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Abstract

‘We consider dynamics of semigroups generated by polynomial maps
on the Riemann sphere. We investigate the space of semigroups G
such that G is generated by two polynomials, such that the planar
postcritical set of G in the complex plane is bounded, and such that
G is hyperbolic. We show that for a semigroup in the closure of the
disconnectedness locus, the Julia set of the semigroup has Hausdorff
dimension strictly less than two. Moreover, we show that the inte-
rior of the connectedness locus is dense in the connectedness locus.
Furthermore, we investigate the function of probability of tending to
infinity, with respect to the random dynamical systems. We show
that, for a semigroup in the closure of the disconnectedness locus,
the function above behaves like the devil’s staircase. Moreover, for a
semigroup in the closure of the disconnectedness locus, we find a kind
of singular function defined on the complex plane, which is like the
Takagi function.

1 Introduction

A rational semigroup is a semigroup generated by non-constant ratio-
nal maps on the Riemann sphere C with the semigroup operation being
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functional composition([HM]). A polynomial semigroup is a semigroup
generated by non-constant polynomial maps. Research on the dynamics of
rational semigroups was initiated by A. Hinkkanen and G.J. Martin ([HM]),
who were interested in the role of the dynamics of polynomial semigroups
while studying various one-complex-dimensional moduli spaces for discrete
groups, and by F. Ren’s group([ZR], [GR]), who studied such semigroups
from the perspective of random dynamical systems. For other researches of
rational semigroups, see [St1]-[St3], [SY], [StSu], [S1]-[S8].

The research of rational semigroups is directly related to that of ran-
dom dynamics of holomorphic maps. For the study of random dynamics of
holomorphic maps, see [FS], [BBR].

Definition 1.1. Let G be a rational semigroup.

¢ The Fatou set of G is defined to be _
F(G):={z€C|Janbd Uof zs.t. {g|ly:U — C}gec is normal on
U}.

e The Julia set of G is defined to be J(G) :=C \ F(G).

e If G is generated by {g;}:, then we write G = (g1, 92, ... ). More gener-
ally, if G is generated by {hy : A € A}, then we write G = (hy : A € A).

e For a polynomial g, we set J(g) := J({g)).
Fact: If G = (hy, hy, ... , hn), then J(G) = A7 (J(G)) U--- U RN J(Q)).
Definition 1.2. Let G be a polynomial semigroup.

e The postcritical set of G is defined to be
P(G) := | {all critical values of g : C = C} (c C.)

geG

e G is said to be hyperbolic if P(G) C F(G).

Definition 1.3. Let G be a polynomial semigroup.

e We set P*(G) := P(G) \ {oc}. This is called the planar postcritical
set (or finite postcritical set ) of G.

e G is said to be postcritically bounded if P*(G) is bounded in C.

It is well-known that for a polynomial g with deg(g) > 2, J(g) is connected
if and only if P*((g)) is bounded in C. It is natural for us to discuss the
relationship between the planar postcritical set and the figure of the Julia
set, in order to investigate the dynamics of polynomial semigroups. The first
question in this direction is:
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Question 1. Let G be a polynomial semigroup such that each element g € G
is of degree at least two. If P*(G) is bounded in C, then is J(G) connected?

The answer is NO.

Example 1.4 ([SY]). Let G = (28, -’43). Then P*(G) = {0} (which is bounded
in C) and J(G) is disconnected(J(G) is a Cantor set of round circles). Fur-
thermore, by [S6], it can be shown that small perturbation H of G still
satisfies that P*(H) is bounded in C and that J(H) is disconnected. (J(H)
is a Cantor set of quasi-circles with uniform dilatation.)

Question 2. What happens if P*(G) is bounded in C and J(G) is discon-
nected?

2 Main results

In this section, we present the main results of this paper.

2.1 Space of connected components of Julia sets, sur-
rounding order

We present some results on connected components of the Julia set of a post-
critically bounded polynomial semigroup.

Definition 2.1. Weset Rat: = {h: C — C | & is a non-constant rational map}

endowed with topology induced by uniform convergence on C. We set Poly
:= {h:C = C | h is a non-constant polynomial } endowed with the relative
topology from Rat. Moreover, we set Polygeg>2 := {g € Poly | deg(g) > 2}
endowed with the relative topology from Rat.

Definition 2.2. Let G be the set of all polynomial semigroups G with the
following properties:

e each element of G is of degree at least two, and
e P*(G) is bounded in C.

Furthermore, we set G.., = {G € G | J(G) is connected} and Gu, = {G €
G | J(G) is disconnected}.

Notation: For a polynomial semigroup G, we denote by J = Jg the set of
all connected components J of J(G) such that J C C. Moreover, we denote
by J = Jg the set of all connected components of J(G).
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Definition 2.3. For any connected sets K; and K, in C, “K; < K" indi-
cates that K; = K, or K is included in a bounded component of C \ K.
Furthermore, “K; < K,” indicates K; < K; and K; # K;. Note that “<”
is a partial order in the space of all non-empty compact connected set in C.
This “<” is called the surrounding order.

Theorem 2.4. Let G € G (possibly infinitely generated). Then
1. (J, <) is totally ordered.

2. Each connected component of F(G) is either simply or doubly con-
nected.

3. Let A be the set of all doubly connected components of F(G). Then,
(A, <) is totally ordered.

4. For any g € G and any connected component J of J(G), we have
that g=(J) is connected. Let g*(J) be the connected component of
J(G) containing g7*(J). If J € J, then g*(J) € J. If J1,J, € T and
J1 < o, then g7} (J1) < g7 (J2) and g*(Jh) < g*(J2).

