Remarks on Quasi-linear Wave Equations
Related to Gas Dynamics

dedicated to Professor Tai-Ping Liu on his 60th birthday

Tetu Makino
(Faculty of Engineering, Yamaguchi University)

This is a joint work with Cheng-Hsiung Hsu (National Central Univ.,
Taiwan) and Song-Sun Lin (National Chiao-Tung Univ., Taiwan).

1 Introduction

We consider the equation

$$y_{tt} - (G(y_x))_x = 0$$ (1)

on $0 < x < 1$ with the boundary conditions

$$y(t, 0) = y(t, 1) = 0.$$ (2)

Here we suppose that $G(v)$ is real analytic in $|v| < \delta$, $G(0) = 0$, $G'(0) = \gamma > 0$
and $G'(v) > 0$ for $|v| < \delta$. As example we keep in mind

$$G(v) = 1 - (1 + v)^{-\gamma}, \quad (|v| < 1).$$

The linearized problem is

$$y_{1,tt} - \gamma y_{1,xx} = 0, \quad y_1(t, 0) = y_1(t, 1) = 0,$$
which has smooth time periodic solutions

\[y_1 = \sum_{n=1}^{N} a_n \sin(n\pi \sqrt{\gamma}(t + \theta_n)) \sin n\pi x. \]

(3)

Thus we have the problem: Are there time periodic solutions for (1)(2) near to the periodic solution of the linearized problem? We have not yet obtained an answer to this question. In this report we give some related observations to this problem. Detailed discussion can be found in [2].

2 Derivation of the problem

We consider one-dimensional movement of polytropic gas without external force governed by the compressible Euler equation

\[\rho_t + (\rho u)_x = 0, \quad (\rho u)_t + (\rho u^2 + P)_x = 0 \]

on a fixed interval \(0 < x < L\) with the boundary conditions

\[\rho u|_{x=0} = \rho u|_{x=L} = 0. \]

We assume that \(P = A\rho^\gamma \), where \(A \) and \(\gamma \) are positive constants such that \(1 < \gamma \leq 2 \). Equilibria are constant densities \(\rho = \overline{\rho} = \text{Const.} > 0, u = 0 \).

Let us introduce the Lagrangean coordinate

\[m = \int_0^x \rho dx. \]

Then the equation is reduced to

\[x_{tt} + (A(x_m)^{-\gamma})_m = 0, \]

where \(x = x(t, m) \) is new unknown function, while

\[u = \frac{\partial x}{\partial t}, \quad \frac{1}{\rho} = \frac{\partial x}{\partial m}. \]

We consider the perturbation \(y \) near the equilibrium

\[x(t, m) = \bar{x} + y = \frac{L}{M} m + y, \]

where \(M \) is the total mass. Taking \(\bar{x} \) as the independent variable and normalizing the variables, we have (1) and (2) with

\[G(v) = 1 - (1 + v)^{-\gamma}. \]
3 Existence of smooth solutions on long time

Let us fix a smooth time periodic solution $y_1(t, x)$ of the form (3) of the linearized problem.

Theorem 1. For any positive number T there are positive constants ϵ^* and C such that for any $0 < \epsilon \leq \epsilon^*$ we have C^2-solution $y(t, x)$ of (1)(2) on $0 \leq t \leq T$ such that

$$|y(t, x) - \epsilon y_1(t, x)| \leq C\epsilon^2$$

for $0 \leq t \leq T$ and $0 \leq x \leq 1$. Here

$$y(0, x) = \epsilon y_1(0, x), \quad y_t(0, x) = \epsilon y_{1,t}(0, x).$$

Before proving this theorem we consider the problem by extending solutions as

$$y(t, x) = -y(t, -x), \quad y(t, x + 2n) = y(t, x)$$

for any $n \in \mathbb{Z}$. Putting

$$u_1 = y_{1,t}, \quad v_1 = y_{1,x}, \quad y_t = \epsilon u_1 + U, \quad y_x = \epsilon v_1 + V,$$

we have

$$V_t - U_x = 0, \quad U_t - G'(\epsilon v_1 + V)V_x = (G'(\epsilon v_1 + V) - \gamma)\epsilon v_{1,x}.$$

