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Dynamical properties of
holomorphic maps with symmetries
on projective spaces
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Kyoto University (REKFERZEANRREFFTH)

We consider complex dynamics of a holomorphic map from P* to P¥,
which has symmetries associated with the symmetric group S;4; acting on
P, for each k > 1. Here P* denotes the k-dimensional complex projective
space. Informations about critical orbits lead us to global dynamics results:
The Fatou set of each map of this family consists of attractive basins of
superattracting points determined by an action of the symmetric group
Sk+2. Furthermore each map of this family satisfies Axiom A.

1 Sy42-equivariant maps

For a rational map f and a finite group G acting on P¥ as projective trans-
formations, we say that f is G-equivariant if f commutes with each ele-
ment of G, thatis, for = ro f for any r € G. Doyle and McMullen [1]
introduced a notion of G-equivariant functions on P! to solve quintic equa-
tions. See also Ushiki [2] for G-equivariant functions on P!. Crass [3, 4]
extended Doyle and McMullen's algorithm to higher dimensions to solve
polynomial equations. Crass [5] found good pairs of G and f for which
one may say something about global dynamics. .
Crass [5] selected the symmetric group Sg,, as a finite group acting
on P¥ and found an Sk+2-equivariant map g3 which is holomorphic and
critically finite, for each k > 1. Holomorphy means that f is well-defined
at any point in PX, We denote by C = C(f) the critical set of f and say that
f is critically finite if each irreducible component of C(f) is periodic or



eventually periodic. In addition, the complement of C(gy.3) is Kobayashi
hyperbolic so that we can use Kobayashi metrics to prove our theorems.

1.1 Existence of Si;;-equivariant maps

An action of Sy, on P¥ is induced by the permutation action of Sy, on
Ck+2 for each k > 1. The transposition (ij) in Sy, corresponds with the
involution "u; < ;" on Ck2 = {u = (uy, up, -+, upy2)|y; € C}. This
action pointwise fixes the hyperplane {u; = u;}. Since Sy, preserves a
hyperplane H,

k+2 A
H={) uy=0}=Ck!={x=(x,%,  X1) | x; € C},
=1

the permutation action of the symmetric group Si,2 on Ck+2 induces an
action of "Syy2” =< Sg+1, T > on CKH1 where Sy, is the permutation
action on Ckt! and T is a matrix which corresponds with (1, k+ 2) in

Sk+2-

-1 0 ... 0 10...0 -1
-11...0 01 ...0 -1

T = SRS , A= Coe , Au=x.
-1 0 0 1 00 0 1 -1

Induced hyperplanes in Ckt! are {x; = 0}, 1 < i < k+1,and {x; = x;},
1 < i< j< k+ 1. This action of "Sy,2" on Ck*! projects naturally to the
action of " S," on P and we denote it by S.., for simplicity.

To get Sy42-equivariant maps on P* which are critically finite, we have
the critical set coincide with the union of these hyperplanes.

Theorem 1 (Crass [5]). For each k > 1, gy, 3 defined below is the unique Sy ,-
equivariant holomorphic map of degree k + 3 which is douubly critical on each

hyperplane.
8= 8k+3 = [8k+3,1 © Bk+32 © ** © Bk+3k+1)s

L A )
8k+31 = X] P s+ 300k
where Ay_; is the elementary symmetric function of degree k-s in X, X2, **, Xg+1
and Ag = 1.

Then C(g) coincide with the union of hyperplanes. Since g is Siyz-
equivariant and each hyperplane is pointwise fixed by some action of Sy,
g preserves each hyperplane. In particular g is critically finite.
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1.2 Properties of Sy, ;-equivariant maps

Let us look at properties of an Sy ,-equivariant map g, 3, which is proved
in Crass [5] and will be used to prove our results. Let L¥=1 denote one of
hyperplanes {x; = x;} and {x; = 0}. Let L™ denote one of intersections
of (k — m) distinct Lk¥"1's for m = 1,2, .-,k — 1. Clealy L™ ~ P™ for m =
1,2,- k

First let us look at properties of g itself. The critical set of g consists of
the union of hyperplanes and g preserves each hyperplane. In particular
g is critically finite. Furthermore P¥\ C(g) is Kobayashi hyperbolic.

Next let us look at properties of g restrcted to L™ form = 1,2, -, k— 1.
Since g preserves each L™, we can also consider dynamics of g restrcted
to L™, Each restrcted map g| = has the same properties as above. Let us
fix some L™. The critical set of g|i= consists of union of hyperplanes in
L™, Here L™, a hyperplane in L™, is a intersection of L™ and another
L*=!. And g|;= preserves each hyperplane L™~! of L™, In particular g|;m
is critically finite. Furthermore L™\ C(g| =) is Kobayashi hyperbolic.