Notation: For a polynomial semigroup G with co € F(G), we denote by
F(G) the connected component of F(G) containing co. Moreover, for a
polynomial g with deg(g) > 2, we set Fi.(g) := Fo((g))-

Theorem 2.5. Let G € Gy,. Under the above notation, we have the follow-
ng.

1. We have that co € F(G). The connected component Foo(G) of F(G)
containing oo is simply connected. Furthermore, the element Jya =
Junax(G) € T containing OF,,(G) is the unique element of J satisfying
that J < Jypax for each J € J.

2. There exists a unique element Jyin = Jpin(G) € J such that Jpp < J
Jor each element J € J. Furthermore, let D be the unbounded compo-
nent of C\ Jpin. Then (P*(G))ND =0 and K(G) C Jnin-

3. If G is generated by a family {h\}xen, then there exist two elements )\,
and Ay of A satisfying:

(a) there ezist two elements Jy and Jo of J such that J, # Jp and
J(hy) C J; for eachi=1,2,

(b) J(hx) N Jomin = 6,
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(c) for eachn € N, we have h3™(J(ha,))NJ (hy,) = @ and b3 (J (ha,))N
J(hy,) =0, and

(d) hy, has an attracting fized point z, in C, int(K(hy,)) consists
of only one immediate attracting basin for z;, and K(h,,) C
int(K (hy,)). Furthermore, 21 € int(K (h,,)).

Moreover, for each g € G with J(9) N Jmin = 0, we have that g has
an attracting fized point z, in C, that int(K(g)) consists of only one
immediate attracting basin for z,, and Juin C int(K(g)). Note that in
general, zg # z, for some g and h in G.

4. We have that int(K(G)) # 0. Moreover,

(a) C\ Juin 18 disconnectéd §J > 2 for each J € J, and
(b) for each g € G with J(g) N Jmin = B, we have Jmin < g*(Jmin),

g HI(G)) N Jmin = 8, g(K(G) U Jumin) C int(K(G)), and that the
unique attracting fized point 2, of g in C belongs to int(K(G)).

Definition 2.6. A compact set K in C is said to be uniformly perfect if
- #K > 2 and there exists a constant C' > 0 such that each annulus A that
separates K satisfies that mod A < C, where mod A denotes the modulus of
A ( See the definition in [LV]).

Theorem 2.7. 1. Let G be a polynomial semigroup in G. Then, J(G) is
uniformly perfect. Moreover, if zo € J(G) is a superattracting fizxed
point of an element of G, then 2z € int(J(G)).

2. If G € G and 0o € J(G), then G € Geon and oo € int(J(G)).
3. Suppose that G € Gu,. Let g € G and let 2, € J(G)NC. If g(z1) =
and ¢'(z) = 0, then 21 € int(Jmin) and J(g) C Jmin-
2.2 Upper estimates of u(j )

We present some results on the space J and some results on upper estimates

of §(J).

Definition 2.8. 1. For a polynomial g, we denote by a(g) € C the coef-
ficient of the highest degree term of g.

2. We set RA := {az + b € R[z] | a,b € R, a # 0} endowed with topology
such that, a,z + b, — az + b if and only if a, — a and b, — b. The
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space RA is a semigroup with the semigroup operation being functional
composition. Any subsemigroup of RA will be called a real affine semi-
group. We define a map ¥ : Poly — RA as follows. For a polynomial
g € Poly, we set ¥(g)(z) := deg(g)z + log |a(g)|-

Moreover, for a polynomial semigroup G, we set ¥(G) := {¥(g) | g €
G}.

3. We set R := RU {200} endowed with topology such that {(r, +00]}rer
makes a fundamental neighborhood system of +oo and {[—o0,7)},er
makes a fundamental neighborhood system of —oo. For a real affine
semigroup H, we set

MH) =FeR|The Br@) =2z, @) > 1},

where the closure is taken in the space R. Moreover, we denote by Mg
the set of all connected components of M(H).

4. We denote by n : RA — Poly the natural embedding defined by n(z —
ar +b) = (z+> az +b), where z € R and z € C.

5. We define a map © : Poly — Poly as follows. For a polynomial g, we
set ©(g)(z) = a(g)29°819). Moreover, for a polynomial semigroup G, we
set O(G) := {6(9) | g € G}.

Remark 1. 1. The map ¥ : Poly — RA is a semigroup homomorphism.
That is, we have ¥(g o h) = ¥(g) o ¥(h). Hence, for a polynomial
semigroup G, the image ¥(G) is a real affine semigroup. Similarly, the
map 6 : Poly — Poly is a semigroup homomorphism. Hence, for a
polynomial semigroup G, the image ©(G) is a polynomial semigroup.

