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UNIQUENESS OF ENTIRE SOLUTIONS
FOR A REACTION-DIFFUSION EQUATION

JONG-SHENQ GUO

1. INTRODUCTION

We consider the reaction-diffusion equation of 1-space dimension:
(1.1)  up=ug,— f(u), z€R, teR,
where f(u) € C*([0,1]) and
(1.2) fO)=f1)=0, f(0)>0, f(1)#0.

It is called bistable case, if f/(1) > 0. This is the case for Allen-Cahn equation [1]. It
is called monostable case, if f'(1) < 0 and f > 0 in (0,1), e.g., Fisher (KPP) equation
9, 15].

We are interested in the interaction of these two homogeneous steady states v = 0 and
u = 1. One such example is the so-called traveling wave solutions (TWS) connecting
equilibria » = 0 and u = 1 with speed c, i.e., a solution of the form u(z,t) = Q(z), z = z—ct:

(1.3) Q+cQ=f(Q),0<Q<1, z€R,
(14) Q(=00) =0, Q(+00) =1.

Concerning the existence, uniqueness, and stability of TWS of (1.1), we refer the reader
to the papers by, e.g., Kolmogorov-Petrovsky-Piskunov [15], Fisher {9], Kanel [14], Aronson-
Weinberger {2, 3|, Fife-McLeod (7, 8], Uchiyama [16], Bramson [4], etc.

In particular, for the bistable case, it is shown by Fife-McLeod [7] that there is a TWS of
(1.1) which is unique up to translation, if f has exactly one interior zero in (0,1). For the
bistable case with multiple interior zeros, say, 0 = ap < @) < -+ < @y = 1, m > 2, there
exists a TWS connecting 0 and 1, if the corresponding wave speed cj connecting a2 and
agk, k=1,--+,m, satisfying ¢; > -+ > ¢, (cf. also [7}).

For the Fisher~KPP equation, it is well-known that there is a ¢y > 0 such that a TWS
exists if and only if ¢ > cpin.

We define entire solution as a solution of (1.1) which is defined for all (z,t) € R2. Note
that a TWS is a 1-front entire solution.



JONG-SHENQ GUO

Our main question here is to construct so-called 2-front entire solutions which behave as
two (opposite) traveling wave fronts approaching each other from both sides of the z-axis
and then annihilating in a finite time.

We shall first recall some existence results for 2-front entire solutions in §2. Then we shall
concentrate on the uniqueness of 2-front entire solutions for the bistable case in §3. For
convenience, from now on we shall simply call 2-front entire solution as entire solution.

2. EXISTENCE AND PARTIAL UNIQUENESS

For the existence of entire solution, in the monostable case, Hamel-Nadirashvili [12, 13]
constructed a rich class of entire solutions for ¢ > ¢y, for general n spatial dimension under
the assumption that f'(0) = max,e(o,1 f'(s). An "almost” uniqueness result is also given.

The first work for the existence of entire solutions in the bistable case is done by Yagisita
[17]. In 2003, he constructed entire solutions for bistable nonlinearity f with a single interior
zero in (0,1) including the case ¢ = 0, but no detailed motion of fronts.

The above two methods are quite complicated and involved. In {10], Fukao-Morita-
Ninomiya considered the case when f(u) = u(l — u)(a — u), ¢ # 1/2 (and so ¢ # 0).
The main idea of their method is to construct suitable super/sub-solutions using the exact
expression of TWS. _

In [11], we extend the idea of [10] to derive the existence and partial uniqueness (i.e.,
uniqueness in the class of solutions that are sandwiched between a pair of sub-super-solution)
of entire solutions for both monostable and bistable cases, if a TWS with speed ¢ # 0 exists.
Here in the monostable case we also assume that f/'(0) = max,e,1) f'(s), but for any ¢ 2 cmin
(including the case when ¢ = cyin)-

This method is quite simple and is easy to be applied to various cases such as discrete
diffusive KPP equation (see, e.g., [11]). It is important to remark that the asymptotic
behaviors of TWS Q(z) as z — %oo play an important role in this construction.