Finally let us look at properties of superattracting fixed points of g.
The set of superattracting points, where the derivative of g vanishes for all
directions, coinsides with the set of [%'s.

Remark 1. Forany k > 1 and m > 1, any restrcted map gy3|1m of g3 to
some L™ is not conjugate to gpm+3.

1.3 Examples for k = 1 and 2

Let us see hyperplanes of an S3-equivariant function g4 and an S;-equiv-
ariant map g5 for make clear what L™ means. We do not write explicit
forms of g5 and gs|;:. See Crass [5] for details.

1.3.1 An S;-equivariant function g4 in P!
g([x1 : x2]) = [B(—x1 + 2x2) : (2%, — x2)],
Clgs) = {x1=0}U{x =0} U {x1 = x}" = "{0,1,00}
inP! = {[x; : %] | (x1,%) € C¥\ {0}}" = "{z= i—; | x2 # 0} U {oo}.

In this case "hyperplanes” are points in P! and L% denotes one of these
superattracting fixed points of g.
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1.3.2 An Ss-equivariant map gs in P2
Clgs) ={x1 =0}U{x=0}U{x=0}U{x; = }U{x, = x3}U{x3 = x1}
inP? = {[x,: x2: x3) | (x1, %2, x3) € C*\ {0}}.

In this case L! denotes one of irreducible components of C(gs), which is
a hyperplane in P2. For example let us fix a hyperplane {x; = 0}. Since
gs preserves each L!, we can also consider dynamics of g; restrcted to
{x1 = 0}. The critical set of gs|(y, o} in {x1 = 0} = Plis

C(gsl{x=0y) = {[0:1:0],[0:0:1],[0: 1:1]}.

When we use L° after such sentences above, L° means one of intersec-
tions of {x; = 0} and another L!, which is a superattracting fixed point of
85| {x,=0} In P!. The set of superattracting points of gs in P? is

{[1:0:0],[0:1:0],[0:0:1].[1:1:1],[1:»1:0],[1:0:1],[0:1:1]}.

Sometimes L° denotes one of intersections of two or more L!'s, which is a
superattracting fixed point of gs in P2.

2 The Fatou sets of S, ;-equivariant maps

Theorem 2 (Ueno). For each k > 1, the Fatou set of gy 3 consists of attractive
basins of superattracting points which are intersections of k distinct hyperplanes.

Before starting a proof of Theorem 2, let us recall theorems about crit-
ically finite holomorphic maps and a notion of Kobayashi metrics. Let f
be a holomorphic map from P¥ to P* and U a Fatou component. A holo-
morphic map h is said to be a limit map on U if there is a subsequence
{ 7|y} s>0 which locally converges to h on U. We say that a point g is a
Fatou limit point if there is a limit map h on U such that g € h(U). The
set of all Fatou limit points will be called the Fatou limit set. We define the
w-limit set of the critical points by

E=n%,f(D), D= Ui, f(C).

Theorem 3. (Ueda [6, Proposition 5.1]) If f is a critically finite holomorphic
map from P¥ to PX, then the Fatou limit set is contained in E.



Let Kpm(x, v) be a Kobayashi quasimetric on a complex manifold M,

inf{|a|’<p : D = M : holomorphic, ¢(0) = x, D (a (;—Z;) > =V,a€ C}
0

for x€ M, v e TyM, z € D, where D is the unit disk in C. We say that M
is Kobayashi hyperbolic if Ky becomes a metric. Theorem 2 is a corollary
of Theorem 4 and Theorem 5 for k = 1 and 2.

Theorem 4. If f is a critically finite function from P! to P!, then the only Fatou
components of f are attractive components of superattracting points.

Theorem 5. (Fornaess and Sibony [7, theorem 7.7]) If f is a critically finite
holomorphic map from P2 to P? and the complement of C( ) is Kobayashi hy-
perbolic, then the only Fatou components of f are superattractive components of
superattracting points.

