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1 Introduction

We consider reaction-diffusion systems as follows:
ur = €Au+ f(u) —v, v, = DAv+u— v, (1.1)

where u = u(y,7) and v = v(y,7) denote activator and inhibitor re-
spectively; v > 0 is a nonnegative constant; and €, D > 0 are positive
constants. We assume that f(s) = —W’(s) where W € C2(R) is a double-
equal-well potential satisfying

W(ht)=W(h™) =0< W(s) YseR\{h*,h"}, W'(h")W"(h™)>0

with constants h~ < 0 < h*, and there exists a unique value h° € (b=, h*)
such that f(h°) = 0 with f’(h°) > 0. There hold f(h*) =0, f'(h%) <0
and f,:'j f(s)ds = 0. A prototype is f(u) = u — u.

The system (1.1) describes the reaction and the diffusion phenomena of
substances. When the ratio of the diffusion constants, £2/D, is extremely
small, very interesting stationary patterns, such as stripes or spots, often
appear. As a mathematical approach to understand this pattern forma-
tion, we consider the limit ¢ — 0. Then usually the domain is divided
into two regions and the remaining part becomes a thin layer. In some
cases, the width of the internal transition layer approaches 0 in the limit,



and the discontinuity surface inside the domain, which is called sharp
interface, appears. On the other hand, it is known that (1.1) can have
very fine layered patterns. See [6, 12, 13]. We consider this fine pattern
which has the space scale of €!/3 order. This is the unique scale that the
order of the two driving forces of the sharp interface, the inhibitor v and
the curvature of the sharp interface, balances. See [10]. This scale also
appears in [6]. After rescaling

y

4/3 2/3
.’B=E§, =€/T,€=E/,

we obtain

1
{ u = Bu+ 5 (f(u) - v), 2

e*vy = DAv+e(u—w).

We consider the stationary solutions of (1.2) subject to the homoge-
neous Neumann boundary condition:

[ —2Au= f(u)-v, inf

! —DAv=¢(u—-), inQ, (1.3)
ou v

3= 5 = 0, on o0,

where Q C R? is a bounded domain with the smooth bounday 0. This
is the elliptic system of FitzHugh—-Nagumo type and the associated func-
tional is

1
I(u€) = /Q SV + 2W () + 2—;—,(D|Vv|2 + ey?) da,

where v solves
—DAv +eyv=-¢€u, in{,

% =0, on BQ.’

In what follows, we deduce the reduced problem. If we assume u — ug
and v — vp in the limit ¢ — 0, we formally have

f(uO) =v, Av=0, inQ
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B 1: sharp interface I' and the domain

6’00
577.— =0 on oN

Hence vy is a constant. Now assume that v is close to 0 and
ug = fHwo; R )1+ 4 f~  (vo; A7) 1g-.

Here O, Q~ are open sets in ; 1q+ denotes the characteristic functions
of OF; u = f~1(v;h*) is the inverse function of v = f(u) near u = h*
respectively.

We assume that I' = Q\(Q+ U Q™) is a curve embedded in §2. We call
I’ sharp interface. We shall identify the profile of layer near I.

It is known that there exists a constant 7 > 0, depending on f, such

that for any v € (—7,7), the equation for u, s = uzz + f(u) — v, has
a traveling wave solution u(z,t) = Q(z — ct;v) with the speed ¢ = c(v)
and the profile @ = Q(&;v). More precisely, c(v) and Q(&;v) for v €
(—=7,7),€ € R satisfy

[ Q+c(v)Q+f(Q -v=0, iR,
Jm Q&5v) = £ (v A7),

eﬂinm Q& v) = fH v h7),

| ¢(0) =0.

Here " means d/d€. See, for example, [4]. Near the sharp interface I,
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consider the function P
u(z) = Q (%);v) ,

where d = d(z) is the signed distance function from I such that d(z) > 0
if z € Q™ and d(z) < 0 if z € Q*. If the above function satisfy the first
equation of (1.3) for each prescribed v, noting that |Vd| = 1, there holds

Q +(Ad)Q + F(Q) —v =0.