2. The maps ¥ : Poly — RAF and n : RA — Poly are continuous.
Theorem 2.9. (Theorem A )

1. Let G be a polynomial semigroup in G. Then, we have §(Ja) < f(Mu())-

2. If G € Gu,, then we have that M(¥(G)) C R and M(¥(G)) = J(n(¥(G))).

3. Let G be a polynomial semigroup in G. Then, §(Jg) < B(.j;,(w(g))). .

Corollary 2.10. Let G be a polynomial semigroup in G. Then, we have
#(Je) < #(Jee))-
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Theorem 2.11. Let G = (hy,... ,hn) be a finitely generated polynomial
semigroup in G. For each j =1,... ,m, let a; be the coefficient of the highest
degree term of polynomial h;. Let o := minj=1,,,,,m{£-§(,f-;7-_-1- log|a;|} and B :=
maXj-1,.. m{ g7 108 laj|}. We set [o,0] == {z € R | a <z < B}. [f
[a, 8] C U, ¥(h;) " ([a, B]), then J(G) is connected.

Theorem 2.12. Let G be a (possibly infinitely generated) polynomial semi-
group in G generated by polynomials of degree two. Then, J(G) is connected.

Theorem 2.13. Let G be a (possibly infinitely generated) polynomial semi-
group in G generated by a family {h\}a of polynomials. Let ay be the co-
efficient of the highest degree term of the polynomial hy. Suppose that for
any )\, & € A, we have (deg(he) — 1) log(jaa|) = (deg(hy) — 1) log(|ag|). Then,
J(G) is connected.

2.3 Random dynamics of polynomials

In this section, we present some results on random dynamics of polynomials
on C. The (outline of) proofs are given in section 4.2.

Let 7 be a Borel probability measure on Polygeg>2. We consider the i.i.d.
random dynamics on C such that at every step we choose a polynomial map
g : C = C according to the distribution 7. (This is a kind of Markov process
on C.)

Notation: We use the following notation.

1. 'We set supp 7 := support of 7 (CPolygeg>2)
We set X, := (supp 7)N endowed with the product topology.
We set 7 := ®32,7. This is a Borel brobability measure on X..

Let G, be the polynomial semigroup generated by supp 7.

AR S

For any z € C, we set

To-(2) :=7({p = (p1,P2,---) € Xy | pn -+ p1(2) = 00 as n — o0}).

This is the probability of tending to oo starting from the initial
value z.

Remark 2. If 7 is a Borel probability measure on Polyaeg>2 and oo € F(G;)
(for example, if supp 7 is compact), then for each connected component U
of F(G;), Tw,r|u is constant.
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Theorem 2.14. (Theorem B) Suppose that supp 7 is compact in Polyaeg>2
and G, € Gu,. Then, we have all of the following.

1. For any component U of F(G,), there exists a constant Cy € [0,1] such
that Too,'rlU = Cu.

2. Toor : € — [0,1] is a continuous function on C.
3. (Monotonicity)

(a) Let A be the set of all doubly connected components of F(G,). If
A, Ar € A and A) < A, then Cy, < Ca,. Hence {Cy | A € A}
are mutually distinct.

(b) If Ji, J2 € Jg, and J, < Jy, then max, ez, Too r(2) < min,e g, Too r(2).

4. For any A € A, we have Toor|g(g,) =0 < Ca < 1 = Cry(c,), where
F»(G;) is the component of F(G,) containing oo.

5. Let Q be an open set in C with

QN (a(Fw(GT)) Ua(K(G.)u | BA) #0.

AeA

Then T r|q is not constant.
( The above 1-5 tells us that To, » : C — [0, 1] 4s like the devil’s staircase.
We call such a function a “devil’s coliseum”.)

6. (No Julia set for (M,),) Let M, be an operator on the Banach space
C(C) := {¢ : C = R | y is continuous} endowed with the supremum
norm defined by M, (p)(2) == [, supp  ©(9(2)) dr(g). Then, there ezists

a unique Borel probability measure p on K(G,) such that for all p €
c(C),

MEP)(z) > Tumr(2) - 9(00) + (1= Tms(2)) - [ s
as n — oo uniformly on C. Hence

0120) > ( [[Teop ) b+ ( [0 Tuo) ) -

as n — oo uniformly on the space M, (C) of all Borel probability mea-
sures v on C. ”



2.4 Differentiability of T ,

In this section, we present some results on differentiability of T ;.

Theorem 2.15. Let 7 = Y 7", pidy,, where 3207, p; = 1,p; >0, and g; €
Polyaeg>2 (Vj = 1,... ,m). Suppose that U(i,j), ii g '(J(G, ))Ng; NJ(G)) is
either empty or totally disconnected. Moreover, suppose that Ty, - : C — [0, 1]
is not constant. Then, int(J(G,)) =0 and

J(G;) = {z € C | for any neighborhood U of z, Teoz|u is not constant}.

In particular, if m =2 and G € Gai, then int(J(G,)) =0 and J(G,) =

{z € C| for any neighborhood U of z, Te+|u is not constant}.

Definition 2.16. Let I' be a subset of Rat. Let N := {p = (p1,p2,...) |
Vj,p; € T'} endowed with product topology. We define a map f:TNx C —
I'N x C as follows. For a point (p,y) € I'N xC, we set f(p,y) = (6(p), 11(%)),
where ¢ : TN — I'N is the shift map, that is, o(p1, p2,...) = (02,03, --.). The
map f : N x C = I'N x C is called the skew product assocxated with
the generator system I'. Let 7 : TN xC > INand 7 : TN xC =+ C
be the natural projections. For each p € TN and n € N, we set fp =
a1 1 77 H{p} = 7 {0"(p)}. Moreover, we set f,. := pno -0 py. For
each p = (p1,p2,...) € I'N, we denote by F,(f) the set of z € C satisfying
that there exists a neighborhood U of 2 in C such that the sequence {p, o