We can apply an argument in FS [7] to an Sy, ,-equivariant map gy, 3
because each L™ is smooth and L™\ C(g| =) is Kobayashi hyperbolic for
m=12,-k

Proof of Theorem 2. Take any Fatou component U and any point x € U.
It is enough to show that {g"(x)}n>0 accumlates to some L%, one of su-
perattracting fixed points. By theorem 3 {g"(x)} >0 accumulates to C(g).
Since C(g) is the union of L*~!'s, there exists a smallest integer m such
that {g"(x)} >0 accumulates to some L™. Let m be k — 1 for simplicity.
By using Kobayashi metrics and an argument in FS [7], we shall show the
following result later,

3ng € Nsit. gh(U)N L1 £ @, (1)
Next let Uy_; be g™(U) N L*~! and do the same thing as above. Then
Iy €N, L 25t g1 (U )N L2 £ @

Let Uy—, be g™-1(U) N L*~2 and do the same thing as above. These reduc-
tions finally come to some L!. Let U, be g*+-1++m3()) C L2, then

3n; €N, 3L st. g2(Up) N L # @.

Let U; be g(U,) N L. By Theorem 4 there exists n; such that g™ sends
U, to an attractive component of some superattracting fixed point [? in
L' ~ P!. Hence g'+m-1+"+m sends U to an attracting component of a
superattracting fixed point L° in Pk,
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To prove (1), let us assume that (1) is not true and derive a contradic-
tion. By Theorem 3 h(x) belongs to C(g) for a limit map h of convergent
subsequence {g™|u}s>0. So there exists a smallest integer m such that h(x)
belongs to some L™. If h is open map from U to L™, then h(U) N L™ is an
open set in L™ and is contained in F(g|ym). The same argument of reduc-
tions as above implies that {g™(x)} accumlates to one of L°. That is, there
exists n such that g" sends U to an attracting component of L%, which is a
contradiction.

To show that h is open map from U to L™, we shall use Kobayashi met-
rics. Let A be P¥\ g~1(C(g)) and let Bbe P¥\ C(g). Since B is Kobayashi
hyperbolic and A C B, A is also Kobayashi hyperbolic. So we can use
Kobayashi metrics K4 and Kg. By AC B

Kg(y.v) < Ka(y,v), Vy € A, ve T,P~.

Since g is an unbranched covering from A to B,
Ka(y. v) = K(g(y). Dg(v)), Vy € A, ve TPk

. Kp(y.v) < Kp(g(y). Dg(v)). Vy € A, ve TP
Since the same argument holds for any g” from P¥\ g=7(C(g)) to P¥\ C(g),

Ks(y,v) < Ka(g"(y). Dg"(v)), Vy € P¥\ g™(C(g)), ve T,PX.  (2)

Since g" is an unbranched covering from U to g"(U) and g"(U) C B for
any n, Kg(g"(x), Dg"(v)) is bounded,

Kp(g"(y). Dg"(V)) < Kgn(1)(8"(y). Dg"(v)) = Ku(y. v) < 0.

We claim that for unit vectors v, € T,U such that Dg"(x)v, keeps
parallel to L™, Dh(x)v # 0 = (0,0, --,0) for an accumlation vector v of vy.
Let h = lim,—00 g" for simplicity. One can choose a local chart around h(x)
so that h(x) = 0 and L™ = {y = (yr.y2.,~yu)ly1 = = = Yk-m = 0}. In
this chart there exists r > 0 such that polydisk P(0, r) is disjoint from [*~1
which does not include L™. Since g"(x) — 0 as n — oo, we may assume
g"(x) € P(0,r). By assumption that (1) is not true, g"(x) € C(g) for any
n > 1. Thus one can define maps ¢, from D to P(0,r) for z € D,

¢n(2) := g"(x) + rzey = g"(x) + (0, -, 0, r2).

Here ¢, = (0,-,0,1). Then ¢(0) = g*(x) and ¢a(D) C P¥\ g=(C(g)).
Let us choose unit vectors vy, so that Dg"(x)v, = |Dg"(x)vn|ex. By the
definition of Kobayashi metric,

Ka(g"(x). D" (i) < DE- 00,
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Suppose Dh(x)v = 0, then Dg"(x)v — 0 and Dg"(x)v, — 0 as n — oo.

-, Ky(g"(x), Dg"(%)vs) < U?i(;’-‘)—"f-' S0,
On the other hand, by (2)

0< |‘i'il}_-f1 Kp(x,v) < Kg(x, vn) < Kp(g"(x), Dg"(x)vn).

Hence Kg(g"(x), Dg"(x)vy) is bounded away from 0 uniformly and this
contradiction completes the proof.
O

3 Si+2-equivariant maps and Axiom A

Theorem 6 (Ueno). Foreachk > 1, g3 satisfies Axiom A.

First let us define hyperbolicity of maps and a notion of Axiom A. See
Jonsson [9] for details. Let f be a holomorphic map from Pk to P,

Q := {x € P¥| YU : neighborhood of x, 3n € N's.t. fA(U)N U # @}.