The variables

$$W = U + \hat{G}(\epsilon v_1 + V) - \hat{G}(\epsilon v_1), \quad Z = U - \hat{G}(\epsilon v_1 + V) + \hat{G}(\epsilon v_1),$$

where

$$\hat{G}(v) = \int_0^v \sqrt{G'(s)}ds,$$

reduce the equation to the diagonalized equation

$$W_t - \Lambda(\epsilon v_1 + V)W_x = L_-, \quad Z_t + \Lambda(\epsilon v_1 + V)Z_x = L_+,$$

where

$$\Lambda(v) = \sqrt{G'(v)},$$
and
\[L_{\pm} = (-\gamma + \Lambda(\epsilon v_{1} + V)\Lambda(\epsilon v_{1}))\epsilon v_{1,x} \pm (\Lambda(\epsilon v_{1}) - \Lambda(\epsilon v_{1} + V))\epsilon u_{1,x}. \]

We look for solutions \(W, Z \) such that
\[W(t, x) = -Z(t, -x), \quad W(t, x + 2n) = W(t, x). \]

For simplicity we consider solutions which satisfy the initial conditions
\[W(0, x) = Z(0, x) = 0. \]

We construct solutions by iterations. Given \(V(t, x) \), we solve
\[
\tilde{W}_{t} - \Lambda(\epsilon v_{1} + V)\tilde{W}_{x} = L_{-}(t, x, V(t, x)), \\
\tilde{Z}_{t} + \Lambda(\epsilon v_{1} + V)\tilde{Z}_{x} = L_{+}(t, x, V(t, x)),
\]
and find \(\tilde{U}, \tilde{V} \) by
\[
\tilde{W} = \tilde{U} + \hat{G}(\epsilon v_{1} + \tilde{V}) - \hat{G}(\epsilon v_{1}), \\
\tilde{Z} = \tilde{U} - \hat{G}(\epsilon v_{1} + \tilde{V}) + \hat{G}(\epsilon v_{1}).
\]

The solution of the above problem is given by the integral along the characteristic curves: if \(\xi(\tau) = \xi(\tau; t, x) \) is the solution of
\[
\frac{d\xi}{d\tau} = \Lambda(\epsilon v_{1} + V)(\tau, \xi(\tau)), \quad \xi(t) = x,
\]
then
\[
\tilde{Z}(t, x) = \int_{0}^{t} L_{+}(\tau, \xi(\tau), V(\tau, \xi(\tau)))d\tau,
\]
and so on. Through tedious computations we can prove the following lemmas.

Lemma 1. There exist \(M_{0} > 0, \epsilon_{0} > 0 \) such that if \(0 < \epsilon \leq \epsilon_{0} \) and \(||V|| \leq \epsilon^{2}M_{0} \), then \(||\tilde{U}|| \leq \epsilon^{2}M_{0}, ||\tilde{V}|| \leq \epsilon^{2}M_{0} \) and \(\epsilon||v_{1}|| + \epsilon^{2}M_{0} \leq \delta/2 \).

Here \(||f|| = \sup\{|f(t, x)| |0 \leq t \leq T, x \in \mathbb{R}\} \).

Lemma 2. There exist \(0 < \epsilon_{1}(\leq \epsilon_{0}), M_{1} \) such that if \(0 \leq \epsilon \leq \epsilon_{1}, ||V|| \leq \epsilon^{2}M_{0}, ||V_{x}|| \leq \epsilon^{2}M_{1}, \) then \(||\tilde{U}_{x}||, ||\tilde{U}||, ||\tilde{V}_{x}||, ||\tilde{V}|| \leq \epsilon^{2}M_{1} \) and \(\epsilon^{2}M_{1} < 1 \).
Lemma 3. There exist $0 < \varepsilon_2 (\leq \varepsilon_1), M_2$ such that if $0 < \varepsilon \leq \varepsilon_2$,

$$||V|| \leq \varepsilon^2 M_0, ||V_x|| \leq \varepsilon^2 M_1, ||V_{xx}|| \leq \varepsilon^2 M_2,$$

then $||\tilde{U}_{xx}||, ||\tilde{U}_{tx}||, ||\tilde{V}_{xx}||, ||\tilde{V}_{xt}||, ||\tilde{V}_{tt}|| \leq \varepsilon^2 M_2$ and $\varepsilon^2 M_2 < 1$.