- 0 p1 }nen of maps from U to C is equicontinuous on U. Moreover, we set
J’(f) = C\ F/(f). Furthermore, we set J,(f) := {p} x J,(f) (C TN ()}
and J(f) := UpernJo(f), where the closure is taken in the product space
I'N x C. For each p € TV, we set J,(f) := 7-1{p} N J(f). Furthermore, for
each z = (p,y) € IN x C, we set f/(2) := (f,,1)'(y). More generally, for each
n € Nand z = (p,y) € TN x C, we set (f*)'(2) == (fom)' (¥).
Theorem 2.17. Let T = ;" p;d;,, where p; > 0, g; €Polyaeg>2 for each
j=1,...,m,and ¥ pj=1 Let f: X, xC — X, xC be the skew product
associated with supp 7. For each z = (p,y) € X, x C, we set p(2) := p; if
p1 = g;. Suppose that G, € G and that {g; ' (J(G:))}J, are mutually disjoint.
Then, the following statements hold.

1. Let zy = (p, %) € J(f) and t > 0. Suppose that there ezists a sequence
{n;}ien of positive integers and a point y, € J(G;) \ P(G;) such that
fom;(Wo) = 11 and qg(f“’)(?)) <+ p(20) * |(fon;)' (Wo)|* — 00 as j — oo.

00,7\Y)—1oo r\Y0

Then, limsup,_,,, LA—%W—S—M = 00.

2. Suppose that for each j = 1,... ,m, p; - minveg—x( 1(G)) |(g;)(»)| > 1.

Then, for each yo € J(G), limsup,_,,, oo, ’('i’z::;"f 200l — o0 and Tho s
is not differentiable at yo. :
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Theorem 2.18. Let 7 = 37", p;0,;, where p; > 0, g; €EPolyaeg>2 for each
j=1,...,m,and ¥ p; = 1. Let f : X, xC — X, xC be the skew product
associated with supp 7. For each z = (p,y) € X, x C, we set p(z) = p;
if p1 = gj. Suppose that G, € G and that {g; 1(J(G,))};."=1 are mutually
disjoint. Moreover, suppose that G, is hyperbolic. Let zy = (p,%) € J(f)
and t > 0. Suppose that p(f*(20))---p(20) - |(fo)' (W0)I* = 0 as n — oo.

Then, lim,, .y, Ter@Tectoll

Theorem 2.19. Let T = E;';l p;j0g;, where p; > 0, g; €Polyqeg>2 for each
j=1,...,m, and 37 p; = 1. Suppose that G, € G and that {g; ' (J(G-))} 1y
are mutually disjoint. Moreover, suppose that G, is hyperbolic. Then, T, :
C — [0,1] is Holder continuous with respect to the spherical distance.

Theorem 2.20. Let 7 = E;’;l p;jdy;, where p; > 0, gj €Polygeg>2 for each
j=1,...,m,and }_7_ pj = 1. Let f : X, xC — X, xTC be the skew product
associated with supp . Let u be the mazimal entropy measure of f : X, xC —
X, x C with respect to (0,7) on X,; that is, let u be the unique f-invariant
Borel probability measure on X, x C such that h,(flo) = max{h,(flo) |
fiv =v,m.(v) = 7}, where h,(f|o) denotes the relative entropy of (f,v) with
respect to 0 : X, — X, (Remark: For the eristence and unigqueness of u, see
[S8]). Suppose that G, € G and that {g;*(J(G,))}, are mutually disjoint.
Then, the following statements hold.

1. Suppose [y  log|f'(2)| du > — > i1 Pjlogp;. Then, for almost every
Yo € J(G;) with respect to (mg).(p), limsup,_,, 'T”"(’,’z:;"f"(”)l = 00
and Too + is not differentiable at yo.

2. Suppose that 37" p;logp; + 3 3_7-, p;log(deg(g;)) > 0. Then, for al-

[Too,r (V)—Too,f‘(ﬂon

most every yo € J(G) with respect to (mg).(u), limsup, _,,

ly—vol
= 00 and Te r i3 not differentiable at yo.

3. Suppose that for each j = 1,... ,m, deg(g;) > m?, and that there ezists
an i such that deg(g;) > m?. Then, for almost every yo € J(G,) with
respect to (mg)s(p), limsup,_,,, = ’(Ty:z;"” Yl = oo and To,r is not
differentiable at yq.

Theorem 2.21. Let 7 = Z;":l p;jdy,, where p; > 0, g; €EPOlyqeg>2 for each
j=1,...,m, and Z;.';lpj =1. Let f : X, xC — X, xC be the skew product
associated with supp 7. For each z = (p,y) € X, x C, we set p(z) = p;
if py = gj. Suppose that G, € G and that {g;'(J(G:))}}2, are mutually
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disjoint. Moreover, suppose that G, is hyperbolic. Let v be an f-invariant
ergodic Borel probability measure on J(f). Let

) %, € 108 p(2) dv
Jx,xclog|f'(2)] dv’

~ Then, the following statements hold.

to = -

1. Let 0 < t < ty. Then, for almost every yo € J(G,) with respect to

(Wf)*(l/) , limy_wo IT"“L"L'!;)::;T riol| 0.

2. Lett > t,. Then, for almost every yo € J(G,) with respect to (mg).(v),

lim SUD,,_yy ol = 00.

