathbb{N}, \exists L^1 \text{ s.t. } g^n(U_2) \cap L^1 \neq \emptyset.$$

Let $U_1 = g^{n_k}(U_2) \cap L^1$. By Theorem 4 there exists n_1 such that g^n sends U_1 to an attracting component of some superattracting fixed point L^0 in $L^1 \simeq \mathbb{P}^1$. Hence $g^{n_k + n_{k-1} + \cdots + n_1}$ sends U to an attracting component of a superattracting fixed point L^0 in \mathbb{P}^k.

To prove (1), let us assume that (1) is not true and derive a contradiction. By Theorem 3 $h(x)$ belongs to $C(g)$ for a limit map h of convergent subsequence $\{g^n|_U\}_{s \geq 0}$. So there exists a smallest integer m such that $h(x)$ belongs to some L^m. If h is open map from U to L^m, then $h(U) \cap L^m$ is an open set in L^m and is contained in $F(g|_{L^m})$. The same argument of reductions as above implies that $\{g^n(x)\}$ accumulates to one of L^0. That is, there exists n such that g^n sends U to an attracting component of L^0, which is a contradiction.

To show that h is open map from U to L^m, we shall use Kobayashi metrics. Let A be $P^k \setminus g^{-1}(C(g))$ and let B be $P^k \setminus C(g)$. Since B is Kobayashi hyperbolic and $A \subset B$, A is also Kobayashi hyperbolic. So we can use Kobayashi metrics K_A and K_B. By $A \subset B$

$$K_B(y, v) \leq K_A(y, v), \forall y \in A, v \in T_y P^k.$$
Since g is an unbranched covering from A to B,

$$K_A(y, v) = K_B(g(y), Dg(v)), \forall y \in A, v \in T_y P^k.$$

Thus $K_B(y, v) \leq K_B(g(y), Dg(v)), \forall y \in A, v \in T_y P^k.$

Since the same argument holds for any g^n from $P^k \setminus g^{-n}(C(g))$ to $P^k \setminus C(g)$,

$$K_B(y, v) \leq K_B(g^n(y), Dg^n(v)), \forall y \in P^k \setminus g^{-n}(C(g)), v \in T_y P^k.$$

Since g^n is an unbranched covering from U to $g^n(U)$ and $g^n(U) \subset B$ for any n, $K_B(g^n(x), Dg^n(v))$ is bounded,

$$K_B(g^n(y), Dg^n(v)) \leq K_B(U)(g^n(y), Dg^n(v)) = K_U(y, v) < \infty.$$

We claim that for unit vectors $v_n \in T_x U$ such that $Dg^n(x)v_n$ keeps parallel to L^m, $Dh(x)v \neq 0 = (0, 0, \cdots, 0)$ for an accumulation vector v of v_n. Let $h = \lim_{n \to \infty} g^n$ for simplicity. One can choose a local chart around $h(x)$ so that $h(x) = 0$ and $L^m = \{y = (y_1, y_2, \cdots, y_k) | y_1 = \cdots = y_{k-m} = 0\}$. In this chart there exists $r > 0$ such that polydisk $P(0, r)$ is disjoint from L^{k-1} which does not include L^m. Since $g^n(x) \to 0$ as $n \to \infty$, we may assume $g^n(x) \in P(0, r)$. By assumption that (1) is not true, $g^n(x) \notin C(g)$ for any $n \geq 1$. Thus one can define maps φ_n from D to $P(0, r)$ for $z \in D$,

$$\varphi_n(z) := g^n(z) + rze_k = g^n(z) + (0, \cdots, 0, rz).$$
Here $e_k = (0, \cdots, 0, 1)$. Then $\varphi_n(0) = g^n(x)$ and $\varphi_n(D) \subset P^k \setminus g^{-n}(C(g))$. Let us choose unit vectors v_n so that $Dg^n(x)v_n = |Dg^n(x)v_n|e_k$ by the definition of Kobayashi metric,

$$K_B(g^n(x), Dg^n(x)v_n) \leq \frac{|Dg^n(x)v_n|}{r}.$$
Suppose $Dh(x)v = 0$, then $Dg^n(x)v \to 0$ and $Dg^n(x)v_n \to 0$ as $n \to \infty$.