Indeed, the existence of entire solutions follows by the following monotone iteration
scheme from a sub-super-solution pair.

Suppose that (u, %) is a uniformly bounded sub-super-solution pair of (1.1) on Rx (—o0, T].
For each 7 < T, let w(7; z,t) be the solution of the initial value problem

Wy = Wae — f(w) in Rx (7,7,

w(r;~,7) = u(,7) on R x{r}.

Such a solution exists and satisfies u <w <% on R x [, T].
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Consider the family {w(7; -, ‘) }r<r. This family is uniformly bounded from above by %. It
is also monotonic. Hence the limit

u(z,t) = lim w(r;z,t) V(z,t) € R x (—o0,T]

exists. By a parabolic regularity theory, such convergence is locally uniform and u is a
classical solution of (1.1) that satisfies ¥ < u < %. .

By constructing a quasi-invariant manifold (so that a deterministic sub-super-solution
pair can be constructed), in [5] we construct entire solutions for the monostable case for any
C > Cmin, Without the assumption that f'(0) = max,ep,1) f'(s). A sub-super-solution pair is
called deterministic via translation if there exist functions &(-), p(+) such that

(z,t) < u(z+E(t),t+p(t) VoeR,t<T,
Jim {|p(8)] + [€(2)[} = 0.

Here in [5] only the partial uniqueness is proved for the monostable case. Also, the exis-
tence and uniqueness of entire solutions for the bistable case with ¢ # 0 is derived. See
Theorems 2.1 and 3.1 below. The case for ¢ = 0 is treated in [6].

Theorem 2.1. Assume that f € C*(R), f(0) = f(1) =0, f/(0) >0, f'(1) >0, and a TWS
(¢, Q) with ¢ > 0 exists. Then (1.1) admits an entire solution u = U satisfying
U(z,t) =U(-=,t), Uylz,t) <cUz(z,t) <0 Vz>0,t€R,
21) Uzt +h(t)) < Q@ — ct)Q(—ct — z) < U(z, t — h(t)) VzeR,t<0,
where h(t) = M[1 — Q(c|t|])| and M is some positive constant.

Here the set {Q(z + ¢)Q(p — z) | p,g > 0} is called a quasi-invariant manifold, since
Q(z — ct)@Q(—ct — z) is very "close” to & solution of (1.1) for —¢ > 1.
3. UNIQUENESS FOR BISTABLE CASE
The main uniqueness theorem in [5] is as follows.

Theorem 3.1. Let oy, By be constants such that f#0in (0,a0] U [Bo,1). If u is a non-
constant entire solution of (1.1) with 0 < u < 1 and the initial condition:
3d>0, T € R, and functions I(-) and r(-) such that

u(z,t) < ag, ¥ z € (—o0,I(t)] U [r(t), o),
u(z,t) > Bo, V z € [I(t) + d,r(t) — d]

for allt < T, then, under the assumption of Theorem 2.1,
u(z,t) = U(z + zo,t + to), ¥ (z,t) € R?

for some (zo,ty) € R
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Proof. Here we shall give an outline of the proof as follows.
Step 1. Let 7 be a fixed constant such that v, > ag and f > 0 in (0,~y]. Then we can find
T1 € R such that M(t) := sup,eg u(z,t) > v, V¢t < T1.
Step 2. Define for t < T3 := min{T, T }:
I(t) = min{z | u(z,t) = %},
7(t) = max{z | u(x,t) = v}
Then I(t) < I(t) < 7(t) < r(t). Moreover,
Jim [7(t) — I(t)] = co.
Set p(t) = [F(t) — I(t)]/2 and m(t) = [7(t) + I(t)]/2. Then, for all t « -1,
u(z +m(t),t) <, if x| 2 p(t),
u(z +m(t),t) 2 Bo, if |z| < p(t) —d.
Step 3. We prove the asymptotic wave resemblance:

(3.1) lim inf lu(z+-t) = UC, 7)o@ = 0.

t——o0 zER,TE

Note that, as t — —oo0,
U(z,t) ~ Qz — ct)Q(—z — ct).
Step 4. There exist positive constants €g, B, v such that
U*(z,t) =U(z, 7 +t F Be[l —e™]) £ ee™
is a sub-super-solution pair for every 7 € R and ¢ € (0, €.