Theorem 2.22. Let 7 = } 7", p;idy;, where p; > 0, g; EPolygeg>2 for each
j=1,...,m, and Y > p; = 1. Suppose that G € G and that {g;*(J(G-))} 1%
are mutually dzsjomt Moreover, suppose that G, is hyperbolic. Let 6 :=
dimg (J(G;)) and let H® be the §-dimensional Hausdorff measure. (Remark:
By [S8], 0 < H%(J(G,)) < oo. ) Let C(J(G,)) := {¢ : J(G;) = R |
v is continuous } endowed with the supremum norm. Let L : C(J(G,)) —
C(J(G-)) be the operator defined by: L(¥)(y) = X321 30 w)=y TE‘,{)%%" Let
a = lim,_,o, L*(1) € C(J(G,)), where 1 denotes the constant function taking
the value 1. (Note that by [S3], the above o exists.) Let

m

s0i=3 (ogp) [ o) dH‘(y)+Z / el loslgj1)| dH'@)

i=1 g5 (J(Gr))
Then, the following statements hold.

1. Suppose sy < 0. Then, for almost every yo € J(G,) with respect to H®,
lim,_,,, WM—%M =0 and T, is differentiable at yo.

2. Suppose so > 0. Then, for almost every yo € J(G;) with respect to HY,

limsup,_,,, e, '(‘.’3__:;"? 2wl — o6 and Ty, s not differentiable at yo.

Remark 3. Combining Theorem 2.20 and Theorem 2.22, it follows that
there exists a 7 = ) 7", p;jdy;, where p; > 0, g; € Polyaeg>2 for each j =
1,...,m,and } 7, p; =1, such that all of the following statements 1,2, and
3 hold

1. G- is hyperbolic, G; € G, and {g;*(J(G,))}1, are mutually disjoint.



2. Let f: X, x C = X, x C be the skew product associatfd with supp
7. Let p be the maximal entropy measure of f : X, x C — X, x C
with respect to (o, 7). Then, for almost every y, € J(G,) with respect
to (7e)«(1), limsup, _,,, e, ’(’{3“;7 W)l — o6 and T .+ is not differen-
tiable at yp.

3. Let § := dimg(J(G,)) and let H® be the §-dimensional Hausdorff mea-
sure. Then, 0 < H%(J(G,)) < oo and for almost every yo € J(G,) with

respect to H® , im0 M:L::ﬁd”—")l = 0 and T, is differentiable at
Yo.

2.5 The space of 2-generator polynomial semigroups

In this section, we present some results on the space of 2-generator polynomial
semigroups.

Definition 2.23. We use the following notation.

eY :={g:C — C | gisa polynomial, deg(g) > 2} endowed with
topology induced by uniform convergence on C. Moreover, for any m €
N, weset Y™ := Y x---x Y (m factors) endowed with product topology.

o B:= {(h1,hs) € Y | P*((ha, hs)) is bounded in C}.
o C:={(hy, hy) € Y | J({h, h)) is connectedy}.

o D :={(h1, ha) € Y | J({hs, ho)) is disconnected}.

o H := {(h1, hs) € V2 | (s, ha) is hyperbolic}.

o T:={(he,ha) € V2| J(he) N J(hg) £ 0}

o Q:={(h1,hp € Y?| J(hy) = J(hy), and J(h,) and J(h;) are quasicircles}.

Lemma 2.24. The sets H,HNB, HNBND are non-empty and open in V2.
Definition 2.25. Let m € N, (hy,... ,hn) € Y™ and z € C.
o Weset S(hy,...,hn,2) =

inf {t 20| 3 2 > M bY@ < 00}
neN (W1, 1"’")6{1) vm}" hwg hwl (V)_z
€ [0, 00], where || - | denotes the norm of the derivative with respect

to the spherical metric.
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e For any p € (0,1), let T'(hy, hg,p, z) be the probability of tending to
infinity starting from the initial value 2z, with respect to the i.i.d. ran-
dom dynamical system on C such that at every step we choose h; with
probability p and choose h, with probability 1 — p. More precisely, set-
ting Th, hyp = POn, + (1 — D)On,, where 65 denotes the Dirac measure
concentrated at h, we set T'(hy,he,p,2) := Toosr 4, ,(2)- (Note that
z + T'(hy, ha, p, 2) is locally constant on F({(h4, h2>l).$

"o For any subset A of C, dimy(A) denotes the Hausdorff dimension of
the set A with respect to the spherical distance.

Theorem 2.26. (Theorem C) We have the following.
1. Let (hy, hy) € BND and G = (hy, hy). Then, h7*(J(G))Nhz*(J(G)) =
0.

2. HNit(HNBNC)=HNBNC.

3. For any (hy,hy) € HNBND, dimg(J((h1,h2))) < 2 and J((hy, h2))
s porous.

4. Let (hl, hz) € (H ﬂB ] D) \ Q Then, dlmH(J((hq, hg))) = S(hq, hz,z)
for each z € T\ P((hy,hs)). Moreover, there ezist an € > 0 and an
open neighborhood V' of (hy, he) in HNB such that for any (g1,9:) €V,
dimg(J({91,92))) < S(91,92,2) <2 —¢, for any z € T\ P((g1,92))-

5 DNQ=0.

6. For each connected component V of Y%, Q NV is included in a proper
holomorphic subvariety of V.

7. HNABNC))\ Q is dense in HNI(BNC).

8. For any (hy,hy) € (BND)U(HNIBNC)) and any 0 <p <1,
J((h1, ha)) =
{20 € C|Vnbd U of 29, z > T(hy, ha,p, 2) is not constant on U}.