Moreover, if V^1, V^0 satisfy the conditions of the lemmas, then we can prove that

$$||\tilde{V}^1 - \tilde{V}^0|| \leq \frac{1}{2} ||V^1 - V^0||,$$

if $\varepsilon < \varepsilon^* (\leq \varepsilon_2)$, which is sufficiently small.

Thus we consider the iteration

$$V^{(0)} = 0, \quad V^{(n+1)} = \overline{V^{(n)}}.$$

Then $V^{(n)}$ converges to the limit V and

$$y(t, x) = \varepsilon y_1(t, x) + \int_0^x V(t, s)ds$$

gives the required solution.

4 Non-existence of time global smooth solutions

Let us apply the argument of [4].

Theorem 2. Suppose that $G''(v) < 0$ for $|v| < \delta$ or $G''(v) > 0$ for $|v| < \delta$. If $y(t, x) \in C^2([0, +\infty) \times [0, 1])$ is a solution of (1)(2) such that $|y_x(t, x)| \leq \delta_1$ for $t \geq 0, x \in [0, 1]$, where $0 < \delta_1 < \delta$, then $y = 0$ identically.

Proof. We can suppose that $y \in C^2([0, \infty) \times \mathbb{R})$ solves (1) and $y(t, x) = -y(t, -x), y(t, x + 2n) = y(t, x)$ for $n \in \mathbb{Z}$.

Putting

$$w = y_t + \hat{G}(y_x), \quad z = y_t - \hat{G}(y_x),$$

we reduce the equation to

$$w_t - \Lambda(y_x)w_x = 0, \quad z_t + \Lambda(y_x)z_x = 0.$$
By the assumption, we have
\[\frac{1}{C} \leq \Lambda(y_x) \leq C. \]

Now let \(x = x(t) = x(t; a) \) solve
\[\frac{dx}{dt} = \Lambda(y_x(t, x(t)), \quad x(0) = a. \]

Consider
\[X(t) = \frac{\partial}{\partial a}x(t; a). \]

Then
\[X(t) = \exp \left(\int_{0}^{t} \frac{\partial}{\partial x} \Lambda(y_x(\tau, x)) d\tau \right) > 0. \]

On the other hand we can prove that
\[X = \left(\frac{\Lambda(y_x(t, x(t)))}{\Lambda(y_x(0, a))} \right)^{1/2} (1 + z_a(0, a) \int_{0}^{t} Q(\tau) d\tau), \]

where
\[Q(\tau) = -\left(\frac{\Lambda(y_x(0, a))}{\Lambda(y_x(\tau, x(\tau)))} \right)^{1/2} \frac{1}{4} \frac{G''(y_x(\tau, x(\tau)))}{G'(y_x(\tau, x(\tau)))}. \]

If \(G'' < 0 \), then \(Q \geq 1/c > 0 \) and \(\int_{0}^{t} Q(\tau) d\tau \to +\infty \) as \(t \to \infty \). Thus we have \(z_a(0, a) \geq 0 \) for any \(a \). Since \(z(0,.) \) is periodic, we have \(z(0, .) = \text{Const} \).

By a similar discussion we have \(w(0, .) = \text{Const} \). This implies the result.

5 Exact solutions

In [3] F. John gave exact solutions to the equation
\[y_{tt} - (1 + y_x^2)y_{xx} = 0. \]

Along the idea of F. John we construct exact solutions of our general equation
\[y_{tt} - (G(y_x))_x = 0. \]

Let \(f \) be arbitrary function of \(C_0^\infty(\mathbb{R}) \). Suppose that \(v = v(t, x) \) solves the equation
\[v = f'(x - \Lambda(v)t). \] (4)
Put
\[y(t, x) = t\Phi(v(t, x)) + f(x - \Lambda(v(t, x))t), \]
where
\[\Phi(v) = \int_0^v \zeta \Lambda'(\zeta) d\zeta = v\Lambda(v) - \hat{G}(v). \]
Then we have
\[y_t = -\hat{G}(v), \quad y_{tt} = -\Lambda v_t, \quad y_x = v, \quad y_{xx} = v_x. \]