Step 5. Fix an arbitrary £ € R. Define

(@) =, Jof  lu(z+8) = UC )lem).

Fix any small positive € € (0,&o). By (3.1), there exist t; < ¢, z; € R, and 71 € R such that
U(z,n) —e <u(z; +z,t;) LU(z,m1)+€ VreR.

By comparison, for all ¢t > 0,

U(z,m +t+ Be[l —e™) —ee™

u(z; +z,t, + t)

Uz, m+t—Be[l —e™])+ee™ VzeR.

IN A

Set t =1 —1t, # =7 +t— Be[l — e"], we conclude that
n(t) < (2+2B||Uillo) e

Since ¢ is arbitrary, n(f) = 0.
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Step 6. Take a sequence {t;} such that t; = —oo as j — oo. Since 7(t;) = 0 for all j, there
are sequences {2;} and {7;} such that

Uz, 7)) —1/j Lulz; +z,t;) <U(z,75) +1/j
for all z € R. Consequently, for j > 1, for all ¢t > 0,
U(z,7; +t+ B[l —e™]/j) —e™/j
< u(zj+z,t;+t)
< Ulg,7;+t—B[l—e™]/j)+e™/j VzeR.
Then for all z € R, for all t > ¢;, for all 7 > 1,
Uz — 2j,7; —t; + t + B[l — e7"t%)] /) — et /5
< wu(z,t) :
< Uz — 2,75 —tj +t — B[l — e™t%)]/5) 4 e t4) /5,

Since u is a non-constant entire solution such that 0 < ¥ < 1in R?, wehave 0 < u < 1in
R2. Then, from the properties of U, both {—z;} and {r; — ¢;} are bounded and have finite
limits zo and tp as j — oo. We conclude that u(z,t) = U(z + o, t + tp) in R2. 0

Now we turn to the balanced bistable case (i.e., ¢ = 0). In this case, we have f = F’,
where F satisfies
(32) FeCHR), F'(0)>0, F'(1)>0, F(0)=F(1)=0<F(s)¥s#0,1.
Note that (1.1) admits a monotonic standing wave u(z,t) = Q(z):
O(z) = Q) Vz€R, Q(-00)=0, Q(oo)=1.

In the sequel, Q always refers to the particular solution defined by

o (- L Vds—1nf1 - Q
z= - s —In[l — Q(z
w= [ (=) (2)
for z € R, where p:= 1/ f/(1). It has the expansion

Q2) =1— e + L 7% 4 O(1)e %

as 2z — 00.

In (6], we prove the following existence and uniqueness theorem.

Theorem 3.2. Assume (3.2). Then (1.1) admits a solution v with the initial condition at
t = —oo:

(3.3) lim inf{ sup lu(w, t) - Q(b - :c)l + sup ‘u(:c, t) - Qz - q)‘} =0.

t—=—00p>q L 25 (p4q)/2 z<(p+q)/2
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In addition, the solution is unique up to space and time translations, i.e., if u1 and ug are
solutions of (1.1), (3.3), then there exist constants £, such that

(3.4) ui(z,t) = ug(z + &,t+ 1) V(z,t) € R
Furthermore, the solution satisfies
tl_l_glo ”u("t)”L""(R) = 0,
lim u(z,t)=0 VteR,
|z}—o00

Jim_suplu(y +2,8) ~ QU+ (1) @~y +p(t))| =0
——00 yeR

for some translation z € R, where

(3.5) p(t) = 5 In|2aut],
(3.6) pi=4/f"(1), a= 2/)

- f01\/2F(s)ds' _

Note that the “initial” condition (3.3) can also be replaced by the following condition:
There exzist constants L > 0 and T € R, and functions p(-) and q(-) such that