\[
\therefore K_B(g^n(x), Dg^n(x)v_n) \leq \frac{|Dg^n(x)v_n|}{r} \to 0.
\]

On the other hand, by (2)

\[
0 < \inf_{|v|=1} K_B(x, v) \leq K_B(x, v_n) \leq K_B(g^n(x), Dg^n(x)v_n).
\]

Hence $K_B(g^n(x), Dg^n(x)v_n)$ is bounded away from 0 uniformly and this contradiction completes the proof.

\[\square\]

3 S_{k+2}-equivariant maps and Axiom A

Theorem 6 (Ueno). For each $k \geq 1$, g_{k+3} satisfies Axiom A.

First let us define hyperbolicity of maps and a notion of Axiom A. See Jonsson [9] for details. Let f be a holomorphic map from \mathbb{P}^k to \mathbb{P}^k.

\[\Omega := \{ x \in \mathbb{P}^k | \forall U : \text{neighborhood of } x, \exists n \in \mathbb{N} \text{ s.t. } f^n(U) \cap U \neq \emptyset \}.\]

This set is called the non-wandering set, which is compact and forward invariant. We say that f is hyperbolic on Ω if there exists a continuous decomposition $T_{\hat{\Omega}} = E^u + E^s$ such that $D\hat{f}(E^u_{\hat{\Omega}}) \subset E^u_{\hat{\Omega}}$ and if there exists $c > 0, \lambda > 1$ such that for any $n \geq 1$,

\[
|D\hat{f}^n(v)| \geq c\lambda^n|v|, \forall v \in E^u.
\]

\[
|D\hat{f}^n(v)| \leq c^{-1}\lambda^{-n}|v|, \forall v \in E^s.
\]

Here $\hat{\Omega}$ is the set of histories in Ω and \hat{f} is a diffeomorphism on $\hat{\Omega}$. If a decomposition and inequalities above hold for Ω and f, then it also holds for $\hat{\Omega}$ and \hat{f}. We say that f satisfies Axiom A if f is hyperbolic on Ω and periodic points are dense in Ω.

Proof of Theorem 6. We shall show this by induction. For each S_{k+2}-equivariant map g, it is clear that g_{L^1} satisfies Axiom A for each L^1 from a theorem of critically finite functions. We only show that g_{L^2} satisfies Axiom A for some L^2. An argument for $g_{L^m}, 3 \leq m \leq k$, is similar as for g_{L^2}. So let us fix some L^2. First we shall show that g_{L^2} is hyperbolic on $\Omega(g_{L^2})$.

Next we shall show that periodic points of $g|_{L^2}$ are dense in $\Omega(g|_{L^2})$. Let denote $g|_{L^2}$ and $\Omega(g|_{L^2})$ by g and Ω for simplicity.

If g is hyperbolic on Ω, Ω has a decomposition to S_i, where $i=1,2,3$ indicates the unstable dimensions. Since $C(g)$ attracts all nearby points, it follows that $\cup L^0 \subset S_0$ and $\cup J(g|_{L^1}) \subset S_1$, where $g|_{L^0}$ is contracting for all direction and $g|_{J(g|_{L^1})}$ is contracting for a certain explicit direction and expanding for an L^1-direction. Let us consider a compact, completely invariant subset in the complement of C in L^2,

$$S := \{ x \in \mathbb{P}^2 \mid \text{dist}(f^n(x), C) \to 0 \text{ as } n \to \infty \}. $$

It is clear that $S \cap C = \emptyset$ and $S \supset J_2 \neq \emptyset$. Here J_2 is the second Julia set, in which repelling periodic points are dense. By the definition of S,

$$\Omega = (\cup L^0) \cup (\cup J(g|_{L^1})) \cup S.$$

If we show that g is expanding on S, it follows that $\cup L^0 = S_0$, $\cup J(g|_{L^1}) = S_1$, $S = S_2$. Thus g is hyperbolic on Ω.