On the other hand
\[v_t = -\frac{\Lambda f''}{1 + f''\Lambda'}, \quad v_x = \frac{f''}{1 + f''\Lambda'}, \]
as long as
\[1 + f''(x - \Lambda(v)t)\Lambda'(v)t \neq 0. \]
Thus \[y(t, x) \]
satisfies the equation with the initial conditions
\[y(0, x) = f(x), \quad y_t(0, x) = -\hat{G}(f'(x)). \]

Suppose that \(f \in C_0^\infty(\mathbb{R}) \) satisfies that \(|f'(\xi)| \leq \delta_0(<\delta) \) for any \(\xi \in \mathbb{R} \)
and
\[-m = \min_\xi f''(\xi)\Lambda'(f'(\xi)) < 0 \leq \max_\xi f''(\xi)\Lambda'(f'(\xi)) \leq m. \]

Put \(T = 1/m \). The equation (4), which is equivalent to the equation
\[\xi = x - \Lambda(f'(\xi))t, \]
admits a unique solution as long as \(0 \leq t < T \). As \(t \to T - 0 \), we see that \(y_x = v, y_t = -\hat{G}(v) \) remain to be bounded but \(y_{xx} \to \infty \). This is a typical example of singularity which happens after a finite time for smooth solutions.

6 Estimate of life span of smooth solutions

Consider the initial value problem:
\[y_{tt} - (G(y_x))_x = 0, \quad y(t, 0) = y(t, 1) = 0, \]
\[y(0, x) = \phi(x), \quad y_t(0, x) = \psi(x), \]
where \(\phi, \psi \) are smooth and
\[\phi(0) = \phi(1) = \psi(0) = \psi(1) = 0. \]

Theorem 3. There exist constants \(\epsilon, C \) such that if \(|\phi_x(x)|, |\psi(x)| \leq \epsilon \) and if
\[|\phi_{xx}(x)|, \quad |\psi_{x}(x)| \leq M, \]
then there exists a solution \(y(t, x) \) of class \(C^2 \) as long as \(0 \leq t \leq 1/CM \).

Observe
\[w = y_t + \hat{G}(y_x), \quad z = y_{tt} - \hat{G}(y_{xt}), \]
which satisfy
\[w_t - \Lambda w_x = 0, \quad z_t + \Lambda z_x = 0. \]
Thus a priori estimates of \(|w|, |z| \) are obvious.

Consider the quantities
\[A = \sqrt{\Lambda} w_x, \quad B = \sqrt{\Lambda} z_x, \]
which satisfy
\[A_t - \Lambda A_x + \mu A^2 = 0, \quad B_t + \Lambda B_x + \mu B^2 = 0, \]
where
\[\mu = -\frac{1}{4} G''(y_{x})G'(y_{x})^{-5/4}. \]
Note that \(|\mu| \leq C \) a priori. As P. D. Lax said in [5]: "solution to initial-value problems exists as long as one can place an a priori limitation on the magnitude of their first derivatives." Thus this completes the proof.

7 Problem with vacuum

Originally we are interested in the equation
\[y_{tt} - \frac{1}{\rho}(PG(y_{x}))_{x} = 0, \]
where
\[G(v) = 1 - (1 + v)^{-\gamma}, \quad \rho = (1 - x)^{-\gamma}, \quad P = (1 - x)^{-\gamma}. \]
This equation is derived from the motion of gas under constant gravity governed by the equation

$$\rho_t + (\rho u)_x = 0, \quad (\rho u)_t + (\rho u^2 + P)_x = -\rho g,$$

where $P = A\rho^\gamma$ and g is positive constant. Equilibria are

$$\bar{\rho} = \begin{cases} A_1(L-x)^{\frac{1}{\gamma-1}} & (0 \leq x < L) \\ 0 & (L < x), \end{cases}$$

where L is positive constant determined by the total mass and

$$A_1 = \left(\frac{g(\gamma - 1)}{A\gamma} \right)^{\frac{1}{\gamma-1}}.$$

The linearized problem has time periodic smooth solutions explicitly written by the Bessel function of order $1/(\gamma - 1)$. Detailed discussion can be found in [1].

But we have not yet proven parallel results for this problem because of the singularity at $x = 1$.

References