This set is called the non-wandering set, which is compact and forward
invariant. We say that f is hyperbolic on () if there exists a continuous

decomposition Ty = EY + E° such that Df(E;/ %) C E‘;(/;) and if there
exists ¢ > 0, A > 1such that forany n > 1,

|DF(v)| > cA"|v|, Vv e EY,

|Df(v)] < ¢~IA"|v], Vv e FS.

Here €} is the set of histories in Q and fis a diffeomorphism on 0. Ifa
decomposition and inequalities above hold for (2 and f, then it also holds
for O and . We say that f satisfies Axiom A if f is hyperbolic on (2 and
periodic points are dense in ().

Proof of Theorem 6. We shall show this by induction. For each Sj,;-equiv-
ariant map g, it is clear that g;, satisfies Axiom A for each L! from a the-
orem of critically finite functions. We only show that g|;. satisfies Axiom
A for some L2, An argument for g|;», 3 < m < k, is similer as for g|;z. So
let us fix some L2. First we shall show that g|;2 is hyperbolic on Q(g|2).
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Next we shall show that periodic points of g|; are dense in Q(g|;2). Let
denote g|;2 and Q)(gl;2) by g and () for simplicity.

If g is hyperbolic on Q, Q) has a decomposition to S;, where i=1,2,3
indicate the unstable dimensions. Since C(g) attracts all nearby points,
it follows that UL’ C Sp and UJ(g|;1) C S;, where g|o is contracting
for all direction and g| gly) is contracting for a certain explicit direction

and expanding for an L!-direction. Let us consider a compact, completely
invariantsubset in the complement of C in 2,

S:= {x € P?| dist(f"(x),C) » 0 as n — o}

It is clear that SNC = @ and S O  # ¢. Here J; is the second Julia
set, in which repelling periodic points are dense. By the definition of S,
0 = (UL°) U (UJ(g| 1)) US. If we show that gis expanding on S, it follows
that UL? = Sg, UJ(gl[1) = Si. S = Sz. Thus gis hyperbolic on 2.

Let us show that g is expanding on S. Since f is attracting on C and
f(C) = C, there exists a neighborhood N of C such that N € g~!(N)
and B := P?\ N is connected. Let U be one of connected components of
P2\ g~!(N). Let one of L"’s be the line at infinitry of PZ, then

UcP?\g !(N)e Bc C?=P?\ "
Since the map g from U to B is an unbranched covering,
Ky(x, v) = Kg(g(x), Dg(v)), Vxe U, ve T,C2.

‘Since Band all connected components of P2\ g=(N) are in one local chart,
there exists a constant number p < 1 such that for any U

Kg(x,v) < pKy(x,v), Vx € U, v € T,C2

. Kg(x,v) < pKg(g(x), Dg(v)), Vx € P2\ g (N), ve T, C2.

Since g"(x) belongs to S, which is contained in P\ g~!(N), for any x
which belongs to S and for any n > 1, we have that

Kg(x, v) < p"Kp(g"(x), Dg(v)), Vx € S, v € T,C.

- Kn(g'(x), Dg"(v)) = A"Kp(x,v), VX € S, vE TyC%, A = % > 1,

Since Kp(x, v) is upper semicontinuous and |v| is continuous, Kp(x, v) and
|v| may be different only by a constant factor. There exists ¢ > 0 such that

|Dg"(x)v| > cA"|v|, Vx € S, v € T,CZ
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Thus g is expanding on S and hyperbolic on Q2.

Next we shall show that periodic points are dense in ). It is enough
to show that , = S; since periodic points are dense in J(g|;1) and .
This follows from the same argument in FS [8, Theorem3.8]. Let us recall
that proof. Let o be $; \ )2 and suppose that ¢ is not empty. Since o is
attracting for inverse branches of 7, ¢ is disjoint from J; and is closed.
Since f gC) = C, one can define holomorphic local branches of inverses of
f in P\ C. Then this family { f7"};s>0 becomes a normal family. For
any continuous function ¢ on P?, we define

1 &
9(x) = ﬁgrP(ff"(X))-

In this case { A7} n>0 is locally equicontinuous in P? \ C and

Ag(x) = u(¢) as n— o, Vx € P\ C, 3

where y is the invariant probability measure whose support is b. Let
¢ = 1 in a neghiborhood of ), and ¢ = 0 in a neghiborhood of ¢. Since
(o) =0, A$ = 0in o for any n. On the other hand, by (3)

Ag(x) = u(¢) =1 as n— oo, VXGO'CPZ\C.

This contradiction implies that ¢ is empty. Thus b = S; and periodic
points are dense in (2.
O
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