Since Ad is equal to the curvature x of I' on the interface I' (here we
choose the sign such that x > 0 when Q% is a disk), it follows that

c(v)=ex  onTl.
Since c(0) = 0 by the assumption, we may assume that
vb =0

and
Ug = h+19+ + h_ln—.

Next we consider the higher order term. Assume
v = gv; + O(?).
Then we obtain the reduced problem

—DAv; = ht1g+ + h™1g-, in §,

Ou =0, on 91, (RP)
on
d(0)v, = &, onT.
It is known that
d(0) = P =h” (1.4)
with "
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The reduced functional becomes
Ll =oll] + 3 / D|Vui[? dz,
0

where v; solves
—DAv, = h+19+ +h"1g-, inQ,

Ovy
Bn = 0, on 0.

See Lemma 4.1 in Section 4.

For the reduction from the paraboloc system to the phase field model,
see [16]. The relation between the functional I and the reduced functional
Iy may be justified mathematically by the notion of the Gamma conver-
gence. See [13]. The radially symmetric case for the related problems is
studied in 7, 8, 11, 14, 15, 17].

The direct method of calculus of variations implies the existence of
global minimizers of I;. This gives the solution of (RP). However it
is usually difficult to know the profile of the global minimizers. Here we
consider the problem to find a solution of (RP) which does not necessarily
correspond to the global minimizers.

In order to state the result, we define the Green’s function and its
harmonic part.

Definition 1.1 For each y € Q, let G(z,y) be the solution to

4

—AzG(w’y) = 6(:6 - y) - T})P z € Qa

oG | -
[ = Q’
B (z,y) =0, T €O

/ G, y)dz = 0.
\ JO

Set

G(m y)=——1—log|x—y|+M+H(x y), z,y€
y 27r 4|QI ’ k) b

Then it is known that H(z,y) is symmetric and harmonic in both x and
y. Let H(z) = H(z, z).
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We define the following two conditions.

(A1) 0 € Q is a strict local minimum point of H. More precisely, there
exists a neighborhood U of 0 in Q such that H(0) < H(z) for all
z € U\{0}.

(A2) 0 € Q is a non-degenerate critical point of H.

Remark. When (Q is a disk, the center of Q is a unique minimum point
of H and both (A1) and (A2) are satisfied. The regular part of Green’s
function subject to the homogeneous Dirichlet boundary condition has
a unique non-degenerate minimum point when Q@ C R? is convex (see
[2]). The regular part of Green’s function subject to the homogeneous
Neumann boundary condition is considered in [9).

We denote by dy Hausdorff metric

du (K1, K,) = max[sup{dist(z, K5) ; z € K;},sup{dist(y, K1); y € K3},
Sr(0) = {z € R; |z| =}, and B,(0) = {z € R; |z| < r}.
Theorem 1.1 Assume that (A1) or (A2). If

ro = \ ’ ;-(—Igl—_lg%l‘—_—_-)- < dlSt(O, 69),

then there exists a constant Dy > 0 such that (RP) has a solution

I'=Tp,
v, = Vp,
Q* = OF,

2 Normalization

Let Q,Q*, T, D, h*, 0,v, k be as in Section 1 and 7o be as in the state-
ment of Theorem 1.1. We normalize the problem in what follows. Define
the rescaled domains

QF = {z € R?; roz € Q*},
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Q= {2z eR?; roz € Q}.

Set
© D

for z € Q. The rescaled sharp interface is

i(z) = v(roz)

I'={z e R?; roz € T}.

The curvature of I is

k= rok
Define new constants
|h~|
m= hT:h—_- € (0, 1)
and
. (h* — h")zrg'

Do
Noting (1.4), the reduced equation (RP) then becomes

-A7 = lﬁ.’. -—m, in Q,

=0, on 8Q, (2.1)

2P

+ k=0, onl.

The necessary condition for (2.1) to have a solution is that the average
of 15+ — m over Q vanishes, i.e., |QF| = m|Q|(= Mrg‘ll = ).