9. Let (hy,hy) € HNO(BNC) and 0 < p < 1. Then, z + T'(h1, hs,p, 2) is
continuous on C if and only if J(h,) N J(he) = 0.

10. Let (hy, hg) € (HNO(BNC))\I. Then, there exists a neighborhood V
of (h1,hy) in H N B such that for any (g1,9:) €V and any 0 <p <1,
z — T(g1,93,p,2) is continuous on C.



11. Let (hy,h) € (BND)U ((HNOBNC))\I). Then, for any z € C,
the function p — T'(hy, hy, p, 2) is real analytic on (0,1). Moreover, for
any n € NU {0}, the function (p,z) — %:f:":(hl,hz, D, 2) is continuous
on (0,1) x C.

Remark 4. 1. Let a;,a; € RA. For each z € R and each 0 < p <
1, let T oo(01, @2,p, z) be the probability of tending to +oco starting
from the initial value z, with respect to the i.i.d. random dynamical
system on R such that at every step we choose a; with probability p
and choose a, with probability 1 — p. Then, setting 5;(z) := 3z and
Ba(z) = 3(z — 1) + 1, the function & — Thoo(B1, 02, 3,) on [0,1]
is the devil’s staircase (or the Cantor function). Moreover, setting
p1(z) := 2z and po(z) := 2(z—1)+1, for each 0 < p < 1 with p # 1, the
function z — T'yo0(p1, P2, P, ) on [0, 1] is Lebesgue’s singular function.
Furthermore, the function z — T.*;'—"(Pl, p2,%,z) on [0,1] is two times
the Takagi function.

2. For researches of Lebesgue’s singular functions and the Takagi function
and its generalization, see [AK], [D], [HY], [SS], and [T].

3. The function z + T'(hy, hg, p, z) on C is a complex analogue of Lebesgue’s
singular function.

4. The function z — %%(hl,hz, p,z) on C is a complex analogue of the
Takagi function.

Figure 1: The Julia set of G = (hy, hy), where gy := 22 — 1, g, = 543,h1 =
g3, hy := g2. The semigroup G belongs to G4,. Moreover, G is hyperbolic.




Figure 2: The graph of z — T(hy, hy, 1, 2) (a devil’s coliseum).

Figure 3: The graph of z — 1 — T(hy, hy, 3, 2).
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Figure 4: The graph of z — %(hl,v ha, 3, z) (a complex analogue of the Takagi
function).
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Example

Proposition 3.1. Let h; be a hyperbolic polynomial such that P*({h,)) is
bounded in C and deg(h;) > 2. Let d € N with (deg(hy),d) # (2,2). Then,

there ezists a holomorphic family {hs.}eew of polynomials such that all of
the following hold. '

1

W is a subdomain of C. For any a € W, (hy,hs,) € HN B and
deg(hee) = d.

2. There ezists an ag € W such that (hy,hyq,) € HNBND.

3. There exists an a; € W satisfying the following:

4 .

o (hi,hag) € (HNOBNC)\I C (HNHBNC)\Q and

e for any neighborhood V of a; in W, there exists an ay € V' such
that (hy, haa,) € int(H NBNC).

Tools and Proofs

To show the main results, we need some tools in this section.

4.1

Fundamental properties of rational semigroups

Lemma 4.1 ([HM],[GR],[S1]). Let G be a rational semigroup.

1.

For each f € G, we have f(F(G)) C F(G) and f~'(J(G)) C J(G).
Note that we do not have that the equality holds in general.

If G is generated by a compact subsetI" of Rat, then J(G) = Unerh™}(J(G)).

(This is called the backward self-similarity of J(G).
If§(J(G)) >3, then J(G) is a perfect set.

IFHJ(@)) = 3, then §E(G) < 2.

If a point z is not in E(G), then J(G) C Ugecg~(2). In particular if
a point z belongs to J(G)\ E(G), then Ugegg™(2) = J(G).

IfF#§(J(G)) > 3, then J(G) is the smallest closed backward invariant set
containing at least three points. Here we say that a set A is backward
invariant under G if for each g € G, g~1(A) C A.
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Theorem 4.2 ([HM],[GR]). Let G be a rational semigroup. If §(J(G)) >

3, then J(G) = {z € C | 3g € G, g(2) = 2, |¢'(2)| > 1}. In particular, J(G) =
UgeG J(g)
Lemma 4.3 ([N]). Let X be a compact metric space and let f : X — X be

a continuous open map. Let A be a compact connected subset of X. Then for
each connected component B of f~'(A), we have f(B) =

4.2

Tools for random dynamics of holomorphic maps

To show the results in section 2.3, we need some tools in this section.

Definition 4.4. Let 7 be a Borel probability measure on Rat.

1.

We denote by supp 7 the support of 7. Moreover, we set X, := ( supp 7)N
(={p=(p1,p2,-..) | pj € supp 7}) endowed with the product topol-
ogy. Furthermore, we set 7 := ®32,;7. This is a Borel probability mea-
sure on X,. We denote by G, the rational semigroup generated by supp
T.