{ u(z,t) < V z € (—o00,q(t)] U[p(t), 00),
u(x,t) > fo  Vazelg(t)+ L p(t) - L,

for allt < T, where ap, By are constants satisfying

f >0 in (0,6\!0], f <0 in [601 1)

For the existence, we construct (c¢(p), ®(y,p)) for p > 0 and y € R (a quasi-invariant
manifold) such that

®(-y,p) = @(y,p),

®,y — f(®) = c®, + O(1)e 2,

c=—ae # + O(1)pe*?,

2(y,p) = (y, p){1 + O(V)e (1 + Iy - pI7},

2,y p) = &4, ) {1+ O(W)e (1 + |y - pV) },

®,(y,p) = &, (y,p) + O(1)e™?[1 + |y — p|*] &y,
where &(y,p) := Q(p - y)Q(p +y).

The proof of uniqueness for the case ¢ = 0 follows more or less the same line as the case
for ¢ # 0. We shall not repeat it here. Instead we point out some of the differences here
only. For details, we refer the reader to [6]. "
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We define
I(t) = min{z | u(z,t) = oo}, 7(t) = max{z | u(z,t) = oo}, Q(mo) = 0.

After deriving the estimate of exponential tails, i.e., there exist constants T} < 0, K > 0
and € > 0 such that for all t < T3,

0 < u(z,t) < e~ min{lz=r@®llz=l®N}
for all £ € (—o0,l(t)] U [r(t), ), and
0 <1-u(z,t) < Keeminlle=r®liz=i)}
for all z € [I(t), 7(t)], we obtain that, as t — —o0,
(3.7) lu(-,t) = Qmo + (t) = -)Q(mo + - — U(t)) |l Lawy — 0.
Then we define the quasi-invariant manifold by
M :={¥(,2p) |z €R,p>po} C L*(R),
where py is a large positive constant and
U(z,2,p)=®(z—-2p) VreR,zeR,p>0.
For convenience, we use the notation
@0 = [ oW, ol = ViEd,

Also, we use the notation ¢ L ¢ when (¢,9) = 0.
By applying the Implicit Function Theorem, the following lemma. follows from (3.7).

Lemma 3.3. There exists a constant Ty < 0 with the property that for each t < Ty there

exist unique z = 2(t) € R and p = p(t) > po + 1 such that u(z,t) = ¥(z, z,p) + ¢(z,t) for -

all z € R, where

9] = dist(u(:,8), M) = mi u( &) = ¥
In addition, (2,p) satisfies the orthogonality condition:
(3.8) (¥ —u,¥,) =0, (¥ —u, ¥,) =0.
Furthermore, 2(t),p(t), ¢ are smooth functions.

To study the dynamics of z(t), p(t), we need to study the spectrum of linearized operator
of (1.1) around ®. Therefore, we consider the linear operator

(3.9) Lo = ¢y, — f'(2(y,p))d
where p is any large enough constant. The following lemma shows that the self-adjoint

operator £ has two eigenvalues of order e 2*?, and all the remaining eigenvalues are strictly
negative.
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Lemma 3.4. Let L be defined as in (3.9). Then for allp > 0,
(3.10) L, =O01)e™, L&, = O0(1)e .
In addition, there exist positive constants v, py such that for all p > po,

(£6,¢) < ~3u (161 + 16411)
for all p € H*(R),¢ L ®,,¢ L ®,.

Using this lemma, we can derive the following lemma of super-slow interfacial motion.

Lemma 3.5. There ezists a large negative constant T3 and unique functions z(t), p(t) defined
on (—o0, T3] such that for all t < Tj,

u(z,t) = ®(z — z(t), p(t)) + é(z,1),

(6, ®a) = (6,@5) =0, [l(-,t)l| = O(1)e™™7,

2(t) = O(1)e~8P,

0> p(t) = —ae™ P 4+ O(1)pe~ .

Consequently,

. 1
(3.11) Jim {p(t) - 5 n(2amit) } =0,
(3.12) 2(t) = z(—o0) + Olt(‘i),

where 2(—o0) 18 a finite number.

Finally, the uniqueness is proved by a change of coordinates. We refer to [6] for more
details. :
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