Define the Green’s function G for § as
é(l’, y) = G(Toz’ TOy)’ x;y € ﬁs

the harmonic part H of G as

and the diagonal component of H as

H(z) = H(z,z), €.
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Then G satisfies

( _Az‘é(xvy) = 6(‘” - y) - r('lﬂa S ﬁa
oG .
J '%;(xay) - Oa T € 89,
G(z,y)dz =0
\

Since

~

1
H(.’B, y) = H(Tox, "'0?/) - -2; lOgTQ,

the properties (A1) and (A2) are invariant under the above rescaling.
Hence in what follows, we assume that 7o = 1. Then Theorem 1.1 follows
from Theorem 3.1 in Section 3.

3 Existence of Solution

We consider
—Av = 1g+ —m, inQ,

% =0, on 8%, (3.1)
Bv+ k=0, onT,

where 0 C R? is a bounded domain with the smooth boundary 89Q; Q+
is an open set in ; ' = 8Q% C Q is a C?-curve embedded in Q; « is
the curvature of I'; 8 > 0 is a parameter; 1o+ denotes the characteristic
function of QF; and |Q*| = 7 = m|Q|. The last condition is equivalent
to rp = 1. In this section we assume that 1 < dist(0, 39).

We identify 2n-periodic functions on R with the functionson S* = {z €
R?; |z| = 1} 2 R/27Z. For q € C*(S*), we use the following notations:

g(w) = %(w) = dioq(cos& sind), w = (cosb,sind) € S*

and

dw) = %(w) = a%q(cose,sin 8), w = (cosh,sind) € S*.



Let 0 < o < 1. We write

_ lg(w) — g(@)]
= R o
wED

X = C%%(S') consists of all functions g € C?(S!) for which the norm
lgllx = max g(w)| + max |¢(w)| + max |§(w)| + [dl¥

is finite. Y = C*(S') consists of all functions ¢ € C(S!) for which the
norm

lally = géaélflfI(w)l + [gly

is finite.
For q1,q, € L*(S'), denote

2r
(@1, q2) = /sl @1 (w)ge(w)dw = / q1(cos 8, sin @)ga(cos 8, sin 8) db.
0

Define ®y(w) = 1/v2r, ®1(w) = wi/V/7, and $z(w) = wa/+/7 for
w = (wi,ws) € S*. Let Iy, IT; : L3(S') — L?(S') denote the projections
with respect to (-, ) onto span{®,} and span{®;}:-o1,2 respectively. Let
Iy = Id — Iy, [I{ = Id — ;. Then II3, II} are the projections onto the
orthogonal complements of span{®,} and span{®;},-0,12 respectively.

For r > 0, define

X, ={geX;|lqllx <r(g1) =0}.

We can choose a constant § € (0,1/2) such that B;4+5(0) C Q by our
assumption. For ¢ € X;/,, define

I'(g) = {V1+qw)w;we S},

Qf(q) = {rw; 0<r < 1+ qw),w € S*}.

Let ¢ € Xs/2. Then I'(q) C Q and |Q2*(g)| = 7. Indeed since /T +¢ <
1+ 3g < 1+ ¢, we have I'(q) C By15/2(0) C Q. In addition, since
(g, 1) = 0, we have

V1+aw) v
st Jo st 2
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Let Mg be the map from Xs/2 to Y defined by

Mp(q)(w) == K(g)(w) + 8 G(V1+gqww,y)dy, weS

0Q+(9)
for g € X5/2, where

= . 13/2

[1 +q+ 4 1+q)]
is the curvature of I'(g). Indeed, set z;(6) = r(8) cos 8, z2(8) = r(8)sin
with

K(q)

r(6) = v/1 + g(cos §,sin6).
Then the curvature of I'(q) can be computed as follows.
] “
Gy —Epdy 2422 —rf 1+ q+ gy —3d
2 + $2)3/2 ~ (r? + 72)3/2 - 2 13/2°
In order to solve (3.1), we need only find a function g € X/, such that

I Mg(q) = 0. Indeed, if ¢ € Xj/2 is a solution of Ilf M(q) = 0, then
there exists a constant C such that

Mﬂ(q) =C.