. We denote by M;(C) the space of all Borel probability measures on

C, endowed with the weak topology. Note that M;(C) is a compact
metric space. Let M, be an operator on C(C) defined by M,(#)(z) :=
Jouoor #(9(2)) d7(g). Moreover, let (M), : M1(C) = M;(C) be the

gffofM

We denote by Fineas(7) the set of p € M;(C) satisfying that there
exists a neighborhood B of i in M;(C) such that the sequence
{(M;)?|8 : B = M;(C)}nen is equicontinuous on B.

We set Jimeas(T) := M1(C) \ Fineas(T).

. We denote by F2,.,(7) the set of u € M;(C) satisfying that the se-

quence

{(M,)? : My (C) = M;(C)}nen is equicontinuous at the one point p.
Note that Fieqs(7) C F2

meas(T)-

Using the embedding z € C + §, € M,;(C), where 6, denotes the
Dirac measure at z, we denote by Fy(7) the set of z € T satisfying
that there exists a neighborhood B of z in C such that the sequence
{(M;)?|5 : B— M;(C)}nen is equicontinuous on B.

Similarly, we denote by F(7) the set of z € C such that the sequence

{M )2 C— M;(C)}nen is equicontinuous at the one point z € C.
Note that Fy:(7) C Fay(7).



Lemma 4.5. Let 7 be a Borel probability measure on Rat. Then, we have
the following.

1. (M:); (Fmeas(7)) € Frneas(7), and (Mr) (Fpeas(7)) C Froeas(7)-

2. Lety € C be a point. Then, y € Fy(7) if and only if for any ¢ € C(C),
there ezists a neighborhood U of y in T such that the sequence {z
M} (#)(2) }nen of functions on U is equicontinuous on U. Similarly, y €
Fp.(7) if and only if for any ¢ € C(C), the sequence {z — M (¢)(2)}en
of functions on C is equicontinuous at the one point y.

Frreas(T) NC C F(7).

F2,.(r)NnT = Fi(7).

F(G:) C Fu(r).

S ;L

Let y € C be a point. Suppose that supp T is compact, and that
F({o=(o1,p2p3,...) € Xr |y €NZ2yp7" -+ 7 (J(Gr))}) = 0. Then,
we have that y € F(1) = Fp.(T) NC.

7. FS(7) = C if and only if Frneas(7) = M1(C).

Lemma 4.6. Suppose that supp T is compact, and that $(J(G;)) > 3. Let
[: X xC— X; X C be the skew product associated with supp 7. Then, we
have ne(J(f)) = J(Gr).

Lemma 4.7. Suppose that supp T is compact, and that §(J(G,)) 2 3. Let
f: X, xC— X, x C be the skew product associated with supp 7. Then, for

each p = (p1,p3, . ..) € X;, we have 7e(J,(f)) = NZyprt e 05 (J(Gr))-

Definition 4.8. Let G be a rational semigroup. We set
Jker(G) := Ngecg™1(J(G)). This is called the kernel Julia set of a rational
semigroup G.

Lemma 4.9. Suppose that supp T is compact, and that §(J(G;)) > 3. Let
f: X, xC = X, x C be the skew product associated with supp 7. Let
y € J(G,) be a point. Then,

#({p € X- | (p,y) € J(f), liminf d(fon(y), Jrer(Gr)) > 0}) = 0.

By these arguments, we obtain the following result.
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Theorem 4.10. Suppose that supp T is compact, §(J(G,)) > 3, and that
Jreer(Gr) = 0. Let f : X, x C — X, x C be the skew product associated with
supp 7. Then, Fpeas(T) = M1(C), and for almost sure p € X, with respect
to 7, the two-dimensional Lebesgue measure of ng(J,(f)) is zero.

Lemma 4.11. Let 7 be a Borel probability measure on Polygeg>2. Suppose
that co € F(G.). Let ¢ € C(C) be a function satisfying that there eists a
neighborhood U of oo in C such that ¢ly = 1. Moreover, suppose that supp
¢ C F(G;). Then, we have
Toor(y) =7({p € Xr | ¢(pn 0 -+ 0 p1(y)) = 00,n — 00})

=#({p€ X, | 3n, $(pno-- o m(y)) = 1}) = lim M2(4)().

Lemma 4.12. Let 7 be a Borel probability measure on Polyeg>2. Suppose
that oo € F(G;). Then, for each connected component U of F(G,), there
ezists a constant Cy € [0,1] such that Teo -|v = Cu.

Proposition 4.13. Let T be a Borel probability measure on Polygeg>2 such
that supp T is compact. Suppose that Jir(G;) = 0. Then, the function
Teo,r : € — [0,1] is continuous on the whole C.

Lemma 4.14. Let T be a Borel probability measure on Rat such that supp T
is compact. Let f : X, xC — X, xC be the skew product associated with supp
7. Let V be a non-empty open subset of C such that for each g € G, g(V) C
V. For each p = (p1,p2,...) € Xr, we set L, := NZyp7" - p7(C\ V).
Moreover, we set Lier := Ngegg™ " (C\ V). Let y € C be a point. Then, we

have that 7({p € X, | y € L,, liminf, o d(fsn(y), Lker) > 0}) = 0.

Lemma 4.15. Let G € Gu, be a polynomial semigroup generated by a com-
pact set of Polygeg>2. Then, for each y € T, there erists an element g € G
such that g(y) € Foo(G)U int(K(G)). In particular, we have Jyer(G) = 0.