Let us show that g is expanding on S. Since f is attracting on C and $f(C) = C$, there exists a neighborhood N of C such that $N \Subset g^{-1}(N)$ and $B := \mathbb{P}^2 \setminus N$ is connected. Let U be one of connected components of $\mathbb{P}^2 \setminus g^{-1}(N)$. Let one of L^1's be the line at infinity of \mathbb{P}^2, then

$$U \subset \mathbb{P}^2 \setminus g^{-1}(N) \Subset B \subset \mathbb{C}^2 = \mathbb{P}^2 \setminus L^1.$$

Since the map g from U to B is an unbranched covering,

$$K_U(x, v) = K_B(g(x), Dg(v)), \forall x \in U, v \in T_x \mathbb{C}^2.$$

Since B and all connected components of $\mathbb{P}^2 \setminus g^{-1}(N)$ are in one local chart, there exists a constant number $\rho < 1$ such that for any U

$$K_B(x, v) \leq \rho K_U(x, v), \forall x \in U, v \in T_x \mathbb{C}^2.$$

Thus,

$$K_B(x, v) \leq \rho K_B(g(x), Dg(v)), \forall x \in \mathbb{P}^2 \setminus g^{-1}(N), v \in T_x \mathbb{C}^2.$$

Since $g^n(x)$ belongs to S, which is contained in $\mathbb{P}^2 \setminus g^{-1}(N)$, for any x which belongs to S and for any $n \geq 1$, we have that

$$K_B(x, v) \leq \rho^n K_B(g^n(x), Dg^n(v)), \forall x \in S, v \in T_x \mathbb{C}^2.$$

Thus,

$$K_B(g^n(x), Dg^n(v)) \geq \lambda^n K_B(x, v), \forall x \in S, v \in T_x \mathbb{C}^2, \lambda = \frac{1}{\rho} > 1.$$

Since $K_B(x, v)$ is upper semicontinuous and $|v|$ is continuous, $K_B(x, v)$ and $|v|$ may be different only by a constant factor. There exists $c > 0$ such that

$$|Dg^n(x)v| \geq c\lambda^n |v|, \forall x \in S, v \in T_x \mathbb{C}^2.$$
Thus g is expanding on S and hyperbolic on Ω.

Next we shall show that periodic points are dense in Ω. It is enough to show that $J_2 = S_2$ since periodic points are dense in $J(g|_{L^1})$ and J_2. This follows from the same argument in FS [8, Theorem3.8]. Let us recall that proof. Let σ be $S_2 \setminus J_2$ and suppose that σ is not empty. Since σ is attracting for inverse branches of f^n, σ is disjoint from J_2 and is closed. Since $f(C) = C$, one can define holomorphic local branches of inverses of f^n in $P^2 \setminus C$. Then this family $\{f_i^{-n}\}_{i,n \geq 0}$ becomes a normal family. For any continuous function ϕ on P^2, we define

$$A^n_{\phi}(x) := \frac{1}{d^2n} \sum_{i=1}^{d^n} \phi(f_i^{-n}(x)).$$

In this case $\{A^n_{\phi}\}_{n \geq 0}$ is locally equicontinuous in $P^2 \setminus C$ and

$$A^n_{\phi}(x) \to \mu(\phi) \text{ as } n \to \infty, \forall x \in P^2 \setminus C, \quad (3)$$

where μ is the invariant probability measure whose support is J_2. Let $\phi = 1$ in a neighborhood of J_2 and $\phi = 0$ in a neighborhood of σ. Since $f^{-1}(\sigma) = \sigma$, $A^n_{\phi} \equiv 0$ in σ for any n. On the other hand, by (3)

$$A^n_{\phi}(x) \to \mu(\phi) = 1 \text{ as } n \to \infty, \forall x \in \sigma \subset P^2 \setminus C.$$

This contradiction implies that σ is empty. Thus $J_2 = S_2$ and periodic points are dense in Ω.

□

References