Now set

v(z) = G(z,y)dy - H

C, zeq.
a+(g) 8

Then v satisfies
—Av = 1g+@g —m, in{,
w_
on
Proof. From | (g)| = 7 and —A:G(z,y) = 6(z — y) — 5, We have

—Av = 19+ — %Iﬂl = 1g+ — m. Moreover 8v/8n = 0 on 80 follows

from 8G/0n,(z,y) =0 for z € 8,y € Q. O
Hence we see that

r=r@. @)= [ ()G(z,wdy—%c, Q* = Q¥(g)
+(q

0, on 9.

solves our equation (3.1).
Our main result is the following:
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Theorem 3.1 Suppose either (A1) or (A2). Then there exists a con-
stant By > 0 such that TI3 Mg(q) = 0 has a solution q = qg € X;/2 for all
B € (0, B) satisfying gg — 0 in X as 8 — 0.

The proof consists of two steps:
(i) I3 Mp(q) = 0 and (if) (I — o) Mp(q) = O.

4 Linearized non-degeneracy

We linearize Mp. Fort > —1, p € R, s € R, set

3p? 1
1+t+m&t-)-53
3/2°

L(t,p,8) = -
[1+¢+ 78]

Then K is C! on Xj/; and there holds
K'(g)¢ = Ly(9,4,§)¢ + Lp(q, 4, §)¢ + Le(g, 4, §)¢  for ¢ € Ilg X.

Moreover since
ety

. . y . -5/2

. 34 ¢* Zq}[ ¢ ]5
L 1 Y, =—=¢4- 1 YZEEERY )
»(@.4:9) { G+af " 1+g) T4 1+9
we have £L,(q,d,4) = Ly(q, ¢, §). Hence it follows that for ¢ € IIg X
K'(q)¢ = Ly(q,4,§)¢ + Ly(, 6, §)¢ + Le(g, 4, 4)¢
= %[La(% q, q)C] + Lt(Qa q, Q)C

Since

4(©) ‘ A
Ms@w) = K@@ +6 [ [ G/TT o, i) Fdo



for w € S and g € X5, we see that Mp is also C* and

My(g))(w) = K@)l (w) + 2 / G(/IT d@w, VIT @)o)(@) do

1© V.G(V1+ gww, VT +§0) - w dq
+B¢(w) / / W) db

= ?&[Ls(% q.a q)C] + Lt(Qv q.s Q)C
+ g /Sl G(V1+ gw)w, V1 + q(@)@)¢(@) da

B¢(w) .
Tt Jorw” VGVt dwlev)dy

for w € S, g € Xg/3, and ¢ € Tz X.

For small ¢, the singular perturbation problem (1.3) has a solution
(ue,v:) which have an internal transition layer near I' provided that q is
a solution of IT¢ Ms(q) = 0 and Mj(q) is non-degenerate. See [11]. We
can show that this non-degeneracy condition holds under the condition
(A2).

However in the case of FitzHugh-Nagumo type, we can apply the
Gamma convergence theory in order to obtain the layered solution. First
we define the energy functional.

Definition 4.1 For q € Xy2, define

Eald = 5@ +5 [ [VoPds

where

v(z) = G(z,y)dy, ze€Q.
Qt(g)

Note that

/IV’ulzdz= —/vAvdx=/v(1g+(q)-m)dz
Q 0 a

= / G(z,y) dzdy.
Q*(q) vQ*(q)
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Lemma 4.1 Let T : I — X;/2 be a C'-map from an open interval I C R

to X5/2. Then
S EBIT(O)] = 55(Mala). )

This implies that the solution g is a critical point of Eg in X;/2. When

(A3) 0 € Q is a non-degenerate local minimum point of H, i.e., a critical
point of H at which the Hessian matrix of H is positive definite.

is satisfied, we can see that gs is an isolated local minimizer of Ep in
Xs/2- In this case we can show the existence of layered solution of (1.3)
using the idea in [5]. In the case of FitzHugh-Nagumo type, we can also
establish the existence of the layered solution using the spectrum estimate
for the Allen—-Cahn operator for generic interfaces obtained in [1, 3].
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