Corollary 4.16. Let 7 be a Borel probability measure on Polygeg>2 such
that supp T is compact. Suppose that G, € Gu,. Then, Jier(Gr) = 0 and
Fma,(T) = M]_(C)

Lemma 4.17. Let 7 be a Borel probability measure  on Polyaeg>2 such that
supp T 18 compact. Suppose that G, € Gg,. Let y € C be a point. Then, we
have

%({P = (Pl, P2 - . ) € X‘r l anv PpO---0 Pl(y) € Foo(G‘r) U lnt(f{(G))}) =1

Lemma 4.18. Under the assumption of Lemma 4.17, there ezists an éle-
ment o € supp T, a positive integer n, a neighborhood U of polynomial hull
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of Juin(G+) in C, an attracting fized point a- € C of ¢, a positive number
4, and a neighborhood W of (o, ... ,a) € (supp )" in (supp 7)", such that
for each vy = (1,72, s W) €W, (Va0 -+-om)(U) C B(a,6) C B(a,26) C
int(K(QG)).

Lemma 4.19. Suppose that we have the assumption of Lemma 4.17. Under
the notation of Lemma 4.18, we denote by W the following set

{p=(p1,p2,...) € X | 3(kj) — oo, such that (px;, px;+1,- .- , Prs+n-1) € W}.

Then, we have that #(W) = 1, and that for each p € W and eachy € K(G,),
d(pi+ -+ pi(a),pi---p1(y)) = 0 as I — oo.

Lemma 4.20. Suppose that we have the assumption of Lemma 4.17. Under
the notation of Lemma 4.18, for any y € K(G) and any ¢ € C(C),

|M?(8)(a) — MZ(6)(y)| = 0, asp — 0.

Lemma 4.21. Suppose that we have the assumption of Lemma 4.17. Then,
for any ¢ € C(C) there exists a number uy € R such that

|M7 () — p - lllm,ch,) — 0, asn — oo,

where 1 denotes the constant function taking the value 1 and || - || 2(c.)

denotes the supremum norm on K(G,). Moreover, the map pu(¢) = Uy from
C(C) to R is continuous on C(C). Furthermore, u defines a Borel probability
measure on C such that supp p is contained in K(G,).

By these arguments, we obtain Theorem 2.14.

4.3 Tools to prove Theorem C

We give some tools to prove Theorem C.

Lemma 4.22 ([S2]). Let (hy,hs) € B. Then, J({hq, hg)) is connected if and
only if hy'(J((h1, b)) N 3" (J((ha, b)) #

Lemma 4.23. Let (hy, hy) € (HNBND)\ Q. Then, the following holds.
1. We have either K(h,) C K(hg) or K(hy) C K(hy).

2. If K(hy) C K(hy), let U := int(K (hg))\ K (h,). Then, U is a non-empty
open set, hy (U) U h;'(U) C U and hy'(U) N h3*(U) = 0. Moreover,
U # J({h1, ha)).




3. If K(hy) C K(hy), let U := int(K (h1))\ K (hy). Then, U is a non-empty
open set, h*(U) Uhz'(U) C U and h{*(U) N k31 (U) = . Moreover,
U # J((h1, ha)).
Lemma 4.24. Let (hy, ho) € HN(BNC). Then, ki (J(he))Nh; (J(hy)) #
0.

Theorem 4.25 ([S3]). Let (hy,... ,hyn) € Y™ and z € C\P((hy,- .. , hn)).
Suppose that (hy, ... ,hy) is hyperbolic. Then, all of the following statements
hold.

1. dimH(J(<h1,' v )hm>)) S S(hl,. - ,hm,Z).

2. If there ezists a non-empty open set U in C such that U;-"=1hj‘1(U ycuU
and such that {h;*(U)}™, are mutually disjoint, then

dimg (J(ha,-.. b)) = S(ha, -, By 2).

Theorem 4.26 ([S5]). Let (hy,... ,hn) € Y™ and suppose that (hy,... , h.)
is hyperbolic. Moreover, suppose that there erists a non-empty open set U in
C such that UL k7' (U) C U and such that {r;H(U)}, are mutually dis-
joint. Purthermore, suppose thatU # J({hi,... ,hm)). Then, J((hy,... , hm))
is porous and dimy (J((hy, ... ,hn))) < 2.

Lemma 4.27. Let (hy,... ,hm) € Y™ and z € C\ P((hy,... , hn)). Suppose

that (hy, ... , hm) is hyperbolic. Then, the function (g1,...9gm) — S(g1,...Gm,2) -

defined on Y™ is continuous around (hy, ... , hy,).

Lemma 4.28. Let (hy,hy) € (HNBND)\ Z. Then there exists an open
neighborhood V' of (hy, hy) in Y? such that for each (g1,92) € V, Jker({g1,92)) =
0.

Lemma 4.29 (cf. [B]). Let £ := {(h1,hy) € Y? | J(h1) = J(hs)}. Then,
for each connected component V of Y2, LNV is included in a proper subvariety
of V.

Theorem 4.30. Let (hy,hy) € B. Suppose that J(h,) < J(h). Let U :
int(K (ha))\K (hy). Suppose that hy*(U)Uky (U) C U and kT (U)Nh; (U)
0. Then, for any z € C, the function p — T(hy, hy,p, 2) is real analytic on
(0,1). Moreover, for any n € NU {0}, the function (p, 2) = 5 (h1, ha, P, 2)
is continuous on (0,1) x C.

Combining these results above with results in section 4.2, we can prove
Theorem C.
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